
Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

ISSN 1895-7595 (Print) ISSN 2391-8071 (Online)

Received: 31 January 2020 / Accepted: 24 March 2020 / Published online: 24 June 2020

virtual reality, digital twin,

industrial robots,

inverse kinematics

Vladimir KUTS1*

Natalia CHEREZOVA1

Martins SARKANS1

Tauno OTTO1

DIGITAL TWIN: INDUSTRIAL ROBOT KINEMATIC MODEL INTEGRATION

TO THE VIRTUAL REALITY ENVIRONMENT

Digital Twin (DT) concept nowadays is shown via the simulations of the manufacturing systems and included

those production processes and parametric 3D models of the product. It is the primary method for planning,

analysing and optimising the factory layout and processes. Moreover, work on management via the simulation in

real-time is already done using Virtual Reality (VR) tools from a safe and remote environment. However, there is

a list of limitation of such kind of digital systems, as connectivity speed and precision of the digital environment.

The primary goal of this study is to access second listed limitation and on the example of the fully synchronised

physical with its digital replica industrial robot, increase the level of precision of the developed DT environment.

The proposed approach introduces transfer of the mathematical model to the virtual environment, thus creating

a precise and scaled visual model of the Industrial Robot.

1. INTRODUCTION

Manufacturing world robotisation and digitalisation are essential pillars of Industry 4.0

paradigm [1], where the simulation tools are used to design layouts and changes of the

equipment placement as well as for simulation of manufacturing processes and product

assembly. This concept is called Digital Twins (DT) and was used by NASA already from

1967. However, in the scope of Industry 4.0 paradigm, it was introduced by Grieves [2]. DT

is a virtual replica of manufacturing system, processes and product in the means

of simulations.

Effective DT is a virtual factory with the ability of not only simulation but also re-

configuration and management of the real factory environment, which needs a specific

preparation. Various researchers are already implementing this concept in order to obtain

precise scalable and controllable simulation environments for direct control over the factory

remotely [3–6].

1 Tallinn University of Technology, School of Engineering, Department of Mechanical and Industrial Engineering,

Tallinn, Estonia
* E-mail: vladimir.kuts@taltech.ee

 https://doi.org/10.36897/jme/120182

54 V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

Main points of adequate DT preparation are:

1. Precision and Level of Details (LoD);

2. Data acquisition and validation;

3. Data Model;

4. Synchronisation.

Related work refers to the precision of the DT on the example of Industrial Robots. The

aim is to control robots from the Virtual Reality (VR) environment in a precise manner in

order to enable a local and remote collaborative and safe programming environment [7–11].

The VR solutions are widely used for gaming, training, simulation, programming and

other areas, also taking into account industrial needs. One of the directions in the development

of VR solutions is the use of the concept of DT that enables to connect the physical device

with its digital twin in VR environment. The need for DT is, for example of the programming

of the physical device through a VR environment. Industrial robots are widely used for this

purpose. To make it possible to “import” the physical industrial robot into VR, its digital twin

has to be created. Depending on the needed functionality, different parts of the physical

system has to be described. For programming purposes, the kinematics of the industrial robot

has to be defined. Definition of inverse kinematics can be done in several ways, like neural

network based, soft computing algorithm based and Denavit-Hartenberg (D-H) methodology,

naming a few of them. Each methodology has its advantages and shortcomings. In this

research, the D-H methodology is used for the analysis of 6-DOF industrial robot, as this

methodology requires less computational power and enables to describe the kinematics of the

robot by knowing its dimensions and joint configurations. In addition, it makes it possible to

describe different robot models in fast and efficient way.

For the Digital Twin solution of the ABB IRB1600-10/1.2, the simulation model of the

robot movement is implemented in the VR environment of the Industrial Virtual and

Augmented Reality laboratory (IVAR lab) [12]. This paper presents a study on kinematics

and programmable motion control of the robotic arm and its implementation using the Unity

game engine.

The paper is organised as follows. Kinematic model of the robot is described in

Section 2. Inverse kinematics solution is presented in Section 3. Implementation of the

derived solution in the VR environment is delivered in Section 4. Evaluation of the results is

discussed in Section 5. Conclusions are derived in the last section.

2. ROBOT SPECIFICATIONS AND KINEMATIC MODEL

ABB IRB1600-10/1.2 is an industrial robot with 6 axes, handling the capacity of 10 kg,

and reach of 1.2 m. Main application areas of the robot are assembly, arc welding, material

handling, cleaning, spraying, dispensing, and packaging. The movement range of the robot

axes and axes maximum speeds are presented in Table 1.

The kinematic modelling of the robot was done according to the Denavit-Hartenberg

D-H convention; a systematic approach that makes the analysis of the kinematics problem

considerably simple and well defined [14–16]. D-H parameters of the ABB IRB1600-10/1.2

robot are presented in Table 2.

V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64 55

Table 1. The movement range of the robot axes and maximum speed [13]

Axis Type of motion Range of movement Axis maximum speed

1 Rotation motion +180° to –180° 180°/s

2 Arm motion +110° to –63° 180°/s

3 Arm motion +55° to –235° 185°/s

4 Rotation motion +200° to –200° 385°/s

5 Bend motion +115° to –115° 400°/s

6 Turn motion +400° to –400° 460°/s

Table 2. Parameters of ABB IRB1600-10/1.2 according to the Denavit-Hartenberg method

Joint

number

Link twist angle

αi

Link length ai Joint distance

di

Joint angle θi

1 – 90° a1 d1 θ1

2 0 a2 0 θ2

3 – 90° 0 0 θ3

4 90° 0 d4 θ4

5 – 90° 0 0 θ5

6 0 0 d6 θ6

From the robot documentation, parameters values are a1 = 150 mm, a2 = 475 mm,

d1 = 486.5 mm, d4 = 600 mm, d6 = 65 mm.

 The kinematic model of the robot is presented in Fig. 1.

Fig. 1. Kinematic model of the robot: W – wrist point; Pe.e – end-effector position

According to D-H convention, each link of the robot is assigned with the coordinate

frame. Therefore, the position and rotation of the ith coordinate frame concerning the i – 1

coordinate frame can be expressed with the use of the homogeneous transformation matrix.

56 V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

𝑻𝒊−𝟏
𝒊 = [

cos 𝜃𝑖 − cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 sin 𝜃𝑖 𝑎𝑖 cos 𝜃𝑖

sin 𝜃𝑖 cos 𝛼𝑖 cos 𝜃𝑖 − sin 𝛼𝑖 cos 𝜃𝑖 𝑎𝑖 sin 𝜃𝑖

0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖

0 0 0 1

] (1)

This way, the successive multiplication of transformation matrices will give the

transformation matrix of the end-effector concerning the base coordinate system:

𝑻𝟎
𝒏 = ∏ 𝑻𝒊−𝟏

𝒊 = [
𝑅𝑒.𝑒 𝑃𝑒.𝑒

0 1
] ,𝑛

𝑖=1 (2)

where Re.e = [n s o] is a 3×3 rotation matrix of the end-effector; Pe.e is a 3×1 position vector

of the end-effector.

3. INVERSE KINEMATICS SOLUTION

3.1. JOINT VALUES CALCULATION

Kinematics considers the length of each link and joint limits to specify all the possible

positions that the robot can achieve. It is split into two parts: forward kinematics and inverse

kinematics. Inverse kinematics (IK), on the other hand, determines the joint variables, given

the position and orientation of the tool or end-effector and is required to command a robot to

a particular point within its workspace. In most cases, there would be several possible

solutions for the inverse kinematics problem. However, inverse kinematics is necessary to

control the robot through a programme code [14, 17].

The general solution of the inverse kinematics problem, using a homogeneous

transformation matrix (2), gives a system of twelve non-linear equations with six unknowns,

which will take a significant amount of computation time. For the real-time application, this

solution is inappropriate due to its complexity.

However, it is possible to significantly simplify the solution of the inverse kinematics

problem, since the robotic arm has a spherical wrist – three consecutive rotational joints with

the axes intersecting in one point [18, 19]. This way, the problem can be divided into two

parts. First part is the linear solution for the first three joints, based on the position

of the so-called wrist point. Wrist point is the point of axes intersection of the joints forming

the spherical wrist. The second part is the orientation solution for the spherical wrist, which

calculates the angles of the last three joints.

The position of the wrist point can be found as follows:

𝑊 = 𝑃𝑒.𝑒 − 𝑑6𝑜. (3)

The geometrical approach was used for both parts.

Geometrical solution for the first three joints. Geometrical model of the problem is

presented in Fig. 2.

V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64 57

Fig. 2. A geometrical model for the inverse kinematics solution for the first three joints:

a) 3D model for the θ1, b) 2D model for the θ2 and θ3

From the figure, it is evident that the solution for the first joint angle is 𝜃1 =
atan2(𝑦𝑤, 𝑥𝑤). The second and third joints angles can be found by solving a system

of equations with two unknowns: additional angles φ and γ.

{

𝑥𝑤 = 𝑎1 cos 𝜃1 + cos 𝜃1(𝑎2 cos 𝜑 + 𝑑2 cos(𝜑 + 𝛾))
𝑦𝑤 = 𝑎1 sin 𝜃1 + sin 𝜃1(𝑎2 cos 𝜑 + 𝑑2 cos(𝜑 + 𝛾))

𝑧𝑤 = 𝑑1 + 𝑎2 sin 𝜑 + 𝑑4 sin(𝜑 + 𝛾)
. (4)

Rearranging the terms gives

(𝑥𝑤 − 𝑎1 cos 𝜃1)2 + (𝑦𝑤 − 𝑎1 sin 𝜃1)2 + (𝑧𝑤 − 𝑑1)2 = 𝑎2
2 + 𝑑4

2 + 2𝑎2𝑑4 cos 𝛾. (5)

This way,

cos 𝛾 =
(𝑥𝑤 − 𝑎1 cos 𝜃1)2 + (𝑦𝑤 − 𝑎1 sin 𝜃1)2 + (𝑧𝑤 − 𝑑1)2

2𝑎2𝑑4

,

± sin 𝛾 = ±√1 − cos2 𝛾, (7)

𝛾 = atan2(sin 𝛾 , cos 𝛾) or 𝛾 = atan2(− sin 𝛾 , cos 𝛾). (8)

To find φ, equations from the system (4) were rearranged to correspond to the matrix

form of the system of linear equations Ax = b, where A is a matrix of coefficients, x is

a column vector of unknowns, and b is a column vector of constant terms.

(
𝑥𝑤 cos 𝜃1 + 𝑦𝑤 sin 𝜃1 − 𝑎1

𝑧𝑤 − 𝑑1

) = (
𝑎2 + 𝑑4 cos 𝛾 𝑑4 sin 𝛾

𝑑4 sin 𝛾 𝑎2 + 𝑑4 cos 𝛾
) (

cos 𝜑

sin 𝜑
),

where

𝐴 = (
𝑎2 + 𝑑4 cos 𝛾 𝑑4 sin 𝛾

𝑑4 sin 𝛾 𝑎2 + 𝑑4 cos 𝛾
),

(6)

(9)

58 V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

𝐱 = (
cos 𝜑

sin 𝜑
),

𝐛 = (
𝑥𝑤 cos 𝜃1 + 𝑦𝑤 sin 𝜃1 − 𝑎1

𝑧𝑤 − 𝑑1

).

Since A is a square 2×2 matrix and has full rank, the solution to the system is x = A–1b.

Therefore,

(
cos 𝜑

sin 𝜑
) =

1

(𝑎2 + 𝑑4 cos 𝛾)2 + 𝑑4
2 sin2 𝛾

×

 × (
𝑎2 + 𝑑4 cos 𝛾 𝑑4 sin 𝛾

−𝑑4 sin 𝛾 𝑎2 + 𝑑4 cos 𝛾
) (

𝑥𝑤 cos 𝜃1+𝑦𝑤 sin 𝜃1−𝑎1
𝑧𝑤−𝑑1

),

cos 𝜑 =
(𝑎2 + 𝑑4 cos 𝛾)(𝑥𝑤 cos 𝜃1 + 𝑦𝑤 sin 𝜃1 − 𝑎1) + 𝑑4 sin 𝛾 (𝑧𝑤 − 𝑑1)

𝑎2
2 + 2𝑎2𝑑4 cos 𝛾 + 𝑑4

2 ,

sin 𝜑 =
−𝑑4 sin 𝛾 (𝑥𝑤 cos 𝜃1 + 𝑦𝑤 sin 𝜃1 − 𝑎1) + (𝑎2 + 𝑑4 cos 𝛾)(𝑧𝑤 − 𝑑1)

𝑎2
2 + 2𝑎2𝑑4 cos 𝛾 + 𝑑4

2 .

This way,

𝜑 = atan2(sin 𝜑 , cos 𝜑) or 𝜑 = atan2(− sin 𝜑 , cos 𝜑).

Geometrical solution for the last three joints. To simplify the solution and to reduce

the computational time, it was decided not to calculate the sixth joint angle. Since fourth and

sixth joints are rotated the same way, that is to say, their axes of rotation are parallel; the

specified TCP position can be achieved rotating only one of them. The rotation of the sixth

joint is essential in the situations when the tool should additionally rotate while the robot arm

is moved along some path. However, for the demonstration purpose, this complexity is

unnecessary.

To find the fourth and the fifth joints angles, it was decided to use polar coordinate

system equations (Fig. 3). For that, coordinates of the end-effector concerning the wrist point

are used. The polar coordinate system is a two-dimensional coordinate system based on

a distance from a reference point and an angle from a reference direction on the plane. For

the θ4, the plane of interest would be ZX-plane; for the θ5, it would be the moving Yρ-plane.

Therefore,

𝜃4 = atan2(𝑥𝑒 , 𝑧𝑒), (14)

𝜃5 = atan2(𝜌𝑒 , 𝑦𝑒), (15)

where

𝜌𝑒 = √(𝑥𝑒)2 + (𝑧𝑒)2. (16)

(10)

(11)

(12)

(13)

V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64 59

Fig. 3. A geometrical model for the fourth and fifth joints

3.2. VELOCITY CALCULATIONS

Another problem connected to the inverse kinematics is the joints velocity calculations.

Since the programmed commands specify the linear velocity of the end effector, before

starting the movement, it is necessary to calculate the joints rotational velocities. Usually,

the Jacobian matrix composed of the partial derivatives of the functions 𝑥𝑒.𝑒(𝜃𝑖), 𝑦𝑒.𝑒(𝜃𝑖) and

𝑧𝑒.𝑒(𝜃𝑖) is used. Jacobian represents the relationship between the linear motion of the end-

effector and the rotational motion of individual joints [14, 17].

However, due to the nature of the Unity engine, which runs the application in frames, it

is possible to avoid the calculation of Jacobian and to use the time between the frames. This

way, for the linear movement, where the path of the end-effector is known, velocity is

calculated simply dividing the angle, by which each joint should rotate to get to the specified

point, by the time it should take the end-effector to get to that point with the specified linear

velocity. This method gives an approximation of the joints’ velocities changes throughout

the linear movement.

For the joint movement, where the path of the end-effector is not necessarily linear and

not known, the joints’ velocities were calculated in the following manner. Since all the joints

should start and end the movement at the same time, first, the change of the joints’ values is

normalised by the common factor, and relative joints’ velocities concerning each other are

found. As a common factor, the most significant change among the joints is taken. Obtained

values will be referred to as a step. Then, using forward kinematics, the position of the end-

effector, if the joints will rotate one step from the current position, is found. The distance d

between the two positions is calculated. The time it will take the end-effector to move through

this distance tstep is calculated as:

𝑡step =
𝑑

𝑣𝑒.𝑒

,

where: ve.e is the linear velocity of the end-effector.

(17)

60 V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

The rotational velocity ri of each joint is then

𝑟𝑖 =
𝜃step

𝑡step

,

where θstep is the step value the joint needs to rotate to.

4. IMPLEMENTATION OF THE VR SIMULATION

 The simulation was implemented using Unity engine, widely used for game production,

however, offering great opportunities and toolsets for manufacturing visualisation and

simulation. One-to-one scale robot model with precisely placed pivot points acting as original

points of joints’ frames are placed in the virtual environment of the IVAR laboratory (see

Fig. 4). Implemented virtual robot control gives the possibility to simulate the writing of

a simple RAPID program using movement functions (MoveL for linear movement and MoveJ

for joint movement) to be executed inside the virtual environment. RAPID is a proprietary

programming language used to control ABB robots. Moreover, this solution enables to

simulate robotics systems without connection with physical equipment; this way, it can be

used in a safe manner for training of new operators of the robots.

Fig. 4. ABB IRB1600-10/1.2 model in the VR environment

The syntax for the MoveL and MoveJ instructions is very similar:

MoveL Point, Speed, Zone, Tool,

MoveJ Point, Speed, Zone, Tool,

where: Point defines the target point of the movement, it is given as the coordinates of the

central tool point (TCP) or end-effector usually in the base coordinate system; Speed defines

(18)

V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64 61

the linear speed of the TCP in mm/s; Zone defines a corner zone in mm for the point

approaching motion; and Tool defines the tool the robot is using [20]. Zone data is used to

smooth the long continuous motion of the robot arm through several defined points, to avoid

high mechanical loads on the manipulator due to the sudden change in TCP movement.

 However, it can also be used to make sure that the TCP will reach the exact point

position if it is of importance.

Inverse kinematics solution is handled by the script, containing two main methods:

• public void FirstThreeJoints (calculates rotational angles for the first three joints;

takes the coordinate vector of the target wrist point and references to the θ1, θ2, and

θ3 as a parameter);

• public void LastThreeJoints (calculates rotational angles for the last three joints;

takes the coordinate vector of the TCP point concerning the wrist point coordinate

system and references to the θ4, θ5, and θ6 as a parameter).

Writing of the RAPID programme is handled by another script that implements two

customised types:

• structure Parameters (the structure that contains the parameters of the movement

functions);

• class UIprocessing (class used to generate the RAPID programme).

The programme is stored in the public static list of type KeyValuePair <string,

Parameters> objects called functionList. This way, each object of the list is a pair of the

movement function name (as a string object) and its parameters (as a Parameters object).

Elements are added to list consequently as the user adds commands to the programme.

Since the inverse kinematics solution is done based on two points coordinates: wrist

point position for the first three joints and TCP position concerning wrist point for the last

three joints. Equation (3) shows how to obtain the coordinates of the wrist point from the TCP

frame coordinates; however, with the Unity nature, it is not necessary. The position of each

point can be obtained using its Transform parameters; additionally, the position of the point

relative to the specific coordinate frame can be found using InverseTransformPoint method.

Programmable control of the virtual robot model is fulfilled by the robot control script

implementing. The script is attached to the parent object of the robot. The attributes of the

class keep information about each joint object, joints’ angles and current speeds, the target

position of the TCP and target angles of the joints.

The automatic movement of the joints is performed by the following functions:

• IEnumerator ProgramHandler (executes the RAPID programme by starting

the necessary coroutine and passing the arguments to it);

• IEnumerator MoveL (executes the linear movement function of the robot arm);

• IEnumerator MoveJ (executes the joint movement function of the robot arm);

• private void MoveJoints (moves joints automatically to the target angle; utilised by

the joints movement coroutine);

• private void FirstThreeJointsLinearMovement (performs the rotation of the first

three joints for the linear movement);

• private void LastThreeJointsLinearMovement (performs the rotation of the last

three joints for the linear movement).

62 V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

Coroutine MoveJ successively calls the inverse kinematics solver functions to find

the target angles for all the joints, calculates appropriate velocities for each joint and then

executes the MoveJoints function.

Coroutine MoveL executes the linear motion in the following way. First, the direction

vector of the path line is found, the length of the line, and the time it will take the wrist point

to get from the starting point to the target point. Then the movement of the arm and, therefore,

the solution is divided into two parts: the linear motion of the wrist point driven by the first

three joints and rotational motion of the end-effector driven by the last two joints. This

approach significantly reduces the computational time of the inverse kinematics calculations

during the motion, since the angles for the fourth and fifth joints should be calculated only

once when the linear movement starts.

For the linear movement of the wrist point, several points are calculated along the path

line with the step of 50 mm, thus avoiding overload of the application and not forcing to do

the joints’ angles calculations every frame, but only once in a while. Step range can be reduced

based on application needs, but as for experiment and proof of concept gathered results were

enough for evaluation. For each new points, the joints variables are calculated using

the approach described in the previous section. Then the time needed for the joints to reach

the target angles is calculated, and the speed for each joint is derived. After that, each joint

starts to move towards the calculated point. Therefore, essentially linear movement is

composed of several short joint movements, forming, in the end, the approximation of the

straight line.

5. ANALYSIS

A set of ten points was tested to inspect the accuracy of the implemented algorithm for

the virtual simulation. Mean absolute error (MAE) was calculated. It is an average of the

absolute errors calculated by the formula

MAE =
1

𝑛
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

=
1

𝑛
∑|𝑒𝑖|,

𝑛

𝑖=1

where ei is the absolute error of ith observation; 𝑦̂𝑖 is the ith observed value; yi is the ith original

value; n is the number of observations [21].

The results are presented in Table 3 in the following form: the coordinates of the TCP

that the robot was sent to are compared to the coordinates of the TCP that the robot model has

reached using the implemented IK solver.

It can be seen that MAE is around 4 mm; therefore, the implemented inverse kinematics

algorithm is sufficient in experiment for robot being used for 3D inspection purposes.

However, to reduce it deeper optimization of the kinematic model accuracy shall be

performed, which is one of the future steps for related research. The precision can be increased

by optimising mathematical model by Generic Evolutionary Inverse Kinematics for Unity3D

when using Bio IK algorithm.

(19)

V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64 63

Table. 3. MAE of the implemented algorithm test

Point

number

Original point, m Obtained point, m

X Y Z X Y Z

1 1.07125 0.81961 –0.12217 1.06272 0.80799 –0.12375

2 1.15335 0.93264 0.12659 1.14030 0.90149 0.11096

3 0.30981 1.23879 0.81669 0.31499 1.22345 0.81719

4 0.07158 1.46461 0.70210 0.07142 1.44980 0.70888

5 –0.74896 0.93126 –0.03171 –0.74968 0.93367 –0.03177

6 –0.70893 0.97986 0.49418 –0.70946 0.98237 0.49444

7 0.96523 1.33437 0.56625 0.96524 1.33454 0.56625

8 1.25531 1.01683 –0.17813 1.25546 1.01753 –0.17816

9 0.63438 1.38530 0.73518 0.63439 1.38519 0.73519

10 1.00014 0.67190 0.58504 1.00034 0.67265 0.58517

MAE 0.00435

6. CONCLUSION

Implemented simulation is a part of the Digital Twin solution for the ABB IRB1600-

10/1.2 robot. Connection was set between the real robot and its digital copy making it possible

to control the real robot using virtual model kinematics, and obtain the data from the real

robot, while it is controlled from the Flex Pendant, for example, to copy its movement to the

virtual one.

Moreover, it was possible to simulate the movements without connecting to the real

robot; this way, it can be used in future for the training and show-case purposes to demonstrate

how the programmable control of the robot works.

ACKNOWLEDGEMENTS

This research was supported by project AR16077 Smart Industry Centre (SmartIC) No. 2014-2020.4.01.16-0183,

supported by the EU Regional Development Fund. The authors are grateful to the student of the Tallinn University

of Technology – Yevhen Bondarenko, for his help in the experiments with Virtual Reality implementations and laboratory

digitalisation.

REFERENCES

[1] LU Y., 2017, Industry 4.0: A survey on technologies, applications and open research issues, Journal of Industrial

Information Integration, 6, 1–10.

[2] GRIEVES M.W., 2015, Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White

Paper.

[3] TERKAJ W., TOLIO T., URGO M., 2015, A virtual factory approach for in situ simulation to sup-port production

and maintenance planning, CIRP Annals – Manufacturing Technology, 451–454.

[4] TAO F., ZHANG M., 2017, About the importance of Autonomy and Digital Twins for the future of manufacturing,

IEEE Access – Special Section on Key Technologies for Smart Factory of Industry 4.0, 20418–20427.

64 V. Kuts et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 53–64

[5] KUTS V., OTTO T., TÄHEMAA T., BONDARENKO Y., 2019, Digital Twin based synchronised control and

simulation of the industrial robotic cell using Virtual Reality, Journal of Machine Engineering, 19/1, 128–145.

[6] MAHMOOD K., SHEVTSHENKO E., 2015, Analysis of machine production processes by risk assessment

approach, Journal of Machine Engineering, 15/1, 112−124.

[7] KUTS V., OTTO T., TÄHEMAA T., BUKHARI K., PATARAIA T., 2018, Adaptive industrial robots using

machine vision, ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania,

USA.

[8] SELL R., OTTO T., 2008, Remotely controlled multi robot environment, 19th EAEEIE Annual Conference,

Tallinn.
[9] SELL R., 2013, Remote Laboratory Portal for Robotic and Embedded System Experiments, International Journal

of Online Engineering, 9, 23−26.

[10] KUTS V., SARKANS M., OTTO T., TÄHEMAA T., 2017, Collaborative work between human and Industrial

robot in manufacturing by advanced safety Monitoring System, Proceedings of the 28th DAAAM International

Symposium, Vienna.

[11] KUTS V., TÄHEMAA T., OTTO T., SARKANS M., LEND H., 2016, Robot manipulator usage for measurement

in production areas, Journal of Machine Engineering, 16/1, 57−67.

[12] Industrial Virtual and Augmented Reality Laboratory Homepage, http://ivar.ttu.ee/, last accessed 2020/01/27.

[13] ABB Robotics, 2018, Product specification IRB 1600/1660, Sweden.

[14] ASADA H.H., 2005, Introduction to Robotics, Lecture Notes. Massachusetts Institute of Technology.

[15] SHAH S.V., SAHA S.K., DUTT J.K., 2012, Denavit-Hartenberg Parameterization of Euler Angles, Journal

of Computational and Nonlinear Dynamics, 7/2, 146–152.

[16] TZAFESTAS S.G., 2013, Introduction to Mobile Robot Control, 1st ed. Elsevier, Amsterdam.

[17] CRAIG J., 2005, Introduction to Robotics: Mechanics and Control, 3rd ed. Pearson Education International, New

Jersey.

[18] MEGAHED S.M, 1992, Inverse kinematics of spherical wrist robot arms: Analysis and simulation, Journal

of Intelligent and Robotic Systems, 5/3, 211–227.

[19] KUCUK S., BINGUL Z., 2004, The inverse kinematics solutions of industrial robot manipulators, Proceedings

of the IEEE International Conference on Mechatronics, Istanbul, 274–279.

[20] ABB Robotics, 2017, Technical reference manual: RAPID Instructions, Functions and Data Types, Sweden.

[21] WILLMOTT C., MATSUURA K., 2005, Advantages of the Mean Absolute Error (MAE) over the Root Mean

Square Error (RMSE) in assessing average model performance, Climate Research, 30, 79–82.

