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PARALLEL CROSS-SECTION RECOGNITION  

OF GEOMETRICAL FEATURES FOR SELECTED MACHINE PARTS 

Increase of automation and autonomy of production is the latest trend incorporated into Industry 4.0 objectives. 

Production autonomy is very desirable in the field of damaged parts replacement. To fulfill this goal numerous 

reverse engineering systems have been developed that support geometry recognition from the 3D scan data. This 

study is focused on converting non-parametric geometry representation of shaft-type elements into a CAD model 

with a rebuilt feature tree. Algorithms are based on the analysis of parallel cross-sections. The proposed system is 

also capable of identification of additional geometric features typical for 2.5 axes milling such as pockets, islands 

and outer walls. The proposed algorithms are optimized to increase efficiency of the process. Initial identification 

parameters are selected with respect to defined criteria, e.g., identification accuracy, computing power and 

scanning accuracy. Described algorithms can be implemented in reverse engineering systems. 

1. INTRODUCTION 

According to the idea of Industry 4.0, every process or physical object should have  

a digital twin. The digital twin is the digital representation that accompanies a product 

throughout its life cycle [1, 2]. The digital twin can be not only a 3D model, but also a feature 

tree of the model, allowing to plan the manufacturing technology. However, a digital 

equivalent of the object is not always available. In such a situation, a digital equivalent must 

be created. Pattern recognition algorithms are used to create a digital environment of both  

the technological process and the physical object [3, 4]. 

Two trends in the use of pattern recognition algorithms are present in mechanical 

engineering. The first is used in Computer-Aided Process Planning (CAPP) systems. These 

systems provide a link between Computer Aided Design (CAD) and Computer Aided 

Manufacturing (CAM) systems. The role of feature recognition systems in CAPP programs 

boils down to the classification of features in order to automatically determine their 
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manufacturing technology [5]. One way of feature recognition in CAPP systems is Graph 

Pattern Analysis (GPA). This approach was presented by JungHyun Han, Mike Pratt and 

William C. Regli [6]. In addition, attempts have been made to implement neural networks 

into GPA systems. This was done by researchers at the Indian Institute of Technology in 

Bombay [7]. The GPA method assumes an analysis of the model wall connections, for which 

a parametric geometry in Boundary-Representation (B-rep) is required. The GPA method can 

also be used to reconstruct the B-rep geometry from Constructive Solid Geometry (CSG) [8].  

The second strand is the use of feature recognition tools in Computer Aided Reengine-

ering (CAR) systems [9]. The task of these systems is to create parametric geometry from  

a point cloud. One approach in this strand is the use of 3D neural networks. For this purpose, 

a 3D matrix is applied to the 3D model [10, 11]. Zhibo Zhang, Prakhar Jaiswal and Rahul Rai 

presented the use of this method in CAPP programs [12], but the method can also be adapted 

in CAR systems. The problem with this method is to choose the right resolution of the matrix 

so that the features are recognized correctly. A completely different approach is the feature 

recognition method using sectional view representation [13]. This method allows the use  

of 2D neural networks but, like the GPA method, it is used more often in CAPP programs. 

The use of the projection method for applications in CAR systems was presented by 

researchers from Samara National Research University [14]. Authors at first have created 

projection images of the geometry, then neural network has been used for image segmentation 

[15]. After segmentation, pixels have been compared to the coordinates of the corresponding 

projection in order to match pixels to recognized faces. This approach allows the reconstruc-

tion of a surface model based on point cloud projections onto coordinates planes.  

The advantage of this approach is that 2D convolutional neural networks can be used. 

This paper presents a method for identifying the structural features of shaft class parts 

based on cross-sections. The method presented allows the identification of structural features 

(implementation in CAPP systems) and the reconstruction of parametric B-rep geometry 

(implementation in CAR systems) from a point cloud. The method described uses a 2D 

convolutional neural network for regression and a 2D convolutional neural network for 

identification, which reduces computation time relative to 3D networks.  

Furthermore, the method allows the identification of more complex features than  

the method using sectional view representation. Unlike the GPA method, no parametric 

geometry format is required. 

2. METHOD 

Chapter 2 describes the method of identification and reconstruction of parametric 

geometry. It first describes how the data was obtained. It then describes how to determine the 

cross-sectional planes and proposes how to select the resolution of the matrix. Next, a method 

for orienting cross sections using a 2D convolutional neural network for regression is 

presented. Section 2.4 describes how to teach an appropriate neural network for identification. 

The following section describes how to determine the dimensions of the identified features 

and how to group cross-sections into structural features. It then shows how to determine the 

axis of the shaft and how to rebuild the geometry with the reconstruction of the operation tree. 



M. Golaszewski et al./Journal of Machine Engineering, 2021, Vol. 21, No. 3, 5–24 7 

 
2.1. SCANNING 

In order to obtain data for learning the neural network and validating the system, 8 shafts 

were modelled and manufactured using additive manufacturing techniques. The shafts were 

modelled in a way to distinguish 5 different types of step geometries: gear (Fig. 1a), spline 

(Fig. 1b), groove (Fig. 1c), straight step (with circular cross-section) (Fig. 1d) and milled step 

(Fig. 1e). A shaft having all classes of cross-sections (Fig. 2a) was used to test the system and 

verify the method of identifying geometrical features. The cross sections extracted from  

the 7 shafts were used to teach, validate and test the neural networks (Fig. 2b–2h).  

The fabricated and scanned shafts with marked geometrical features are shown in Fig. 2. 

 

Fig. 1. Types of identified geometry of parts of the shaft class 

 
Fig .2. Manufactured shafts 

The shafts were scanned using an Artec Eva Lite scanner with single point scanning 

accuracy of 0.1mm and surface scanning accuracy of 0.5mm [16]. The files were converted 

into the point cloud format. In reverse engineering, only the physical object is available, as 



8 M. Golaszewski et al./Journal of Machine Engineering, 2021, Vol. 21, No.  ,  –  

 

the CAD model does not exist or inaccessible [17]. In the case described here, the CAD model 

of the reference geometry is only used for analysis and qualitative evaluation of the scan 

[18, 19].  

Note that the teeth of the gear have been angularly displaced in the shaft axis during  

the scanning process, as can be seen in Fig. 3a. The maximum value of deviation is 4.38 mm. 

The overall quality of the scan was determined by the median and standard deviation values. 

The median and standard deviation values are summarized in Table 1. The distribution  

of total deviation is shown in Fig. 3a and the distribution histogram of deviation in Fig. 3b. 

 
Fig. 3. a) Values of deviation of comparison scan with reference geometry; b) Distribution histogram 

Table 1 Standard deviation and median value of deviation 

Standard 

deviation  

X-axis 

Standard 

deviation 

Y-axis 

Standard 

deviation 

Z-axis 

Total  

Standard 

deviation 

0.61 0.63 0.96 0.84 

Median 

X-axis 

Deviation* 

[mm] 

Median 

Y-axis 

Deviation* 

[mm] 

Median 

Z-axis 

Deviation* 

[mm] 

Median 

Total 

Deviation 

[mm] 

0.08 0.07 0.01 0.77 
* Absolute value of deviation 

2.2. PLANE SPAN AND MATRIX RESOLUTION 

In order to extract a series of cross-sections from the point cloud, the width of the 

projection band and the number of cross-section planes were determined. The width  

of the projection band defines the subspace from which points are projected onto the surface 

of the cross-sectional plane (Fig. 4). The number of cross-sectional planes is determined by 

the coverage parameter. Coverage indicates what percentage of points from the cloud are 

contained within the projection areas. The number of planes of a section is determined from 

the following formula: 
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𝑛 = [
(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛⁡) ∙ 𝑝

𝑏⁡ ∙ 100%
] (1) 

where: zmax – furthest point in Z axis, zmin – closest point in the Z axis, p – coverage [%],  

b – width of the projection band [mm]. 

The span vector of the cross-sectional planes has the following form: 

 𝑧 = [𝑧1, 𝑧2, 𝑧3, …⁡ , 𝑧𝑛−1, 𝑧𝑛] (2) 

where: 

 𝑧𝑖+1 = 𝑧𝑖 + ∆𝑧  (3) 

 
∆𝑧 =

𝑧max − 𝑧min
𝑛 − 1

  (4) 

 

Fig. 4. Vector of section planes with marked projection areas 

A matrix was applied to the resulting cross-sections. The typical shaft manufacturing 

technology is turning, so the base geometry of the part is a rotating solid. The band most 

frequently activated is therefore the ring (Fig. 5a). The resolution of the matrix is chosen 

based on the solution of Gauss's Circle Problem (5) [20]. 

 
𝑁(𝑟) = 1 + 4 ∙∑(⌊

(𝑟)2

4𝑖 + 1
⌋ − ⌊

(𝑟)2

4𝑖 + 3
⌋)

∞

𝑖=1

  (5) 

Where: N(r) – number of points with integer coordinates inside a circle of radius r, r – radius 

of the circle embedded in the Cartesian coordinate system 

From the interpretation of Gauss’s Circle Problem it follows that the number of active 

pixels in an n x n matrix superimposed on a circle is described by equation (6). The activation 

bandwidth is 12.5% of resolution. The band of active pixels together with the active nodes is shown 

in Fig. 5b. 
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Fig. 5. Projected points on the activation area 
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Where: A – number of pixels in the projection band, n2 – resolution of the superimposed 

matrix. 

The number of active pixels should be approximately three times the number of points 

in the projection band. This number guarantees a high probability of completely filling  

the pixels in the projection band. After transformation of equation (6) and simplification,  

the following is obtained:  

 
 

𝐿 = 12 ∙∑
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(7) 

   

where: L – mean number of points in the cross-section, n2 – matrix resolution. 

For an average of 360 points, the chosen resolution is 50×50. Within each pixel, points 

were counted and saved in an “M” matrix. The “M” matrix values were then scaled to  

< 0.255 > (8): 

 

 
⋀ 𝑀′(𝑚, 𝑛) = 𝑟𝑜𝑢𝑛𝑑 (⁡

255⁡ ∙ 𝑀(𝑚, 𝑛)

max⁡(𝑀)
)

𝑚,𝑛⁡𝜖<0,50>
𝑚,𝑛⁡∈⁡𝑁

 
 

(8) 

(6) 
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where: M – matrix of the number of points within each pixel, M’ – matrix M with values 

scaled to .jpg format, max(M) – the maximum value occurring in the matrix M. 

The chosen resolution is high enough to preserve the shape of the section, while being 

low enough to preserve the continuity of the outline (Fig. 6b). Using a lower resolution results 

in a loss of section shape information (Fig. 6a), while too high a resolution results in a break 

in contour continuity (Fig. 6c). Matlab’s toolbox, Boundary Tracing in Images, was used as 

an indicator of contour continuity.  

The M matrix thus prepared was converted to single channel grayscale JPG format.  

The files created in this way were labelled as belonging to one of the five types of shaft 

degrees. 

 

Fig. 6. Influence of the resolution on contour continuity  

2.3. CROSS-SECTION ORIENTATION 

The cross-section images were then rotated to the expected position. The expected 

positions for the spline, groove and milled step are shown in Fig. 7.  

 
Fig. 7. Expected position of: a) spline; b) groove; c) milled step  

The correction value was determined using a convolutional neural network for 

regression. The image format was used, therefore convolutional neural network could be 

applied [21]. A network architecture with four convolutional layers was used (Fig. 8).  

The cross-sections were brought to the expected position with an accuracy of 2°. 



12 M. Golaszewski et al./Journal of Machine Engineering, 2021, Vol. 21, No.  ,  –  

 

 

Fig. 8. Architecture of a convolutional neural network for regression 

The network was built and learned in Matlab R2020b using the Deep Learning Toolbox. 

To collect data for learning, 35 cross-sections with each label were randomly selected. Each 

cross-section was manually brought to the expected position. The database thus collected was 

then extended by introducing controlled rotation in 180° and 2° steps. Every operation on the 

image was carried out on a temporary copy of the image. The original file after manual 

correction was further transformed. In this way, a database of 3150 images for each label was 

collected.  

The result of a convolutional neural network for regression is a rotation value θ. Each 

cross-section was rotated by the designated correction value and then scaled to 50×50 

resolution. The rotation is performed by means of a homogeneous transformation on the 

section plane in the local section coordinate system (2) (Fig. 9). 

[
𝑥′1 𝑥′2 …

𝑦′1 𝑦′2 …
1 1 …

⁡⁡⁡⁡
𝑥′𝑛
𝑦′𝑛
1

] = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

] [
𝑥1 𝑥2 …
𝑦1 𝑦2 …
1 1 …

⁡⁡⁡⁡
𝑥𝑛
𝑦𝑛
1
] (9) 

 

Fig. 9. Correction of the cross-section position 

2.4. CROSS-SECTION IDENTIFICATION 

A proper convolutional neural network for identification consists of a single 

convolutional layer. The network architecture for identification is shown in Fig. 10. The use 

of such a simplified network was made possible by bringing the cross-section to the expected 

position. 
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Fig.10. Architecture of a convolutional neural network for identification 

Data for the study were collected as described in the previous sections. A total of 6137 

cross-sectional images were collected in five label types (Tab. 1). The data were randomly 

divided into three parts: data for learning the neural network, data for validating the neural 

network and data for testing the neural network. Data for learning accounted for 90% of all 

images collected, data for validation and data for testing 5% each. In addition, 195 cross-

sections were obtained from the test shaft. The test shaft contained each of the five types  

of degrees recognized. 

Table 1. Number of images in each label for machine learning 

Label Count 

gear 1786 

groove 576 

milled Step 1026 

simple Step 972 

spline 1777 

Once the data was collected and the neural network architecture was created, the 

learning process was carried out. The network was taught using the Stochastic Gradient 

Descent with Momentum method. Due to the large amount of data in a small number  

of classes, it was decided to close the learning process within a period of one epoch [22].  

The size of a single batch of data for learning (mini-batch) was set at 16 images. The best 

results were obtained for the Initial Learning Rate parameter at 0.0005. During the learning 

process the network was validated every 10 iterations.  

The performance of the neural network was then tested using a test image database. 

Images were classified using a neural network and then the original labels were extracted 

from the test database. The results were collated together as a confusion chart (Fig. 11).  

The accuracy of the network performance was calculated: 

𝑎𝑐𝑐 = ⁡
𝑐

𝑛
∙ 100% (10) 

where: c – number of correctly classified images, n – number of all tested images. So: 

𝑎𝑐𝑐 = 100% 
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In addition, a filter taking into account the probability of identification was applied. 

Results with confidence scores below 90% were discarded:  

𝑎𝑐𝑐90 =⁡
𝑐90
𝑛
∙ 100% (11) 

where: C90 – number of classified images with confidence score above 90%, n – number  

of all tested images. So: 

𝑎𝑐𝑐90 = ⁡99.35% 

In addition, mean confidence score for identifications were determined: 

𝑝𝑎𝑣 =
∑𝑝𝑖
𝑛

  (12) 

where: pi – maximum prediction probability of the i-th cross-section, n – number of all tested 

images. Therefore: 

𝑝𝑎𝑣 = 99.75%. 

 

 

Fig. 11. Confusion chart of the convolutional neural network 

 

 

To test the performance of the recognition method, the geometric properties of the scan 

and the original CAD file were identified. The convergence of the two point clouds is 

described in section 2.1. The result of the identification algorithms on the reference geometry 

is shown in Fig. 12a. The result of the identification algorithms on the geometry acquired by 

scanning is shown in Fig. 12b. 
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Fig. 12. a) Reference results – based on CAD model identification, b) Method result – based on scan identification 

2.5. DETERMINATION OF DIMENSIONS 

Based on the predictions made, the overall dimensions of the cross-sections were 

determined. In order to be as accurate as possible, the dimensions were determined on  

the basis of cross-sections created by projecting points on the cross-section plane (Fig. 13). 

In the case of the spline and groove, contours from the type series (according to PN-ISO 

14:1664 and PN-70/M-85005) were adjusted and the degree of adjustment to the cross-section 

points was checked [23]. The coordinates of the centers (xi, yi) were determined from  

the adjusted contours.  

It should be noted that for shaft steps interfacing with other machine parts in tolerances 

higher than IT14 according to PN-EN ISO 286-1:2011 and for gears it is necessary to specify 

the exact dimensions manually.  

Cross-sections with a defined class membership and a fixed dimension were grouped 

into shaft steps. A shaft step is considered to be at least four consecutive shaft sections 

belonging to the same type of step with a difference of dimensions describing the contour not 

exceeding IT14 tolerance. The grouping areas were then extended so that continuity of steps 

was maintained. The cross sections grouped into shaft steps are shown in Fig. 14. 
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Fig. 13. Determination of dimension from projected points in the cross-section plane 

 
Fig. 14. Assignment of a cross-section to a step 

2.6. DETERMINATION OF SHAFT AXIS 

Based on the identified coordinates of the center points, the axis of the shaft was adjusted 

using the least squares method. The adjustment was performed in the XZ and YZ planes  

(Fig. 15), where: 

X – vector of x-coordinates of the cross-section centers in the global system, 

Y – vector of y-coordinates of the cross-section centers in the global system, 

Z – vector of z-coordinates of the cross-section centers in the global system, 



M. Golaszewski et al./Journal of Machine Engineering, 2021, Vol. 21, No. 3, 5–24 17 

 

�̅�– mean value of vector X 

�̅� – the mean value of vector Y 

�̅� – the mean value of vector Z 

n – number of points. 

The directional coefficients⁡𝑎𝑋𝑍 and 𝑎𝑌𝑍 were determined from the following formulae: 

𝑎𝑋𝑍 =⁡
∑(𝑍 ∙ 𝑋) − 𝑛 ∙ �̅� ∙ �̅�

∑ 𝑍2 − 𝑛 ∙ �̅�2
 (13) 

𝑎𝑌𝑍 =⁡
∑(𝑍 ∙ 𝑌) − 𝑛 ∙ �̅� ∙ �̅�

∑ 𝑍2 − 𝑛 ∙ 𝑍2
 (14) 

Coefficients 𝑏𝑋𝑍 and 𝑏𝑌𝑍were determined from the equation: 

𝑏𝑋𝑍 =⁡ �̅� − 𝑎𝑋𝑍 ∙ �̅� (15) 

𝑏𝑌𝑍 =⁡ �̅� − 𝑎𝑌𝑍 ∙ �̅� (16) 

The equation of the axis in the global coordinate system has the following form: 

[
𝑥
𝑦] = ⁡ [

𝑎𝑋𝑍 1
1 𝑎𝑌𝑍

] ∙ [
𝑧
𝑧
] + [

𝑏𝑋𝑍
𝑏𝑌𝑍
] (17) 

The whole model was corrected by rotation and translation so that the corrected axis 

was parallel to the Z axis in the XZ and XY planes. The adjustment of the axes in the indicated 

planes is shown in Fig. 15. 

 

Fig. 15. Adjustment and correction of shaft axes in the XZ and YZ planes in the global coordinate system 
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2.7. MODEL RECONSTRUCTION 

The model was reconstructed in SolidWorks and a functional feature tree was created 

[24]. First, a base geometry was created. The axial section plane of the shaft and the shaft axis 

were created basing on recognized X- and Z-axis dimensions . An axial section sketch was 

created on the XZ plane (Top plane) and then a base solid was created using the “Revolved 

Boss/Base” function. The first automatically generated operation in the feature tree 

corresponds to a turning operation. The “Extruded Cut” function was then used to create  

a groove, a spline, a gear and also a milled step cut. Contours for following features were 

automatically created on generated planes which are parallel to a XY plane (Front plane). 

These operations correspond to the subsequent technological milling operations.  

The geometry reconstruction process was automated by a script. Automation of the shaft 

recreation process was possible by identification diameters in the corresponding axes. 

Reconstructing the model using the program’s functions allows for the creation of a feature 

tree. The geometry reconstructed from the scan is shown in Fig. 16b, while the geometry 

reconstructed from the reference geometry is shown in Fig. 16c. 

 

Fig. 16. a) Reference geometry; b) Geometry reconstructed from the scan; c) Geometry reconstructed directly from 

reference geometry 
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The largest dimensional differences (Fig. 16b) are seen where the quality of the scan 

decreases. Discrepancies of up to 3 mm have arisen at the gear. The quality of the scan is 

described in section 2.1 and shown in Fig. 3. In the model reconstructed from the scan,  

the disappearance of one step and the chamfering of one of the steps can be observed.  

The variability of the undetected features is less than the accepted IT14 tolerance. 

3. RESULTS 

The method and operation of the system was evaluated and the identification system 

was verified. How the algorithms and method were evaluated and verified is shown  

in Fig. 17. 

 

Fig. 17. Evaluation and verification of the method and algorithms 

3.1. EVALUATION OF THE METHOD 

The performance of the algorithms for identification and reconstruction of parametric 

geometry was evaluated by a comparative analysis of the reconstructed geometry based on 

the reference with the reference geometry. The distribution of deviations and the histogram 

of the distribution of deviations are shown in Fig. 18. The standard deviation and median 

values are summarized in Table 2.  

The accuracy of the identification method 𝑎𝑐𝑐𝑚𝑒𝑡ℎ𝑜𝑑 was determined by comparing the 

identified cross-sections (Fig. 12b) to the prediction of the reference shaft (Fig. 12a). 

Incorrectly identified sections and those with a confidence score below 90% were counted. 

The accuracy of the identification method was calculated from the formula: 

𝑎𝑐𝑐method =⁡
𝑐mis + 𝑐90

𝑛
∙ 100% (18) 
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where: cmis – number of cross-sections wrongly identified, c90 – number of cross-sections 

identified with a confidence score less than 90%, n – number of all cross-sections. 

Therefore: 

𝑎𝑐𝑐𝑚𝑒𝑡ℎ𝑜𝑑 = ⁡86.57% 

 

Table 2. Standard deviation and median value of deviation 

Standard 

deviation 

X-axis 

Standard 

deviation 

Y-axis 

Standard 

deviation 

Z-axis 

Total  

Standard 

deviation 

0.08 0.08 0.35 0.36 

Median 

X-axis 

Deviation* 

[mm] 

Median 

Y-axis 

Deviation* 

[mm] 

Median 

Z-axis 

Deviation* 

[mm] 

Median 

Total 

Deviation 

[mm] 

0.01 0.01 0.02 0.02 

* Absolute value of deviation 

 

Fig. 18. a) Values of deviation of comparison rebuilt geometry based on reference with reference geometry,  

b) Distribution histogram 

3.2. EVALUATION OF GEOMETRICAL ACCURACY 

Geometrical accuracy was assessed by comparative analysis of the reconstructed 

geometry from the scan with the reference geometry. The differences between the recon-

structed geometry and the reference geometry are due to the displacement of the opening and 

closing planes of the shaft steps, the displacement of the gear and the disappearance of one  

of the steps with a pitch below the specified tolerance. The standard deviation and median 

deviation are shown in Table 3. The deviation values and the histogram of the distribution are 

shown in Fig. 19. 
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Table3. Standard deviation and median value of deviation 

Standard 

deviation 

X-axis 

Standard 

deviation 

Y-axis 

Standard 

deviation 

Z-axis 

Total 

Standard 

deviation  

0.36 0.33 0.57 0.54 

Median 

X-axis 

Deviation* 

[mm] 

Median 

Y-axis 

Deviation* 

[mm] 

Median 

Z-axis 

Deviation* 

[mm] 

Median 

Total 

Deviation 

[mm] 

0.05 0.05 0.01 0.10 

* Absolute value of deviation 

 

Fig. 19. a) Values of deviation of comparison rebuilt geometry based on scan with reference geometry  

 b) Distribution histogram 

3.3. EVALUATION OF THE SYSTEM OPERATION 

Evaluation of the operation of the identification system is made by comparative 

analysis of the geometry reconstructed from the scan with the scan. The standard deviation 

and median deviation are shown in Table 4. The deviation values and the histogram of the 

distribution are shown in Fig. 20. 

 

 
Table 4. Standard deviation and median value of deviation 

Standard 

deviation 

X-axis 

Standard 

deviation 

Y-axis 

Standard 

deviation 

Z-axis 

Total 

Standard 

deviation  

0.47 0.46 0.65 0.71 

 

Median 

X-axis 

Deviation* 

[mm] 

 

Median 

Y-axis 

Deviation* 

[mm] 

 

Median 

Z-axis 

Deviation* 

[mm] 

 

Median 

Total 

Deviation 

[mm] 

0.13 0.13 0.02 0.36 
* Absolute value of deviation 
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Fig. 20. a) Values of deviation of comparison rebuilt geometry based on scan with scan,  

b) Distribution histogram 

When determining the accuracy of the identification algorithms themselves, it is 

assumed that the original geometry is unknown. The accuracy of the identification algorithms 

operation 𝑎𝑐𝑐algorithm is therefore determined solely by the number of cross-sections 

identified with a confidence score of less than 90%. The accuracy of the algorithms is 

determined by the formula: 

𝑎𝑐𝑐algorithm =⁡
𝑐90
𝑛
∙ 100% (19) 

where: c90 – number of cross-sections identified with a confidence score less than 90%, n – 

number of all cross-sections. 

Therefore: 

𝑎𝑐𝑐algorithm = ⁡91.04%. 

4. CONCLUSION 

A method for identifying the structural features of a shaft class part from a series  

of cross-sections is presented. In Industry 4.0, this method can be used to create digital twins  

of processes in CAPP systems and objects in CAR systems. The method can be used in CAPP 

systems to classify design features for manufacturing technique selection and in CAR systems 

to reconstruct parametric geometry from a point cloud. The most important features of the 

method are listed below. 

➢ 2D neural networks were used to identify 3D geometric features. Owing to the prepa-

ration of cross-sections, shallow networks can be used, which reduces the running time 

of the program. 

➢ The method presented allows the model to be reproduced with greater dimensional 

accuracy than the scan alone. This is possible by adjusting the dimension of the 

identified geometric feature to the dimensional series using dimensional tolerance. 

➢ The method presented allows to create a feature tree. Properly created feature tree 

allows for quick editing of the model and feature parametrization in CAD system. In 
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addition, a properly created feature tree allows the planning of manufacturing 

technology by ordering subsequent technical operations in CAM programs [25]. 

➢ The method shown is versatile. It can be used in CAPP and CAR systems. The method 

works for scans of varying density and quality. A method for selecting cross-sectional 

planes and resolution depending on the point cloud abundance is shown. 

However, this method has limitations. The presented algorithms do not reproduce wear  

of parts larger than tolerance class IT14 according to PN-EN ISO 286-1:2011 and do not 

reproduce damages and defects. The method is not capable of detecting characteristics with  

a variability smaller than the selected tolerance. The method was presented on geometric 

features that are only variable in one axis. The variability of features in one axis is typical  

of machine parts of the shaft or sleeve class. It is planned to implement presented algorithms 

as a part of remanufacturing system created at West Pomeranian University of Technology 

[26, 27]. 

In the future, it is planned to develop the described algorithms and, in particular, to 

implement algorithms to identify design features of parts of other classes. Future work 

involves using algorithms to identify variable features in two axes – typical for 2.5D and 3D 

milling – so the application of the algorithms can be extended to hole, pocket, island, filet or 

chamfer features recognition, typical of body part classes. 
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