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HYPERPARAMETER OPTIMIZATION OF ARTIFICIAL NEURAL NETWORKS 

TO IMPROVE THE POSITIONAL ACCURACY OF INDUSTRIAL ROBOTS 

Due to the rising demand for individualized product specifications and short product innovation cycles, industrial 

robots gain increasing attention for machining operations as milling and forming. Limitations in their absolute 

positional accuracy are addressed by enhanced modelling and calibration techniques. However, the resulting 

absolute positional accuracy stays in a range still not feasible for general purpose milling and forming tolerances. 

Improvements of the model accuracy demand complex, often not accessible system knowledge on the expense  

of realtime capability. This article presents a new approach using artificial neural networks to enhance positional 

accuracy of industrial robots. A hyperparameter optimization is applied, to overcome the downside of choosing  

an appropriate artificial neural network structure and training strategy in a trial and error procedure. The 

effectiveness of the method is validated with a heavy-duty industrial robot. It is demonstrated that artificial neural 

networks with suitable hyperparameters outperform a kinematic model with calibrated geometric parameters. 

1. INTRODUCTION  

Industrial robots (IR) are widely used in industry for automation of pick-and-place as 

well as assembly tasks. In order to widen the application range to machining processes as 

milling and forming, the deficiency of IR regarding their low absolute positional accuracy T 

needs to be improved [1]. Such approaches mainly focus on modelling the geometric and 

non-geometric error sources of the serial chain, as joint angle offsets Δθ, angle and link length 

errors as well as joint and link stiffness [2–5]. The model parameters are in general identified 

experimentally. Uncertainty remains due to phenomena as e.g. gear backlash, friction and 

nonlinearities. Even though the modelling techniques are continuously improving, all  
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the models capturing the physics behaviour of IR are still not feasible to meet general purpose 

milling and forming tolerances [6]. As a further improvement of the positional accuracy T  

of IR is so far limited by the model accuracy, the parameter identification method or the real 

time capability, recent research includes data-based modelling techniques. The IR kinematics 

as well as the error sources are partially or fully captured by algorithms, which relate the joint 

angle vector θ to the pose error vector e or vice versa. Due to their capability of approximating 

arbitrary nonlinear relations as well as their simple structure, flexibility and learning ability, 

especially artificial neural networks (ANN) gain increasing attention in a wide range of appli-

cations [7]. The integration of ANN models in the process of accuracy improvement of IR is 

schematically shown in Fig. 1. 

 

Fig. 1. Improvement of the positional accuracy T of IR by means of an ANN model 

The generic ANN model with fully connected layers maps the input vector x to  

the output vector y by a composition of nonlinear functions g in the form [8]: 

 y= f(x) = g(M)°g(M-1)°…°g(1)(x), with g(x) = σ(W∙x + b) (1) 

 In Eq. 1 the parameter M denotes the number of hidden layers, σ the activation function, 

W the weight matrix and b the bias. The weight matrices Wi and the biases bi are adjusted in 

the training phase by an algorithm called backpropagation. As backpropagation computes  

the gradient of a loss function with respect to the ANN parameters, the activation function 

must be differentiable. Commonly used activation functions are RELU (rectified linear unit) 

and ELU (exponential linear unit). For a broad and concise overview of ANN it is referred to 

Fan et al. [7]. 

 ANN models are mainly used for classification problems as e.g. face recognition. Only 

a few researches deal with the application of ANN models to the regression problem in robot 

calibration. Angelidis and Vosniakos [8] used three ANNs to estimate the three components 

of the relative position error vector ep on a circular path. As the ANN model is trained for  

a specific task, it is not applicable to improve the positional accuracy T in a general manner. 

Nguyen et al. [9] used an ANN model to relate the joint angle vector θ to the position error 

vector ep of an IR. They used the first three joint angles θ1, θ2 and θ3 of a six axes IR as input 

parameters to capture the non-geometric error sources after geometric calibration. Recently, 
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Nguyen et al. [6] adopted this method and implemented joint stiffness parameters in  

the physics model of the IR. The ANN model is composed of six input and three output nodes 

corresponding to the six joint angles θ and the three error components after geometric and 

joint stiffness calibration, respectively. In both works they used a fixed and a priori defined 

ANN architecture regarding number of hidden layers M, number of neurons per hidden layer 

N, activation function and learning rate l. Aoyagi et al. [10] used a similar but inverted 

approach to compensate the remaining error after geometric calibration for a seven axes robot. 

The three-dimensional position data served as the input to calculate the joint angle 

compensation values Δθ. They did not consider the impact of the choice of the ANN 

architecture upon the resulting positional accuracy T. Zhu et al. [11] used a radial basis 

function (RBF) neural network with a Gauss function as the activation function. They used 

the three components of simulated position data as the input to calculate the position error 

vector ep. The simulated training data is free from noise and does only contain geometric error 

sources. In order to bypass the difficulty of choosing an appropriate learning rate l for ANN 

training, Cai et al. [12] and Yua et al. [13] proposed to use an extreme learning machine 

(ELM) algorithm with one hidden layer and a sum function as the a priori defined activation 

function. They obtained an appropriate number of nodes N in the hidden layer by a trial and 

error procedure. However, the conclusions are highly dependent on the system and training 

data investigated and therefore not directly applicable to other scopes. Le and Kang [14] 

proposed to use an invasive weed optimization algorithm instead of backpropagation to 

determine the weight matrices Wi and the biases bi. They as well did not consider the impact 

of the fixed and a priori chosen number of hidden layers M, number of neurons N and 

activation function upon the resulting positional accuracy T. 

The proposed models show promising results for pose error compensation of IR in terms 

of ANN. However, the ANN models are not investigated regarding model structure, activation 

function and training strategy, even though these factors can significantly impact the ANN 

model performance. In this paper, the hyperparameters of an ANN model are optimized 

algorithm-based in terms of a neural architecture search (NAS), in order to find the best 

suitable ANN architecture to predict the pose error vector e of IR [15]. These hyperparameters 

include the number of hidden layers M, number of neurons per hidden layer N, activation 

function, bias, batch size B, learning rate l and dropout probability d. Further, the dependency 

upon the number of training data, the scope of validity as well as the interpolation and 

extrapolation capabilities of the proposed ANN models are investigated. With the proposed 

method the downside of choosing an appropriate ANN architecture and training strategy in  

a trial and error procedure can be overcome. The heavy-duty IR Fanuc M-900iB/700 by  

the company Fanuc K.K., Oshino, Japan, serves as a demonstrator throughout the present 

research. 

2. ARTIFICIAL NEURAL NETWORK MODEL 

In order to achieve high accuracy, the ANN architecture should be chosen depending on 

the characteristics of the relation to be approximated. Due to the vast number of hyper-

parameters the ANN architecture is often chosen in a trial and error procedure and therefore 
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based on the experience of the user. To overcome this downside Elsken et al. [15] proposed 

the method NAS, which is separated in the following three steps: 

• definition of a hyperparameter search space, 

• a search strategy / hyperparameter optimization, as well as, 

• a performance estimation strategy. 

 The general and fixed ANN architecture throughout this paper is composed of six input 

nodes corresponding to six joint angles θi of the IR as well as three output nodes 

corresponding to the absolute position or orientation (error), respectively. By training two 

distinct ANN models, which output the position and orientation (error), respectively,  

the problem of computing a loss for different units can be bypassed. All layers are fully 

connected. Each hidden layer consists of a nonlinear activation function followed by  

a dropout module. In accordance with Akiba et al. [16], we denote a “study” as a hyper-

parameter optimization with a fixed search space as well as a “trial” as an ANN model with  

a fixed set of hyperparameters sampled from the search space. 

2.1. HYPERPARAMETER SEARCH SPACE 

 It is assumed that the user of the ANN is unexperienced regarding the ANN hyper-

parameters and their influence on the ANN performance. The lower and upper bounds of the 

numeric hyperparameters are weakly based on preliminary tests as well as related literature. 

The hyperparameter search space is summarized in Table 1. 

Table 1. Hyperparameter search space 

Hyperparameter Sampling distribution Bounds / parameter set 

Number of hidden layers M 0 [1, 21] 

Number of neurons per hidden layer N Uniformly [5, 100] 

Activation function - [“ReLU”, “ELU”] 

Bias - [“True”, “False”] 

Batch size B Uniformly [2, 20] 

Learning rate l Log-uniformly [10-5, 10-2] 

Dropout probability d Uniformly [0.0, 0.5] 

2.2. SEARCH STRATEGY / HYPERPARAMETER OPTIMIZATION 

 The search strategy should be computationally efficient with regard to the computing 

time required to find trials that minimize the score strial in a fixed hyperparameter search space. 

A possible implementation of NAS is based on a grid search method, which represents a full 

factorial investigation. With m hyperparameters and ni discretization points of each 

hyperparameter a total number of n = n1 ∙…∙ nm trials need to be performed. The more 

hyperparameters m and discretization points ni are chosen, the higher the confidence in 

finding an optimal set of hyperparameters. However, this search strategy becomes 
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computationally expensive with an increasing number of hyperparameters m and 

discretization points ni. Therefore, it is not advisable to use a grid search for finding an optimal 

set of hyperparameters [17]. Instead, we propose to use a model-based search strategy. 

Bergstra et al. [18] introduced an algorithm called tree-structured parzen estimator (TPE) for 

optimizing hyperparameters of ANN models. The TPE is a sequential model-based optimi-

zation (SMBO) approach. SMBO methods fit a regression model based on the history of past 

trials in order to estimate the performance of hyperparameters and to choose promising 

hyperparameters for the following trials. Sequential means that it iterates between evaluating 

a new trial and sampling a new set of hyperparameters from the regression model. Promising 

hyperparameters are selected by repetitively sampling hyperparameters from the search space 

and keeping the set of hyperparameters, which maximizes a history-dependent criterion called 

“Expected Improvement” [18]. 

 To further reduce the computational costs, it is common to stop the evaluation of unpro-

mising trials, which perform significantly worse regarding the same training iteration. Such 

methods are called pruning, which aim at the allocation of computational resources 

(budget G) to more promising trials. Jamieson and Talwalkar [19] proposed a bandit-based 

pruning method called Successive Halving (SHA). The SHA method has an additional 

hyperparameter nt, describing the number of trials to examine. With the SHA method a given 

budget G, e.g. number of total iterations, is allocated uniformly to a set of trials nt for  

a predefined number of iterations. It compares iteratively the performance of each trial and 

discards the worst half of the set of trials nt, until a single trial remains. It can be shown that 

using SHA is often significantly faster compared to a standard approach in identifying  

the best trials [19]. In practice, there is a trade-off between the available budget G and the set 

of trials nt. In a possible scenario the validation loss of a trial may stagnate for some iterations 

or decrease slowly compared to other trials, even though the final validation loss at the end 

of the iteration is lower. In such cases it would be beneficial to use a fixed budget G with  

a reduced set of trials nt. To overcome the difficulty of choosing a reasonable pair of budget G 

and set of trials nt, we propose to use the pruning method introduced by Li et al. [20].  

The so-called Hyperband Method starts multiple instances of SHA each with a different set 

of trials nt for a fixed budget G. 

2.3. PERFORMANCE ESTIMATION STRATEGY 

 In order to find an optimal set of hyperparameters, the trials are compared regarding  

a score strial describing the performance estimation. This is achieved by training the ANN 

model with a training dataset for a predefined number of epochs nE and evaluating a loss 

function for a validation set. Consider one ANN output to be op ϵ ℝ3x1 and one validation data 

point to be vp ϵ ℝ3x1. The loss function for one batch of the validation set is calculated by 

means of the mean square error (MSE) according to Eq. 2. 

MSE
V

  = 
1

3Q
∑ ∑ (o

i,p
 - vi,p)

2

3

i=1

Q

p=1

 (2) 
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 In Eq. 2 the parameter Q denotes the size of the validation set. The simplest method is 

to calculate the validation loss VMSE for a fixed validation set. However, to avoid overfitting 

and therefore achieve a higher generality of the trained ANN model with better performance 

on random and unknown input data, a cross validation (CV) is preferable. We use a five-fold 

CV, where the total training dataset is splitted randomly in five subsets of the same size. Four 

of the subsets are used to train and one to validate the ANN model. This process is repeated, 

in such way, that each subset is used once to validate the ANN model. The validation loss 
VMSE is calculated after each training epoch. For the score of a trial follows Eq. 3. In Eq. 3 

the index j denotes the considered number of CV and nE the total number of epochs. It is 

important to note that with Eq. 3 the mean minimum error of the validation dataset is used for 

ANN model selection. As the validation dataset is a subset of the training dataset, overfitting 

of the remaining and unknown test dataset can be avoided. Fig. 2 shows the proposed overall 

hyperparameter optimization scheme. 

s𝑡𝑟𝑖𝑎𝑙  = 
1

5
∑ min({ MSEj,1

V

5

j=1

,…, MSEj,nE

V }) (3) 

  

Fig. 2. Schematic overview of the hyperparameter optimization and performance evaluation process 

2.4. IMPLEMENTATION 

 The ANN model is realized using Python 3.8 and the open source library PyTorch 1.6.0. 

NAS is implemented by using the open source library Optuna, which offers different efficient 

search strategies including TPE and recent pruning mechanisms including Hyperband. It 

supports distributed computations and uses a powerful define-by-run API (application 

programming interface) to describe the search space [16].  

3. DATA ACQUISITION AND PREPARATION 

A cuboid with a height of lh = 300 mm, a width of lw = 600 mm and a length  

of ll = 600 mm is defined as the relevant workspace. The workspace is equally divided with 

zh = 7, zw = 7 and zl = 9 positions in the respective directions. At each position zo = 5 different 
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orientations are defined, resulting in a total number of z = 2,205 measurement poses.  

The position and orientation of the IR end-effector are measured by the lasertracker 

Leica AT 960 of the company Hexagon AB, Stockholm, Sweden, with the 6D Leica T-Mac 

sensor. The measurement setup is illustrated in Fig. 3.  

 

Fig. 3. Measurement setup for data acquisition 

An analytical inverse kinematic algorithm is used to calculate the corresponding joint 

angle vector θ. The measurements are fully automated, resulting in a measurement time  

of tm = 120 min, and are hence reasonable for industrial purposes. Each measured pose is 

denoted by a matrix TmW

S , meaning the transformation from the world frame {W} to the sensor 

frame {S}. The transformation between the world and the base frame TmW

0  as well as between 

the hand and the sensor frame Tm6

S  are identified using the closed-form solution given by Wu 

and Ren [21]. As only the base and the hand frame are fixed to the IR structure, the ANN 

should be trained with the transformed data according to Eq. 4. 

Tm0

6  = ( TW
0 )

-1
 ⋅ TmW

S  ⋅ ( T6
S )

-1
= (

Rm p
m

0 1
) (4) 

 The position data pm as well as the Euler angles calculated from the rotation matrix Rm 

are extracted for each pose resulting in the dataset D1. Thus, dataset D1 represents the forward 

kinematics including all error sources. 

Dataset D2 is defined as the errors between the measured and calculated poses extracted 

from Eq. 4 and Eq. 5, respectively.  

Tc0

6 = ∏ Ti-1
i

6

i=1

 (5) 

 Given the nominal Denavit Hartenberg (DH) parameters joint angle θi, x-translation ai, 

z-translation di and x-rotation αi as well as the Hayati-parameter βi Eq. 5 can be solved using 

the transformation convention according to Eq. 6. 
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Ti-1
i  = Rot(z,θi) ⋅ Trans(x,ai) ⋅ Trans(z,di) ⋅ Rot(x,αi) ⋅ Rot(y,β

i
) (6) 

The error between the measured Tm0

6  and calculated pose Tc0

6  follows according to Eq. 7. 

err{ Tm0

6 , Tc0

6 } = ((p
m

 - p
c
)
T
, vec(RmRc

-1)
T
)
T

 (7) 

 The operator vec(A), A ϵ ℝ3x3 is expressed as vec(A) = 0.5(A32-A23, A13-A31, A21-A12)T
. 

Dataset D2 represents all error sources without capturing the forward kinematics. 

A kinematic calibration procedure for a heavy-duty IR with parallelogram-mechanism 

is performed according to Jingfu et al. [4]. Therefore, the working space is subdivided into 

eight equally distributed cuboids. From each cuboid ten random poses – resulting in a total 

number of zc = 80 poses – are used for the kinematic calibration. The remaining errors 

according to Eq. 7 between the measured Tm0

6  and calculated poses ( Tc0

6 )calibrated using  

the calibrated model parameters form dataset D3. Thus, dataset D3 represents the remaining 

error after geometric calibration. Table 2 summarizes the definitions of the three datasets. 

Table 2. Investigated datasets 

Dataset Definition Explanation 

D1 Tm0

6  Captures the forward kinematics including all error sources 

D2 err{ Tm0

6 , Tc0

6 } Captures all error sources 

D3 err{ Tm0

6 , ( Tc0

6 )
calibrated

} Captures the remaining error sources after geometric calibration 

In order to speed up convergence of ANN model training, it is advisable to normalize 

the data of the input and output layer to the range of the activation function. In this work  

the input and output data of each neuron are normalized to a mean value of zero and  

a standard deviation of one. 

4. ANN TRAINING AND PERFORMANCE EVALUATION 

As the optimal hyperparameter set can differ between the three datasets D1, D2 and D3, 

it is reasonable to perform a hyperparameter optimization for each dataset, individually.  

The datasets are randomly splitted in a train and a test set with a ratio of 90% to 10%. In each 

training run a training loss TMSE is evaluated for each output neuron according to Eq. 8, 

where tp ϵ ℝ3x1 is a training data point, op ϵ ℝ3x1 the ANN output and B the batch size. 

MSE
T

i
  = 

1

B
∑ (oi,p - ti,p)

2

B

p=1

,  i = 1, 2, 3 (8) 
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The adaptive moment estimation optimizer (ADAM) is used to update the weights in 

each run based on the training loss TMSE. In order to stabilize the ANN training and to reach 

convergence, a learning rate scheduler is used to reduce the learning rate l by 25%, if  

the validation loss VMSE does not improve for nE = 30 epochs in a row. The total number  

of epochs is set to nE = 1,000. For each study the ten best trials regarding the validation 

loss VMSE after the training phase are stored. Considering the ANN complexity and the res-

pecttive computation time, the best ANN model is chosen based on the lowest number  

of degrees of freedom (total number of weights and biases). The ANN model with  

the identified optimal hyperparameter set is retrained for nE = 3,000 epochs. The weights and 

biases at the epoch, where the ANN model reaches the lowest validation loss VMSE on  

the test set, are stored. Table 3 shows the hyperparameter sets of the optimized ANN models 

A1, A2 and A3, trained on the position data of dataset D1, D2 as well as D3, respectively. 

Table 3. Hyperparameter sets of optimized ANN models 

ANN model A1 A2 A3 

Dataset D1 D2 D3 

Number of hidden layers M 2 3 2 

Number of neurons per hidden layer N 92 76 83 

Activation function ELU ELU ELU 

Bias true true true 

Batch size B 6 18 20 

Learning rate l 2.0 × 10-4 036.6 × 10-4 032.5 ×10-4 

Dropout probability d 0.1×10-4 132.6 × 10-4 512.9 ×10-4 

Degrees of freedom 18.035 18.319 14.777 

 

Fig. 4. Simulation results of the ANN models 
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The ANN model performance is evaluated with the test data. The simulation results  

of the three ANN models as well as the uncalibrated and calibrated kinematic model are 

shown in Fig. 4. It can be seen, that the ANN models A2 and A3 trained on the position error 

vector ep outperform the calibrated kinematic model with a mean positional accuracy 

of T̅ < 0.04 mm over T̅ = 0.16 mm. The performance increase regarding the mean positional 

accuracy of the ANN model A3 compared to A2 is ΔT̅ < 0.005 mm, leading to the conclusion 

that with a well-trained ANN model a geometric calibration becomes redundant. However, 

the mean positional accuracy of the ANN model A1, which captures the IR-kinematics 

including all error sources, is T̅ = 0.33 mm. Therefore, it is concluded that a combination  

of a nominal kinematic model and an ANN model trained on the uncalibrated error vector ep 

leads to the best possible mean positional accuracy T̅ of IR.  

A hyperparameter optimization is further performed with the orientation data of the 

three datasets D1, D2 and D3 leading to the ANN models A1O, A2O and A3O, respectively. 

Table 4 shows the performance of the ANN models in comparison to the uncalibrated and 

calibrated kinematic models. Similar to the results obtained with the position data, the ANN 

model A2O trained on the uncalibrated orientation error vector eO performs distinctly better 

regarding the absolute orientation accuracy O than the calibrated kinematic model. 

Table 4. Comparison of the simulated orientation accuracy 

ANN model 
Uncalibrated  

kinematic model 

Calibrated 

kinematic model 
A1O A2O A3O 

Mean value O̅ 09.54’ 0.60’ 02.66’ 0.22’ 0.24’ 

Standard deviation s(O) 00.35’ 0.21’ 02.34’ 0.10’ 0.12’ 

Maximum value Omax 10.48’ 1.24’ 21.77’ 0.59’ 0.80’ 

Minimum value Omin 08.74’ 0.06’ 00.17’ 0.01’ 0.04’ 

4.1. DEPENDENCY OF THE ANN PERFORMANCE UPON THE SIZE OF THE TRAINING DATASET 

 It is time-wise expensive to generate a large dataset to train, validate and test the ANN 

model. In order to investigate the influence of the size of the training dataset, the ANN model 

A2 is additionally trained with 3.125%, 6.25%, 12.5%, 25% and 50% of the total training 

dataset with ztrain = 1,985 points, respectively. The test dataset remained constant for all 

investigations.  

 

Fig. 5. Dependency of the ANN performance on the number of training data 
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Fig. 5 shows the mean positional accuracy T̅ depending on the number of training data. 

As expected, the mean positional accuracy T̅ becomes better with an increasing number  

of training data. However, with ztrain = 62 training data (3.125%) the mean positional accuracy 

calculated with the total test dataset is already T̅ = 0.09 mm and would therefore outperform 

the calibrated kinematic model. 

4.2. INTERPOLATION AND EXTRAPOLATION CAPABILITY OF THE ANN MODELS 

 In the previous investigations, the hyperparameter optimization as well as the perfor-

mance evaluation were conducted by using train and test data distributed in the whole 

considered workspace of the IR. Further, the dependency of the ANN performance upon  

the size of the considered workspace is investigated by subdividing the workspace into eight 

equally sized sub-workspaces. A hyperparameter optimization is performed with the training 

data of the cuboid Q1, see Fig. 6. The ANN models A2 and A2Q1 are compared regarding  

the test data of cuboid Q1 in Fig. 6a. The simulated mean positional accuracy is T̅ = 0.030 mm 

and T̅ = 0.032 mm for the ANN models A2 and A2Q1, respectively. As a reduction in the scope 

of validity of the ANN model does not improve the mean positional accuracy T̅, it can be 

assumed that the ANN models are capable to capture the error sources in a general manner. 

Further, the extrapolation capability of the ANN model A2Q1 is tested by using the total test 

dataset distributed over the whole considered workspace. The results are shown in Fig. 6b. 

 

 

Fig. 6. Performance of the ANN models A2 and A2Q1 evaluated as a) an interpolation problem within 

the cuboid Q1, b) an extrapolation problem outside the cuboid Q1 
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quite accurately, e.g. for δ < 0.1 the simulated mean positional accuracy is T̅ = 0.16 mm. 

Especially with an increasing data density δ, the positional accuracy T is rapidly improving. 

The extrapolation capability of the ANN model A2Q1 supports the conclusion that  

a well-suited ANN model can capture the relation between the joint angle vector of an IR θ 

and the position error vector ep in a general manner. It should, however, be emphasized, that 

a large variation of the input parameters improves the generality of the model. 

5. SUMMARY 

The proposed method deals with an algorithm-based choice of hyperparameters  

of ANN models such as number of hidden layers, number of neurons, activation function, 

batch size, learning rate and dropout probability, in order to improve the positional accuracy 

of IR. Only a few researches deal with ANN models in robot calibration and none of them 

explicitly uses a neural architecture search to improve the positional accuracy, although  

a bad choice of hyperparameters can significantly affect the ANN performance. Within this 

paper it could be demonstrated that with a suitable choice of hyperparameters the simulated 

positional accuracy can be improved to T < 0.05 mm by means of an ANN model.  

The results show that a classical geometric calibration of the IR-kinematic model becomes 

redundant, if a suitable ANN model is used to predict the pose error. 
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