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OFFLINE-ONLINE PATTERN RECOGNITION FOR ENABLING TIME SERIES 

ANOMALY DETECTION ON OLDER NC MACHINE TOOLS  

Intelligent IoT functions for increased availability, productivity and component quality offer significant added 

value to the industry. Unfortunately, many old machines and systems are characterized by insufficient, 

inconsistent IoT connectivity and heterogeneous parameter naming. Furthermore, the data is only available in 

unstructured form. In the following, a new approach for standardizing information models from existing plants 

with machine learning methods is described and an offline-online pattern recognition system for enabling 

anomaly detection under varying machine conditions is introduced. The system can enable the local calculation 

of signal thresholds that allow more granular anomaly detection than using only single indexing and aims to 

improve the detection of anomalous machine behaviour especially in finish machining. 

1. INTRODUCTION 

As manufacturing companies implement more digitalization in an effort for their 

transformation towards Industry 4.0, problems arise when older machines have to be 

connected for data access. Many of these machines do not offer modern acquisition 

interfaces, making it difficult to integrate them into IoT solutions. Replacing this equipment 

is not a viable option, as manufacturers often fear that costs may outweigh the benefits 

offered by IoT integration. This leads to a slowdown of digitalization, which hinders 

industry-wide development and may also lead to competitive disadvantages compared to 

competing companies further ahead in digital transformation. Consequently, this leads to  

an increased need for new and standardized data acquisition methods when dealing with old 

machines. However, even older machine models in brownfield applications offer some ways 

of data access, often in the form of TCP/IP connectivity.  

A central application leveraging this data is the condition monitoring of production 

and handling machines. By using recorded time-series data such as positional- or motor 
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current data, anomaly detection based on deviations from reference time series can be 

applied. The main advantage of detecting these anomalies is the avoidance of unplanned 

machine shutdowns by recognizing abnormal behavior in signals before a machine or 

component crash occurs. However, in finish machining, conventional condition monitoring 

or anomaly detection systems mainly implemented with single indexing are unable to detect 

small signal deviations due to noise on a global level. In this paper, a novel approach for 

supplying data to apply anomaly detection on a local level for older NC steered machine 

tools by using an offline-online pattern recognition is described. The approach segments 

time series into different subsequences corresponding to machining processes and does not 

require any long algorithm training or prior knowledge about the specific machine 

operations. This machining process segmentation is based on space condition which is 

recognized by positional data of the feed axes.  

2. RELATED WORK 

As heterogeneous production plants consist of different types of machines and new 

machines are introduced continually, the need to simplify and standardize this environment 

is greater than ever. Some research has been done on the characterization of these 

production plants by Ahmed Ismail [1], who view the manufacturing ecosystem as a multi-

dimensional grouping of systems designed to support a variety of different business, 

operations, engineering, maintenance, and training functions involved in the manufacturing 

process. Due to its varied characteristics, the data that is generated during these different 

processes is heterogeneous in nature as well. This poses a challenge for data analysis, as 

data may be scattered across different databases adapted to the specific processes and may 

also be available in different formats. Data sources reach from applications to sensors and 

cyber-physical devices. Due to these circumstances, data acquisition itself is a major 

challenge, as without clean and structured data, no analysis can be performed at all. As per 

Ahmed Ismail [1], data analysis pipelines often use varying implementations of SQL 

databases (PostgreSQL, MySQL, MongoDB) for storage of the generated data. In cases 

where data is especially big, distributed storage implementations like HDFS are commonly 

used. However, these storage solutions are optimized for structured data which is often not 

available directly from machine tools. Even in developed manufacturing landscapes, a lot  

of data is saved in unstructured form, as producers only slowly adapt to the needs  

of Industry 4.0. Data can be extracted from logs or time series in order to be used for 

manufacturing prognostics and health management [2]. However, unified approaches for 

this are largely missing as difficulties arise case-wise, since manufacturing equipment is 

used for a vast variety of different tasks. One effort to create transferable connectivity was 

made by the MTConnect Project [3] that aims at providing a royalty free industry standard 

for data access via TCP/IP.  

Based on this standard, Edrington [4] created a web-based RMMS solution for access 

to data from machine tools of different companies and with proprietary data communication 

protocols. When such standardized access is not possible, some approaches to reduce 
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complexity of data acquisition exist: when machines of the same type are used in different 

processes, their grouping into fleets may be beneficial for data acquisition and analysis, as 

data pipelines and algorithms may be transferable when connectivity is similar among them 

[5]. When data from machine tools is in addition generated at high frequencies and in great 

quantity, traditional storage becomes impossible. This may require the use of alternative 

techniques, such as complex event processing (CEP). Here, data is accessed as a stream 

before or even completely without being stored in a database.  

Especially time series are a common machine data output and different approaches 

exist for structuring them in order to gain insights from their analysis. Many existing studies 

on extracting patterns from time series data are based on early breakthroughs of Lin [6] & 

Keogh [7], which form the foundations of motif recognition in this domain. There are 

different examples for algorithms that deal with time series data by imposing a standardized 

structure through transformations and data engineering. Sakurai et al. [8] introduced  

the SPRING-Algorithm for matching subsequences in times series with a reference, which 

allowed similarity matching in real-time fashion. Using this algorithm, data in time series 

format can be accessed quickly and allows for use in IOT applications. To further extend 

this traditional CEP approach, Emec [9] modified the Algorithm by improving  

the initialization procedure and the unsupervised training. Their proposed framework uses 

hall-effect sensors for data acquisition which allows a flexible usage on a variety  

of different machine tools, independent of their specific interfaces. 

3. DATA ACQUISITION 

Machines used in industry differ not only by machine type and variation but also by 

the type of controller (e.g. NC or PLC). In addition, many industrial steering types such as 

SIEMENS, FANUC, BOSCH REXROTH, BECKHOFF, HEIDENHAIN or other more 

uncommonly used ones exist. All these controllers provide controller data like motor current 

or positional data via their respective proprietary information models. However, the data 

accessibility based on different hardware or software structure will not be further focused 

upon in the following. The data required for the presented approach includes time series 

data like feed motor currents, spindle and position data. Extracting this data is not always 

trivial, as apart from the used information model, the parameter naming of the time series 

could vary with different controller types. The algorithm focuses on this data, as it is often 

readily available even on older machines, where external sensors may not be present and  

the costs of adding them may outweigh the benefits. In addition, positional data is useful for 

identifying subsequences that correspond to machine movements while motor currents (e.g. 

spindle current for milling tools) according to experience often contain anomalies. 

However, through the modularity of the approach, up to 200 signals can be used per axis for 

eventual anomaly detection.  

The positional and motor current data is available in the controller unit of the 

respective machine and is either provided by the PLC or by infrastructure such as an OPC 

UA server that improves the accessibility of the data for the user. However, even if data is 
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provided via OPC UA, the identification of the required parameters can be a major 

challenge due to tens of thousands of nodes with static, binary or dynamic parameters 

available on the server. 

OPC UA represents a key data interface and therefore serves as a foundation for the 

described approach of an intelligent and automated data provision of the required 

parameters. If an OPC UA server already exists, it can be read out directly by a correspon-

ding client application. In case no OPC UA server exists, it must be implemented on  

the controller unit. Software such as the PLC Engine by TANI can be used for this, which 

allows an automated readout of Ethernet-capable controllers in connection with the 

implementation of an OPC UA server [10]. Based on the OPC UA Server as the basic 

interface, an intelligent identification of the parameters was implemented, which scans  

the data sources, recognizes the searched parameters based on their characteristics and 

assigns them to the required parameters. The identification of the parameters is achieved by 

machine learning and rule-based approaches. Here, a feature-based approach is used for the 

basic detection of the parameters, such as motor currents, position signals or spindle speeds. 

Three binary decision trees with 100 splits each with data from a 5-axis machining center 

were trained. If further differentiations are necessary, rule-based methods are used in  

a further stage based on the results. On the one hand, to differentiate between a nominal and 

an actual position, for example, a time offset or signal noise can be examined. On the other 

hand, to differentiate between parameters of different axes in a machine, deviating behavior 

between horizontal and vertical axes can be detected. The result of the identification is  

an assignment of the required parameters for the specific usage of these, e.g. for 

segmentation and anomaly detection described in the following chapter. The data provision 

can either be realized in the form of information on which node of the OPC UA Server 

which parameter data can be retrieved, or the corresponding time series data can be written 

to a defined structure in an SQL database. 

4. SEGMENTATION & ANOMALY DETECTION 

 The approach described in the following provides a way to group signals into smaller 

subsequences, which can then allow anomaly detection on a local level. In finish machining, 

this provides a significant advantage over regular anomaly detection using single indexing: 

here, signals disguise in noise, and looking at global thresholds does not allow for the 

detection of anomalous behavior if signal deviation is not high enough to exceed global 

noise variance. By creating local thresholds, such deviations can be identified.  

 After data acquisition as described in Chapter 3, a time series is available, which 

describes the signal course over time using the extracted positional values. From this time 

series, representative subsequences are to be generated in an offline training approach 

(Offline Pattern Recognition) visualized in Fig. 1. 

 In this case, the position values were focused, which are assigned to points in time 

with equal intervals based on a constant sampling frequency. This data is accompanied by 

so-called information signals like motor current or torque, which are time series containing 

possible anomalies. For each timestamp in the positional time series, multiple other 
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information signals may be available. In order to split the time series into subsequences,  

the approach focuses on minima in the positional data. However, as these series are usually 

noisy, the search for local minima cannot be executed without applying smoothing 

beforehand (Fig. 2).  

 

 

Fig. 1. Overview of the Offline Pattern Recognition. The system extracts subsequences from positional time series data 

and clusters the subsequences to calculate reference positional and information signals 

 

Fig. 2. Noise making the search for local minima impossible. On the left, local minima found when not accounting for 

noise are shown, on the right, the desired local minimum on which the time series will be split when correcting for noise 

is shown. Red circles denote a minimum or extremum 

 By applying smoothing, noise is eliminated, and the data is segmented using the 

defined criterion. As the time series that is split into patterns may not be one-dimensional 

(e.g., if the machine moves along multiple axes, usually along the x-, y- and z-axis),  

a dominant axis will be selected, based on which the split into subsequences follows. This 

Noisy time series with minima Smoothed time series with minima 
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creates multiple different subsequences if positional movement along the non-dominant 

axes differs. Once the time series is split into these subsequences, a clustering approach is 

applied. During clustering, sparse patterns are eliminated while dominant patterns that occur 

often are saved for matching them with the respective information signals, essentially 

creating labels that can then be used for detecting anomalies in this sensor data. 

For the clustering, a mean shift approach is used. To enable full comparability of the 

identified subsequences, a position offset adjustment is necessary, which is achieved via  

a discrete Fourier transformation (DFT) of the subsequences whereby the offsets are 

removed, and the representation can be transformed back to a position-time signal. 

Afterwards the point-to-point distance between subsequences is calculated using a length 

relative variation of the Euclidean distance. The resulting n x n distance matrix then acts as 

input for the mean shift cluster algorithm [11]. The output generated by the clustering 

contains representative subsequences that are matched to timestamps in the original input 

time series.  

 When new data is generated by a machine for which such representative sequences 

were calculated, the information signals that accompany the new data can be compared to 

prior signals that were observed during an earlier training cycle.  

For this goal, an online recognition of the representative patterns is needed. This 

approach is called Online Cycle Detection (subsequences in the online data are also called 

cycles from now on, as they often define recurring patterns). Fig. 3 gives an overview  

of this system. 

 

Fig. 3. Overview of the Online Cycle Detection. The system recognizes previous subsequences that were stored by  

the Offline Pattern Recognition system. This can then act as the basis for anomaly detection, as live and reference 

information signals can be compared 

The Online Cycle Detections task is finding the most probable subsequence that was 

identified by the Offline Pattern Recognition for any subsequence that is found in the online 
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data. Hereby it has to deal with data of high volume and velocity in the process, which 

makes a streaming approach necessary. 

 As problems regarding main memory size and computation times can arise, a FIFO-

buffer structure with a manually defined length handles the incoming data signals. 

This signal buffer 𝐵 is a set of signal data sequences 𝑥𝑠 starting at 𝑡1 and ending at 𝑡2.  

 The Online Cycle Detections task is to identify and localize the right representative 

subsequence from the set of representatives 𝑆, when a new signal subsequence is detected 

inside the buffer. This corresponds to the following set: 

 

{𝑠|𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑠 ∈ 𝐵} (1) 

 

 As the signal buffer can contain multiple signals, the subsequences identified by the 

Offline Pattern Recognition have to be matched to the signal buffer. Therefore, both 

identification and localization have to be considered. Identification includes finding all 

representatives 𝑠 that could appear in the buffer, while localization describes finding their 

position in order to extract the information signals that are tracked in parallel. This is 

computationally expensive and requires tuning of the signal buffer size in order to reduce 

execution times, as all representatives have to be considered at different positions. 

 To localize the subsequence, the position of subsequence 𝑠 inside the signal buffer 

𝐵 at time 𝑡 has to be detected. This is done by finding the position 𝑝 of subsequence 𝑠 at 

which the mean absolute error between the signal 𝑥𝑠 and the representative subsequence 𝑠 is 

minimized: 

 

arg min
𝑝∈[𝑡1,..,𝑡2]

1

𝑛
∑ |𝑥𝑖

𝑠 − 𝑠𝑖|𝑛
𝑖=𝑡1+𝑝  𝑤ℎ𝑒𝑟𝑒 𝑛 = min (𝑡1 + 𝑝 + |𝑠|, 𝑡2)  (2) 

 

 

Fig. 4. Example of information signals for a positional subsequence (blue): the live signal (red) deviates from the 

reference information signal (black). On a global level, small deviations like these are difficult to detect. By calculating 

signal thresholds locally, anomaly detection can be applied more efficiently. 
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Problematic cases where only a limited number of sample points can be used to 

calculate the difference between online data and representative subsequence data occur as 

soon as new signals enter the signal buffer. In such cases, the distance measure only holds 

little information, because most of the signal is still unknown. To prevent misclassifications,  

a threshold that excludes signals with less than the defined amount of signal points is 

introduced.  
 After a subsequence is found in the online data, anomaly detection algorithms for 

condition monitoring can be applied traditionally. For this, the information signals of the 

streamed data can be compared to representative information signals of the matched 

representative subsequences (Fig. 4). As arbitrary information signals can be compared,  

the solution is compatible with any sensor that generates data at specific time stamps. 

5. EXPERIMENTAL FUNCTION VALIDATION 

The introduced approach for finding time series subsequences offline and recognizing 

these sequences online during machine operation can act as a standardized solution for 

applying anomaly detection based on the generated data. At wbk – Institute of Production 

Science in Karlsruhe, Germany, a test bench which is reduced to one feed axis was set up 

(illustration in Fig. 5). The feed axis consists of a standardized ball screw drive for milling 

machines and a steered drive.  

 

 

Fig. 5. Reduced test bench of a milling machine, feed axis realized by ball screw drive with a steered drive 

An OPC UA server was implemented (see Chapter 3) to acquire the needed data from 

the controller unit. To find the required data sources on the OPC UA server and to validate 

the described identification approach the developed algorithm was implemented with an 

OPC client. The time series data was recorded with a time resolution of 10 ms and features 

were extracted with sample times of 500 ms. A total of 163 test series were taken. Using the 

trained decision trees, the required parameters regardless of their parameter naming scheme 

could be identified successfully, as shown in Fig. 6. The motor current was detected most 

reliably with 100%, followed by the position signal with 97.1% and the torque with 96.7%, 
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both of which were also classified as motor current in individual cases. Based on the 

assignment, the corresponding node information of the selected parameters can be provided 

to the data segmentation application in form of an xml file. 

 

Fig. 6. Classification on presented test bench using binary decision trees 

To validate the described approach of data segmentation, a normal milling process 

reduced to the x-axis is applied. In case of milling, different traverse movements 

characterized by different velocity and end positions are present. In a first run, the algorithm 

learns the cycle movements through the Offline Pattern Recognition. The results are shown 

in Fig. 7.  

 

Fig. 7. On the left: input data time series of feed axis position measured through OPC UA. There are 10 different 

movements, simulated by 5 subsequent parts. On the right: result after the Offline Pattern Recognition step: there are  

10 calculated patterns 

As seen above, there are 10 different movements calculated by the clustering 

algorithm. These learned subsequences act as the input for the following Online Cycle 

Detection that aims to redetect these recurring movements. Fig. 8 shows the detected 

subsequences for the online buffer data. Based on the Offline Pattern Recognition  

the algorithm is able to find the recurring movements by calculating the matching score. On  

Recognized patterns 
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the right side (blue diagram) the detected sequences are displayed. In the green diagram on 

the bottom, the information signals extracted from the controller unit (current, torque) are 

shown to the user. Based on this standardized method, condition monitoring solutions, e.g. 

anomaly detection in drive signals or data provisioned from external sensors can be applied 

to older machine tools. In order to detect these anomalies, deviations from the clustered 

subsequence can be detected using self-learned thresholds. When clusters are updated with 

more sequences recognized by the pattern recognition, the thresholds may change (as they 

could be based on different variables such as signal variance). 

 

Fig. 8. Cycle Detection & Anomaly Detection GUI 

6. CONCLUSION AND OUTLOOK 

Using the described data acquisition, it is possible to provide and identify machine 

parameters from older machine tools and further accessible data sources. This serves as the 

basis for extracting useful data from any machine that generates time series and sensor data 

that can be matched to the attached timestamps. The presented approach focuses on two 

main components: An Offline Pattern Recognition which identifies representative 

subsequences and an Online Cycle Detection, which searches for the most probable 

representative subsequence once a subsequence (also called cycle in this instance) is found 
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inside a streaming buffer. This standardized method is applicable to most industrial 

machines where access to a time series that describes their behavior is possible.  

The generation of information signals that can be used in anomaly detection for condition 

monitoring can then be handled by accessory sensors, making the application highly 

modular. This modularity can be exploited by manufacturers, allowing them to evade 

expensive hardware swaps.  

 One area where further developments are needed is the improvement of the Online 

Cycle Recognitions execution time, as currently, expensive distance calculations between 

subsequences are still necessary. With an increase in calculation efficiency, it could be 

possible to introduce higher sampling rates of up to 500 kHz at lower latencies. Additio-

nally, by focusing on edge or cloud computing, bottlenecks in data transmission could be 

avoided. Future investigations should also focus on the combination with newer 

standardized Industry 4.0 hardware in brownfield applications with positive cost-benefit 

relationships. 
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