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A REVIEW ON ENABLING TECHNOLOGIES FOR RESILIENT  

AND TRACEABLE ON-MACHINE MEASUREMENTS 

On-Machine Measurements are a key factor for shorter closed quality control loops in industrial manufacturing. 

Especially for the production of large components, they promote the first-time-right approach, which is highly 

desirable, due to small quantities and steep value chains. In contrast to measurement rooms for CMMs,  

the production environment conditions are unregulated and impact multiple factors along the on-machine 

measurement metrological chain. As presented as a keynote speech at the XXXI CIRP Sponsored Conference on 

Supervising and Diagnostics of Machining Systems “MANUFACTURING ACTIVE IMPROVEMEN” by Professor 

Dr. Robert H. Schmitt, this article reviews current research and ideas regarding on-machine measurements.  

The authors collect necessary process data with the help of new technologies in the course of digitalization and 

thus propose a holistic model for systematic error compensation and measurement uncertainty prediction. For 

assessing the machine’s volumetric accuracy under thermal loads, the authors develop a novel modelling approach, 

which determines transient geometric errors by abstracting structural parts as spline curve with typical deformation 

modes. To address the workpiece’s influence on the measurement process, a data-driven framework, fusing real-

time sensor-data with the virtual component, is used to model and predict transient thermo-mechanical workpiece 

states. For dissemination, the authors continue working on ISO standardization and, as subjects of future research, 

explore new paths in terms of data-driven modelling approaches, using physical abstractions coupled with machine 

learning and live process data. 

1. INTRODUCTION 

Reliable dimensional measurements in production environments are a major challenge 

in industry. Especially in the production of large components, for example in the energy 

sector, there is a lack of cost-effective and reliable measurement processes and systems. Due 

to small quantities and steep value chains in the production of large components, first-time-

right production is highly desirable. Rejects or reworking cause high costs that must be 
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avoided. Shifting quality inspections to the production process and thus shortening quality 

control loops is a promising approach, but offers implementation hurdles, regarding the often 

unregulated and complex environmental conditions. 

With the classical coordinate measuring technique, the traceability is achieved by setting 

and calibrating the coordinate measuring machine utilizing traced standards. In order to be 

able to guarantee reliable results in the long term, all disturbing influences on the measuring 

process are fixed, as far as possible. The best example for this is the air-conditioned 

measurement room, in which coordinate measuring machines are typically operated and 

which minimizes temperature influences on measuring device and measurand. Additionally, 

the so-called virtual coordinate measuring machine (VCMM) can be used to specify the 

remaining residual uncertainties for specific measuring tasks [1].  

 The measuring process on the machine tool (On-Machine Measurements OMM) is in 

many respects similar to that of classic CMMs. Decisive differences are the lack of fixation 

of the disturbing influences and the fact that features are measured on the machine that was 

also used for manufacturing them. The latter creates a direct critical relation between  

the feature characteristics and the measurement uncertainty, which can only be resolved by 

the differences between the manufacturing and measuring process [2]. 

Manufacturing process Measuring process 

– Manufacturing strategy  

(tool path, axes movements) 

– Process forces 

– Tool wear effects 

– Measuring strategy (probing points, 

axes movements) 

– Low contact forces during probing 

– Probing almost wear-free 

To overcome the environmental challenges, the following different implementation 

approaches can be derived.  

Table 1. Solutions to environmental disturbances on machine tools [3–5] 

 

2. Interim checks 

1. Climatization 

3. Definition of cceptance 

windows 

4. Thermo-elastic correction 
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 In the course of digitalization and with the help of new integrated sensor technologies, 

the availability of process and environmental data is increasing rapidly [6–8]. Similar to  

the VCMM approach, this data basis can be used to generate models for optimization and 

task-specific uncertainty predictions for dimensional measurements on machines in 

production environments. 

A proper implementation also requires the establishment of a holistic uncertainty model, 

taking machine, workpiece, environment and their mutual interaction into account [2].  

The following Ishikawa diagram shows the model components which are researched by  

the authors and also addressed in this article. 

 

Fig. 1. Ishikawa diagram with influences on the measurement uncertainty for on-machine measurements.  

Blue highlighted influences are addressed in this article 

In Chapter 2, the authors compare different approaches tackling disturbing influences 

on the machine tool, as described beforehand, and show current research activities. In 

Chapter 3, research predicting workpiece deformation is examined, an often disregarded field 

of research. Finally, the authors embed both concepts in the broader context by proposing  

a holistic model covering and thus compensating multiple sources of errors for on-machine 

measurements. 

2. MACHINE TOOL MONITORING AND MODELLING 

A machine tool’s volumetric performance is subjected to multiple disturbing external 

and internal influences. The authors propose a hybrid machine tool error modelling approach, 

unifying multiple state-of-the-art and novel modelling concepts into a holistic model.  

As the industry standard, following ISO 230-1:2012 [9], the so-called rigid body model 

(RBM) is used in all modern machine tool control systems to mitigate the effects of static 

structural deviation from, e.g., ideal straight guideways. Within said approach, a machine tool 
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is logically comprised of several rigid bodies sequentially affixed to each other according to 

the kinematic chain [10, 11]. With static compensation tables for each inter- and intra-axis 

error (also called geometric errors) as a data foundation, the tool’s volumetric deviation is 

analytically computed [12, 13].  

 Acquisition of the compensation table data is performed by calibrating the machine tool 

using traced reference metrological systems [14]. The aforementioned action is generally 

time-consuming and often requires specialized equipment, thus calibrations are executed in 

long time intervals. [13, 15–17] 

 With the temporal resolution for calibrations usually in the range of multiple months, 

one inherent flaw in the methodology emerges: As transient errors in low-load-conditions 

originate mainly from (inhomogeneous) thermal expansion [18, 19], no sufficient conclusions 

regarding dependency of geometric errors from the thermal state can be drawn from  

the calibration measurements. Modern machine tools use manufacturer-provided thermal 

expansion coefficients to compensate for linear thermal expansion of axes. With most 

machines, more complex interrelationships between geometric errors and inhomogeneous 

thermal states are neglected. The following table gives an overview of different geometric 

error modelling methods, which were investigated by the authors.  

Table 2. Comparison of multiple machine tool error prediction models 

Machine tool modelling methods 

RBM 
Simple form of machine tool modelling, industrially 

accepted and adopted [9–12, 20]. 
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APB 
The authors propose this novel method as an intermediary 

step regarding machine tool construction data requirements 

and modelling effort  

–
 

+
 

+
 

+
 

Data 

Driven 

E.g. machine learning and regression methods – Data driven 

methods generally require vast amounts of training data for 

modelling and are hardly transferable [21–28] 

+
 

+
 

–
 

+
 

FEM 
(+CFD) 

Simulating thermomechanical behavior (incl. airflows → 

CFD & ambient temperatures), thus requires high computa-

tionnal power & detailed modelling [29–33] 

+
 

+
+

 

–
 –

 

–
 –

 

2.1. INTRODUCTION OF ABSTRACTED PHYSICAL BODY MODEL 

As a compromise between the drastic abstraction of the rigid body model and the 

modelling complexity and computational effort required with FEM analyses, the authors 

propose a novel modelling concept based on splines as abstracted structural machine parts.  

Spline-based FEM approximation was tested by multiple researchers successfully with 

little deviations from FEM results [34–36]. Within the so-called Abstracted Physical Body 

Model (APB), introduced by the authors, structural machine elements (e.g., gantry supports, 

gantry beam), as well as motion-related structures (e.g., linear guideways), are abstracted as 

spline curves. Under (thermally) load-free condition these spline curves would be ideally 

straight.  
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See Fig. 2 for a schematic illustration of different abstraction layers. The ensemble  

of interconnected splines resembles roughly the structural loop of the machine with their 

respective dimensions as well as the kinematic chain. With this concept, the authors try to 

overcome the drawbacks of FEM-based machine tool structure modelling and develop  

a solution, which is highly adaptable to different machine tool types even if no detail 

information about machine geometry and material is available. 

 
Fig. 2. Comparison of FEM-based model (a), spline-based abstracted physical body model (b) and rigid body model  

for linear axes and demonstrator machine rendering (c) of the same demonstrator machine DMC 75V Linear  

with CXFYZB-kinematic 

 To reduce the modelling effort at the beginning while maintaining meaningful results 

from the pure mathematical spline model, the authors postulate the following physically 

rooted assumptions and simplifications, which could be extended in the future: 

• Length consistency  

Structural elements mostly have oblong shapes. As such the longitudinal 

compression stiffness is far greater than the bending stiffnesses, thus the length of 

the element is constant under mechanical load and changes exclusively due to 

thermal expansion (see Table 3, longitudinal force/shear force). 

• Pre-determined deformation modes  

With the mathematical spline model, multiple deformation modes are possible, 

which must be rejected due to physical constraints.   

Only certain deformations and their superpositions are allowed (see Table 3). 

• Linear temperature distributions (preliminary simplification)  

Temperature distributions cannot be calculated physically-based along structural 

parts with the simplified spline model yet. Heat sources and sinks also cannot be 

taken into account. Thus a linear temperature distribution between temperature 

constraint points (→ temperature sensors) along structural parts is assumed. 

• No external forces (preliminary simplification)  

With the model relying solely on mathematical constraints, there are by default no 

forces. Internal strain can be represented by spline deflection, but with no physical 

stiffness associated to splines, external forces cannot be considered. 

 types even if no detail information about machine geometry and material is available. 

x y 
z 

y x 

TCP TCP (here: without rotational  

axes and tool) Exemplary 

temperature 

distribution 

Spline-based 

deformation 

6 DoF error motions per axis slide 

 
vs. vs. 

(a) (b) (c) b) a) c) 
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• No mass (preliminary simplification)  

Analogous to external forces, masses of machine structure, drives, or workpiece 

cannot be taken into account.  

Table 3. Comparison of different deformation modes with exaggerated visualization of an exemplary  

cantilever beam 

With the aforementioned assumptions, it is apparent, that the model is capable of incor-

porating but also relies heavily on live constraint data. Live data sources are (non-exhaustive): 

• Temperature sensors   

With temperature as the sole driver of lengthwise spline deformation, the model 

relies heavily on the availability of machine temperature information. 

• Inclinometers  

An Inclinometer can provide precise information regarding a point’s orientation 

relative to the gravity vector, thus poses as constraints of a spline’s slope. 

• Interferometric Sensors  

Interferometers measure precise position data, which constrains a point in one 

direction relative to another in 3D-Space. 



P. Dahlem et al./Journal of Machine Engineering, 2020, Vol. 20, No. 2, 5–17 11 

 

To deliver its full potential, the spline model is to be used as a hybrid model in 

superposition with the more traditional RBM approach. Static geometric errors are computed 

via RBM, as it is more suited for arbitrarily high resolution geometric error table data, which 

the Spline Model cannot provide. Only transient errors relative to the calibration (thermal) 

state of the machine are computed with the spline model, thus supplementing the RBM 

-approach. 

3. THERMAL MONITORING AND MODELLING OF THE WORKPIECE 

 Besides the machine, also the influence of the workpiece can be significant to  

the measurement uncertainty of OMMs [1]. Main causes are gravitational and especially 

thermal effects. For heavy and apparently stable objects, gravitational effects are clearly 

detectable. They become evident not only in the form of part self-deformation but may also 

lead to static loads influencing the machine tool geometry during handling or clamping for 

manufacturing, assembly or measuring. Thermally-induced effects are manifold. They can 

originate from the environment, the machine or from manufacturing processes yielding 

thermal energy and thus changing local workpiece temperatures, which can influence  

the geometry significantly. Thus also the explicit modelling of the thermal characteristics  

of the measured workpiece is part of present research [6, 37, 38]. 

Unstable thermal conditions during geometric intermediate and final inspections lead to 

unsteady and inhomogeneous thermoelastic changes of the workpiece. For large components 

with tight tolerances, e.g. turbine components or gears, where the inner temperatures and their 

effects are completely unknown, thermal effects can represent a high percentage of total 

measurement uncertainty, for which there are only a few modelling approaches besides 

elaborate FEM so far [5]. 

 The consistent heat exchange between the measurand and its environment can be traced 

back to the physical effects conduction, convection and radiation. Even in air-conditioned 

production sites, changing ambient temperatures are omnipresent, which can occur in daily, 

weekly or longer cycles. The influence increases proportionally with temperature differences 

and component size. Relevant standards specify to measure workpiece temperatures and 

assess the uncertainty contribution to the overall measurement uncertainty [39]. Alternatively, 

a sufficient long thermalisation period for temperature equalization of the workpiece is 

recommended [40]. 

Thermal influences of the measurand are still not fully considered or solely approximated 

very conservatively in industry-applying, if any, linear thermal expansion models or 

Newton’s Law of cooling [5]. According to the law of thermal expansion, the extent depends 

on thermal load (temperature difference relative to standard temperature Δ𝑇) and object 

material properties (coefficient of thermal expansion 𝛼). Assuming linear expansion, the 

change in linear dimension relative to the standard length (
∆𝐿

𝐿
) at standard temperature can be 

estimated to: 

∆𝐿

𝐿
=  𝛼 ∙  ∆𝑇 ;    [𝛼] =

𝑚

𝑚 ∙ 𝐾
, [𝑇] = 𝐾, [𝐿] = 𝑚 
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The thermal expansion coefficient α, depending on the applied material, is defined with 

regard to the state at a defined reference temperature (usually 20°C). Stating Newton’s law  

of cooling, the rate of heat loss of a body (
𝑑𝑄

𝑑𝑡
) is proportional to the difference in temperatures 

between the body and its environment (𝑇𝑜𝑏𝑗 , 𝑇𝑒𝑛𝑣), the surface area (𝐴) and the heat transfer 

coefficient (ℎ). 

𝑑𝑄

𝑑𝑡
=  −ℎ ∙ 𝐴 ∙ (𝑇𝑜𝑏𝑗(𝑡) − 𝑇𝑒𝑛𝑣);   [𝑄] = 𝑊𝑠, [ℎ] =

𝑊

𝑚2 ∙ 𝐾
, [𝐴] = 𝑚2, [𝑇] = 𝐾  

According to the stated formulas, thermally induced geometric deviations, as well as 

thermalisation, could be determined in theory. However, the underlying assumptions  

of consistent single materials, constant heat transfer coefficients over the whole geometry and 

known homogenous temperature distributions do not reflect real-world conditions.  

Along with multiple varying temperature loads, such as thermal energy from the 

manufacturing process, originating from machined surfaces in a non-homogenous manner 

accompanied by heat conduction between clamping surfaces under variable ambient 

temperatures, mutable thermal states and thus transient, local heat transfer coefficients over 

the workpiece is characteristic. Such effects are even reinforced associated with complex or 

asymmetric geometries with different wall thicknesses or materials, making accurate 

prognoses of thermal workpiece states by usage of above indicated simplified models 

unsatisfactory.  

As a conclusion, large workpieces in the production environment can be considered as 

an open, transient thermodynamic system, standing in continuous interaction with its variable 

environment. Although it is possible to simulate and numerically solve such systems by 

means of commercial FEM software, the efficient application suffers from defining correct 

boundary conditions and very high computational effort. Thus, the research need for 

meaningful and efficient alternative tools arises.  

3.1. DATA-DRIVEN MODELLING OF WORKPIECE’S THERMAL STATE 

To tackle above stated challenges with respect to the current state of the art, a model 

-based software tool is developed at the WZL, addressing solutions for unknown 

inhomogeneous temperature distributions in the measured object, which is presented as 

follows. As depicted in Fig. 3, the basic functionality can be broken down into three major 

components. 

3.2. SMART TEMPERATURE SENSORS 

The authors developed smart temperature sensors, which are highly integratable to 

OMM scenarios promoting retrofit application. Due to their small and robust housing and 

wireless communication they can easily be attached on workpiece or machine surfaces, to 

deliver actual thermal state information, which is necessary for subsequent modelling steps. 

With a cable-based externally routed sensor tip, it is also possible to measure temperature  
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at neuralgic but hardly accessible locations, like workpiece‘s cavities or machine’s scale 

systems.  

 

Fig. 3. Thermo-mechanical workpiece modelling framework 

3.3. THERMAL MAPPING 

To obtain an advanced understanding of the current thermal workpiece state a software 

is used to map and interpolate the temperature data over the whole workpiece geometry.  

A prerequisite for that is an existing digital representation of the nominal part geometry.  

The software computes all necessary steps by passing through meshing, sensor allocation, 

calculation of shortest node paths and interpolation (see Fig. 3). For efficient implementation, 

the shortest path determination is performed by a memory-optimized Dijkstra algorithm, 

which is referred to as uniform-cost search (UCS) in artificial intelligence [41]. Hence, 

thermal distribution is calculated by using grid points from sensor data. Based on  

a preliminary study on spatial interpolation algorithms, comparing deterministic with 

geostatic and data-driven methods, Kriging [42] was identified as the most powerful tool in 

consideration of calculation time and evaluation metrics (RMSE = root-mean-square-error, 

MAE = maximum-absolute-error, MBE = mean-bias-error). The thermal mapper output 

comprises colored 3D models as well as all ascertained node temperatures in a JSON file. 

3.4. PROCESSING AND VISUALIZATION 

Based on thermal mapper outputs, temperature data is captured for further utilization by 

the solver. Its basic framework is comparable to well established FEM methods with two 

distinct differences. Thermal boundary conditions are not set up in advance but coupled with 

real temperature measurements from workpiece’s surface and from the environment.  

The developed solvers are tailored for individual purposes, tackling time-efficient heat 

transfer determination and thermal deformation calculation. An integrated optimization cycle 
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ensures the reduction of thermal discrepancy ∆𝑇 between expected and measured 

temperatures by adapting heat transfer coefficients for every iteration step. Owing to the well-

known fundamentals of solving thermal transient problems in link with structural analyses, 

stating the formulation of underlying partial differential equations (PDEs) is renounced at this 

point. For validation, the algorithm was benchmarked against experimental data, measuring 

thermal deviation of two reference standards on a CMM in a climate chamber, showing 

overall good accordance between predicted data and physical testing results. 

A web-based implementation of the presented software tool allows for both, remoted 

data tapping for uncertainty determination and local evaluation on an edge device as decision 

support for the shop floor. 

4. CONCLUSION AND FURTHER RESEARCH OUTLOOK 

 Only a holistic consideration of all influencing factors along the measurement chain is 

capable of producing reliable measurement results and decision support systems. Along with 

the emerging demand for fast, reliable and close to production quality control loops,  

the authors take up the idea of on-machine measurements and enrich existing solutions by 

innovative modelling approaches for resilient and traceable measurements utilizing live 

process data. Within the presented framework, a possible model chain is outlined, which 

addresses multiple influences on the measurement process (see Fig. 4). For future traceability 

traced reference data for model development is a necessary requirement. 

With orientation towards the CMM world, first a thorough analysis of the uncertainty 

components, subdividing major contributors into machine tool, workpiece, environment and 

strategy, is introduced (Fig. 1).  

 The authors introduce the abstracted physical body model for transient geometric 

machine error modelling which overcomes the limitations of RBM and FEM. The concept 

shows high approximation potential with low computational effort and high scalability to 

different machine kinematics. Extensive experiments are planned in the future to validate and 

enhance the approach towards a retrofit solution for OMM purposes. 

 Tackling the influence of thermo-elastic workpiece effects, a three stage compensation 

module, consisting of smart temperature sensors, a thermal mapper and linked solver, 

enabling modelling and thermal monitoring.  

Present and future work within that field address machine learning (ML) enriched 

algorithms, emulating physical inner heat flows using pure surface sensor measurements and 

a priori knowledge. Solving the ill-posed problem, the algorithm relies on elaborate training, 

using synthetic data coming from FEM enriched with real data stemming from physical 

demonstrators. The focused output is a ML meta-model, which is capable of solving inverse 

heat transfer problems for different geometries under varying boundary conditions. Another 

subject of current research is the coupling of thermal photogrammetry with physical 

temperature sensors, enabling thermal distribution mapping with a high level of accuracy. 

Compared to other approaches, which rely on estimations for data between grid points, this 

approach is promising regarding low temperature measurement uncertainties.  
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As a preliminary requirement for potential model acceptance in industry and norming 

organizations, a thorough measurement uncertainty analysis of all separate submodel as well 

as the holistic model will be executed [43, 44]. 

 

 

Fig. 4. Schematic abstraction of the proposed holistic modelling approach unifying multiple disturbing influences and 

their compensation models to achieve an optimized model accuracy and thus dependable measurement results 

A following step to establish trust in these new technologies and to point out potential 

insufficiencies is the development of independent acceptance tests of the whole metrological 

chain. Together with international experts and the ISO 230 committee TC 39 SC2, the authors 

intend to work on acceptance test solutions and submitted the preliminary working item 

proposal “Acceptance tests for coordinate measurements on machine tools based an ISO 

10360”. 
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