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TOWARDS THE 5th INDUSTRIAL REVOLUTION: A LITERATURE REVIEW 

AND A FRAMEWORK FOR PROCESS OPTIMIZATION BASED ON BIG DATA 

ANALYTICS AND SEMANTICS 

The digitalization of modern manufacturing systems has resulted to increasing data generation, also known as 

Big Data. Although there are several technologies and techniques under the term Data Analytics for gathering 

such data, their interpretation to information, and ultimately to knowledge remains in its infancy. Consequently, 

albeit engineers currently can monitor the factory level, optimization is cut off of the data acquisition, and is 

based on data related methodologies. The focus should be pivoted on designing and developing suitable 

frameworks for integrating Big Data to process optimization based on the context of information gathered from 

the shopfloor. This paper aims to investigate the opportunities and the gaps as well as the challenges arising in 

the current industrial landscape, towards the efficient utilization of Big Data, for process optimization based 

on the integration of semantics. To that end, a literature review is performed, and a data-based framework  

is presented. 

1. INTRODUCTION 

Manufacturing is one of the most important pillars of any modern economy. In Europe, 

almost 35 million people were employed in the manufacturing sector in 2020, accounting for 

15% of European Gross Domestic Product (GDP) [1]. Labour productivity in the manufac-

turing sector is expected to increase by nearly 10% by 2025 [2, 3]. Local economies have 

evolved into global and highly competitive players over the last few decades. Industries began 

to operate on an intercontinental scale, broadening the scope of their operations. Up until the 

1990s, the export of finished goods to foreign markets was the dominant theme in 

international trade, and it has gotten even more attention in the last decade. Furthermore, 

specific factors to each location, such as low-cost labour and highly skilled personnel, aided 

rapid globalization [4]. Furthermore, the advent of the Internet and the increasing 

computational power led to the creation of virtual entities [5], which transformed competition 

and collaboration practices [6]. 
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1.1. EVOLUTION OF MANUFACTURING PARADIGMS 

Since its birth two centuries ago, the manufacturing industry has gone through a number 

of paradigm shifts. The most prevalent manufacturing paradigms that have characterized 

significant periods of time are as follows: a) Craft Production, b) American Production, c) 

Mass Production, d) Lean Production, e) Mass Customization, and f) Global Manufacturing 

as illustrated in Fig. 1. 

 

Fig. 1. Manufacturing Paradigm Shifts and Drivers and differences between Production Paradigms [7] 

Over the last decade, the shift toward manufacturing digitalization has gotten a lot  

of attention. Unpredictable demand volatility, higher quality requirements, personalized and 

customized commodities, and the advent of smart supply chains are the main challenges  

of modern production systems [8]. Looking back at previous industrial revolutions, the first 

began at the end of the eighteenth century with the increased use of steam and water power, 

resulting in a transition from hand production methods to machines (i.e. mechanisation);  

the second began in the late nineteenth century, utilizing electrical energy and enabling mass 

production (i.e. intensive use of electrical power); and the third began in the late twentieth 

century, utilizing electrical energy and enabling mass production (i.e. intensive use  

of electrical power). Next, from the 1970s, the third made use of electrical and internet 

technology, as well as automated productions (i.e. digitalisation). We are currently in the 

fourth industrial revolution, known as Industry 4.0. We have arrived at a stage when there is 

a clear application-pull (industry demands) and technology-push (technical advancements) 

working together to propel this new revolution forward. On the one hand, there is a significant 

demand for change in general social, economic, and political spheres [9]. The digitalization 

of manufacturing introduces an ecosystem of different technologies in the fields of sensing, 

connectivity, data modelling and decision-making [10]. Furthermore, communication 

networks and frameworks such as Wireless Sensor Networks (WSN), Industrial Networks, 

and Web services are critical enablers of the continuous flow of information between  

systems [11]. 
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1.2. THE INDUSTRIAL, OPERATOR AND MACHINE TOOL TIMELINE EVOLUTION 

The First Industrial Revolution began in the 1780s with the development of mechanical 

power from water, steam, and fossil fuels. In the 1870s, manufacturers with assembly lines 

and mass production favoured electrical energy in the second such revolution. In the 1970s, 

the Third Industrial Revolution introduced the concept of automation to the manufacturing 

industries using electronics and information technologies (IT). The Internet of Things (IoT) 

and cloud computing are used in the fourth revolution or Industry 4.0 to provide a real-time 

interface between the virtual and physical worlds, also known as cyber-physical systems [12]. 

While it took hundreds of years for the first three industrial revolutions to be happen,  

the fourth industrial revolution was only coined in 2011. A key characteristic is the rise  

of digitalisation, which was boosted by technologies like Internet of Things (IoT), cognitive 

computing, and the combination of Big Data and Artificial Intelligence (AI) [13]. At the same 

time, while Industry 4.0, with its technological decentralization and interconnectivity, is still 

in full mode, Industry 5.0, with its full integration of the human touch in business and 

intelligent systems, will inevitably succeed it. It is expected that the combination of machines 

and humans working together will merge the increased accuracy and repeatability of full 

automation with the cognitive skills of the expert managers [14].  

The increasing integration of AI creates many challenges and opportunities for the 

workplaces of the future. Even though Industry 4.0 is still in its infancy, many industry 

pioneers and technology leaders are anticipating the Fifth Industrial Revolution or Industry 

5.0: autonomous manufacturing with human intelligence in and on the loop. To that end, 

Industry 5.0 combines the two main pillars of Industry 4.0, automation, and efficiency, with 

a personal human touch. People who work alongside robots, smart machines, and 

technologies are referred to as co-workers. The evolution of machine tools has been 

substantially affected by the evolution of industrialization. Industry 1.0 (mechanization, end 

of the 18th century), Industry 2.0 (mass production, beginning of the 20th century), Industry 

3.0 (automation and IT, beginning of the 1970s) and Industry 4.0 (digitalization based on 

cyber-physical structures, present time) are presented in Fig. 2 [15, 16]. Likewise,  

the evolution of machine tools is summarized in four stages as follows: Machine Tool 1.0 

(mechanically driven but manually operated, late 18th century), Machine Tool 2.0 

(electronically driven and numerically controlled, mid-20th century), Machine Tool 3.0 

(computer numerically controlled, late 20th century), and Machine Tool 4.0 (computer 

numerically controlled, late 20th century) (Cyber-Physical Machine Tool 4.0) [17].  

The phrase “Machine Tool 4.0” refers to a modern technical development of machine tools 

that has been fuelled by recent advances in Cyber-Physical Systems (CPS), the Internet  

of Things (IoT), and Cloud-based applications. In addition, the Operator 4.0 (O4.0) has 

emerged as a new term in the Industry 4.0 framework, tracing the history of generators 

alongside the first three industrial revolutions. According to [18], an O4.0 is “a smart and 

professional operator who performs not only robot cooperative work but also machine-

assisted work if and when necessary”. Furthermore, according to [19], the O4.0 is a hybrid 

agent designed as a symbiotic interaction between the person and the machine, with a focus 

on treating automation as a further development of the human's physical, sensory, and 

cognitive capacities. 
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Manufacturing systems transformed into digital ecosystems as the fourth industrial 

revolution emerges [13]. The IoT and Big Data play a significant role in this transformation. 

To that end, industrial companies have entered a new era known as “Big Data era” in which 

the volume, velocity, and variety of data they manage is rapidly increasing [20]. Big data is  

a term that refers to a large amount of data that is difficult to process using traditional database 

techniques. It can be structured or unstructured, and both types offer numerous advantages 

[20]. In intelligent manufacturing, industrial big data not only enable businesses to accurately 

perceive changes in the internal and external environments of a system, but also facilitate  

the integration of advanced scientific analysis and decision-making methodologies, in  

an attempt to improve the production process, reduce costs, and increase operational 

efficiency. New business models, such as mass customization and precision marketing are 

emerging because of massive data, empowering social development, and economic growth 

[21–24]. As a result, big industrial data is being viewed as a means of driving intelligent 

manufacturing towards Industry 5.0. Therefore, big data analytics (BDA) has greatly 

improved with the advancement of AI to effectively mine both structured and unstructured 

industrial data in intelligent manufacturing [25]. The operation of manufacturing systems will 

be dramatically changed as BDA continues to develop [26].  

 

Fig. 2. Evolution of Industry, Machine and Operator [15, 16] 

Industry 4.0 reference architectures have emerged to standardize and advance such 

systems. Industry 4.0 architectures are use case specific, with some common ground in 

implementation methods. This has increased the demand for standards and guidelines in  

the field. The main drivers behind the development of Industry 4.0 reference architectures are 

interoperability, system development simplification, and ease of implementation. There are 

three major Industry 4.0 reference architectures: Reference Architecture Model Industrie 4.0 
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(RAMI 4.0), Industrial Internet Reference Architecture (IIRA), and Internet of Things – 

Architecture (IoT-A). These architectures contain general guidelines for Industry 4.0 

architecture design. The RAMI 4.0 model goes beyond pure Industry 4.0 system modelling 

by incorporating manufacturing and logistics aspects. The IIRA model, on the other hand, 

may support a higher level of detail in industrial applications. Finally, the IoT-A model places 

a strong emphasis on the information technology used in an Industry 4.0 application [27].  

The RAMI 4.0 model was used to model the current set of tools because it is focused on 

product development and production scenarios within the context of an Industry 4.0 

enterprise. RAMI 4.0 is the result of an effort led by industrial stakeholders to support  

the global trend of Internet of Things (IoT) research and adoption. It includes a reference 

architecture for IoT systems that was developed in collaboration with the various 

organizations involved. It is framed in three dimensions and reflects the fundamental features 

of the globally accepted Smart Grid Architecture Model [28]. The RAMI 4.0 three-

dimensional model is made up of the hierarchy levels axis, the life cycle and value stream 

axis, and the various layers that form the horizontal axis. Towards addressing  

the abovementioned challenges, this paper presents a literature review and a framework for 

process optimization based on Big Data Analytics and Semantics towards the 5th Industrial 

Revolution (Industry 5.0). 

The remainder of the paper is structured as follows. In Section 2, a literature review is 

presented, in order to highlight the milestones achieved through the years in each industrial 

revolution, as well as the key improvements identified in manufacturing systems. Further to 

that, an investigation of the most pertinent research works, in the field of big data and 

semantics is performed, targeting at the identification of the literature gaps and the key 

technological aspects that will lead to the fifth industrial revolution. Then in Section 3,  

the focus is concentrated on the integration of semantics in Big Data Analytics, which by 

extension will lead to more efficient data interpretation in the manufacturing domain. 

Afterwards, in Section 4, the opportunities emerging from the integration of Artificial 

Intelligence in Big Data Analytics are examined. Then, in Section 5, based on the previous 

paragraphs, a conceptual framework is presented. In Section 6, a short discussion upon  

the key implementation steps is presented. Finally, Section 7 summarizes the paper and future 

research direction are discussed. 

2. LITERATURE REVIEW 

In the following paragraphs, a detailed literature review and discussion is presented. 

More specifically, the key aspects, and the cornerstone technologies that have already affected 

and will continue to facilitate the ongoing transformation of the modern manufacturing and 

production landscape are analysed. More specifically, in Section 2.1 special emphasis is given 

in Big Data Analytics in parallel with the evolution of AI technologies and techniques. Then 

in Section 2.2 the light is shed on the key characteristics of modern manufacturing and 

production systems, which are required for the transition to the next industrial revolution, also 

known as Industry 5.0. 
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2.1. BIG DATA STATISTICS AND DEVELOPMENT 

Data generated by sensors embedded in machine tools, cloud-based solutions, and 

business management have already reached a total volume of more than 1000 Exabytes 

annually in modern industries. According to IDC, data has reached 40 trillion gigabytes in 

2020. In 2010, the total amount of big data was 1.2 zettabytes. However, according to  

the same report, data doubled every two years until 2020 [29]. Additionally, according to  

an IBM study, the 90% of data was created during 2015 and 2017 [30]. The exponential 

growth of big data appears unstoppable. The amount of data available on the internet is 

enormous, and new data is being added every second. Online, 2.5 quintillion bytes of data are 

generated every day. According to Physics.org, downloading all the data available on the 

internet would take around 181 million years. The increase in data is unsurprising, given that 

in 2018, internet users spent 2.8 million years online. Search engines, e-commerce, and social 

media have all played a role in the global population's high level of internet usage.  

Furthermore, advanced analytics can help manufacturers decrease process defects and 

save time and money. Manufacturers have been able to drastically enhance product quality 

and yield (the amount of output per unit of input) by introducing lean and Six Sigma programs 

in their manufacturing processes over the last 20 years or more. Many multinational 

manufacturers across a wide range of industries now have access to real-time shop-floor data 

as well as the ability to do complex statistical analyses. They are combining and analysing 

previously separate data sets in order to uncover crucial insights. Although the big data era is 

still in its early stages, advanced analytics is based on years of mathematical research and 

scientific application. It can be a crucial tool for achieving yield gains, especially in industrial 

environments with high process complexity, variability, and capacity constraints.  

 

 

Fig. 3. Big data market size revenue forecast worldwide from 2011 to 2027 (in Billion US Dollars) [32] 

Companies that successfully develop their quantitative assessment capabilities can set 

themselves apart from their competition. More specifically, IBM reported that 53 percent  

of the industrial manufacturers report that the use of information (including big data) and 

analytics is creating a competitive advantage for their organizations, compared with 63 
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percent of cross-industry respondents (survey of 1,144 business and IT professionals in 95 

countries, including 124 respondents from the industrial manufacturing industry, or about 11 

percent of the global respondent pool). In the industrial manufacturing industries, the 

percentage of respondents reporting a competitive advantage rose from 33 percent in 2010 to 

53 percent in 2012, a 61 percent jump in just two years [31]. 

The Big Data Market Share Big Data Market Share in Billion US Dollars is presented 

in the following chart as presented in Fig. 3. 

The evolution of AI [33], which can be divided into three generations as shown in  

Fig. 4, has enabled the development of big data analytics. 

 

Fig. 4. The development of big data analytics [33] 

2.2. INFORMATION TECHNOLOGY AS THE BASIS FOR TRANSFORMATION INTO A DIGITAL SOCIETY 

AND INDUSTRY 5.0 

Current and future industrial and production systems must include interoperability, 

virtualization, decentralization, real-time capability, and modularity. According to the Boston 

Consulting Group, these traits are founded on nine pillars as follows [34]:  

 Multi-Agent Systems (MAS)  

o Autonomous Robots 

o Artificial Intelligence 
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 System Integration 

 Big Data and Analytics 

 Simulation 

 Cyber Security 

 Cloud Computing 

 Additive Manufacturing 

 Augmented Reality  

 Internet of Things (IoT) 

The Smart Factory is a sophisticated system that integrates the main pillar technologies 

of Industry 4.0 (e.g., autonomous robots, IoT, Big data, Cloud Computing, and simulation). 

The Smart Factory is based on the idea that traditional centrally managed manufacturing 

processes will be replaced by decentralized control, in which intelligent machines, robots, 

tools, and intelligent workpieces continuously communicate and collaborate with one another. 

Smart Factories are more competitive because they are self-organizing, self-optimizing, and 

self-organizing. Factories can self-optimize their own performance, self-adapting to new 

situations and conditions [15]. 

German industry invested 40 billion euros per year in Industry 4.0 initiatives in 2020. 

Furthermore, Germany, Switzerland, and Austria (GSA) are investing heavily in digitalization 

efforts that will enable industrial sectors to capitalize on the opportunities provided by 

Industry 4.0 technologies. The GSA region's IoT market is worth approximately 36 billion 

euros. Germany, as the region's largest economy, accounts for 24 billion euros. The Swiss 

market is worth 7.6 billion euros, while total IoT spending in Austria is currently at 4.2 billion 

euros. Germany now has 7.6 robots for every thousand industrial workers, which is 

significantly higher than the European average of 2.7. Additionally, 54 percent of German 

companies do not use any technology to collect data with the goal of improving production 

processes.  

German firms have also been accused of failing to fully realize the potential  

of smart sensors and other infrastructure equipment that underpins Industry 4.0. Next, 

Switzerland is currently the most technologically advanced GSA country. The Swiss 

government, on the other hand, has been less active in efforts to promote Industry 4.0 and has 

invested less in digitizing its own services. As a result, electronic interaction between 

businesses and the public sector in Switzerland is relatively limited. While the government 

provides funding for Industry 4.0 technologies, it has yet to bring together executives from 

the public and private sectors to discuss appropriate policy responses. Finally, in Austria, the 

Ministry of Transport, Innovation, and Technology has encouraged business digitalization. 

The government also has programs to help small and medium-sized businesses (SMEs) [35]. 

Currently, two visions for Industry 5.0 are emerging. The first is “human-robot 

collaboration”. Robots and humans will collaborate whenever and wherever possible in this 

vision. Humans will concentrate on tasks that require creativity, while robots will handle  

the rest. The second vision for Industry 5.0 is Bioeconomy [36]. Table 1 compares the visions 

of Industry 4.0 and Industry 5.0. It is stressed out that Industry 5.0 could refer to both human-

robot collaboration and the bioeconomy as well. The application of all the technologies listed 

in Fig. 5 will help society achieve Industry 5.0 [36]. 
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Table 1. A Comparison of Industry 4.0 and Industry 5.0 Visions [36] 

 Industry 4.0 Industry 5.0 (Vision 1) Industry 5.0 (Vision 2) 

Keyword Smart Manufacturing Human-Robot Co-working Bioeconomy 

Motivation Mass Production Smart Society Sustainability 

Involved 

Technologies 

Internet of Things (IoT) 

Cloud Computing Big Data 

Robotics and Artificial 

Intelligence (AI)  

Human-Robot Collaboration 

Renewable Resources 

Sustainable Agricultural 

Production Bionics Renewable 

Resources 

Involved 

Research Areas 

Organizational Research 

Process Improvement and 

Innovation Business 

Administration 

Smart Environments 

Organizational Research 

Process Improvement and 

Innovation Business 

Administration  

Agriculture Biology Waste 

Prevention Process 

Improvement and Innovation 

Business Administration 

Economy  

Power Source 

Electrical power Fossil-based 

fuels Renewable power 

sources 

Electrical power Renewable 

power sources  

Electrical power Renewable 

power sources  

 

Fig. 5. The convergence of science and technology in Industry 5.0 [36] 

New types of distributed Computers & Distributed Robotics 

These technologies serve as the hardware foundation for constructing various types  

of intelligent self-organizing systems. Distributed computer networks enable multi-threading 

and asynchronous computations as well as the expansion of computing resources. 

Internet of things and people 

The Internet of Things (IoT), which includes the industrial Internet of Things (IIoT), is 

a rapidly evolving technology that complements the traditional and well-known Internet and 

serves as the foundation for automation in Industry 4.0 and Industry 5.0. The Internet  

of Things (IoT) is a global infrastructure for the information society that enables  

the interconnection (physical and virtual) of things using existing and emerging information 

and communication technologies. 
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In 2013, Cisco coined the phrase “Internet of Everything”. It is thought to be broader 

than the Internet of Things. The Internet of Everything (IoE) is defined by Cisco as the 

network connection of people, data, processes, and things [37]. Smart sensors, group robots 

exchanging wireless signals and working as a single system, RFID tags and so on, are among 

the promising technologies needed to implement IoT [38]. When Big Data is applied to these 

technologies, unique solutions emerge. The most important components of Industry 5.0 are 

likely to be Big Data, IoT, and IoE. During production, all information collected in physical 

space in the form of Big Data is sent to cyberspace. The difference between Industry 4.0 and 

5.0 is the scale at which the latest digital technologies are implemented. 

Multi-agent systems and technologies 

Multi-agent technologies enable the solution of problems that are difficult to solve using 

traditional mathematical methods. The introduction of Internet of Things (IoT) technologies 

assume that everything will be equipped with a small sensor that allows data to be transferred 

from it to the Internet. Data transfer to the Internet will enable the creation of virtual models 

of real-world objects, such as factories, whose operations can be monitored in real-time. To 

communicate between the virtual and real worlds, intelligent agents are used. A multi-agent 

system is defined as a network of related agents that solve specific problems in a shared 

environment and interact with one another to achieve the system objectives. In a multiagent 

system, communication between agents can be accomplished in a variety of ways [39]. 

Ontology and knowledge bases 
There is no universally accepted definition of ontology. Ontology is the formal 

presentation of knowledge based on conceptualization [40]. Ontology is a set of terms 

organized into a taxonomy, their definitions, and attributes, as well as the axioms and 

inference rules that go with them [41]. The ontological approach is successfully applied by 

multi-agent systems. Ontologies are used to store all an agent's knowledge. They form  

a knowledge base that includes concepts, subject knowledge, and problem-solving 

techniques. All of this allows agents to share the information they've gathered and aids in 

decision-making. At the same time, three qualitatively different methods for integrating  

the ontology approach can be chosen: 

 knowledge and ontologies formed by agents are only accessible to the agents 

 knowledge and ontologies formed by agents are combined and stored by one of the 

agents 

 some knowledge and ontologies are stored centrally, while others are distributed 

among agents 

Theory of complex adaptive systems 

Aggregation (a hierarchy of elements in which lower-level elements form upper-level 

elements – aggregates), non-linarites, resource flows, and diversity (lack of equilibrium 

status) are all characteristics of a comprehensive adaptive system. The theory of complex 

adaptive systems is the foundation of multi-agent systems. It provides a link between 

multiagent and nonlinear systems [36] 

Emergent intelligence 

Emergent intelligence, i.e. intellectual resonance, swarm intelligence, is the manifesta-

tion of unexpected properties in a system that lacks any of its individual elements. A key 

feature is the dynamic and unpredictability of the decision-making process. Multi-agent 
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technologies that implement the interaction of simple elements in their self-organization to 

solve specific problems are frequently associated with emergent intelligence [42]. 

Evergetics 

Evergetics is an interdisciplinary science that should draw from the humanities and 

social sciences, as well as control theory, computer science, and other fields. The fact that  

a person in evergetics is a subject with ways and resources for resolving conflicts and making 

decisions contributes to its multidisciplinary nature [43] 

3. BIG DATA ANALYTICS BASED ON SEMANTICS 

The amount of data has grown at an exponential rate in recent years. It is reported that 

over 16 zettabytes of useful data were produced up to 2020. As a result, the natural expansion 

of these datasets within organizations necessitates new requirements in terms of processing 

and exploitation methods, techniques, and tools. The Big Data concept has emerged because 

of this increase in data. Initially, it was used to describe these massive sets, which typically 

consist of large amounts of unstructured data that must be stored, processed, and analyzed at 

high speeds. To that end, the main challenges identified are acquiring, cleaning, integrating, 

exploiting, analyzing, and visualizing large amounts of data from widely dispersed data 

sources [44]. 

The data itself is confronted by Big Data issues, posing challenges at every stage of the 

value chain, from data collection to visualization and application. As a result, a semantic 

context is required to assist scientists in gaining access to data, as well as using and 

interpreting the results. Semantic technologies are used to resolve inconsistencies, evaluate, 

and discover new information from an existing knowledge base. In the following subsections, 

discuss the various approaches to combining Semantic with large data in order to connect 

these data to the real world. 

3.1. FROM DATA TO WISDOM: CREATING & MANAGING KNOWLEDGE 

The process begins with raw data, which includes signals, symbols, and values that have 

been collected and observed. The following step is to attempt to convert the raw data into 

useful information. They can make better decisions with the knowledge they gain from this 

information (Wisdom). The Data-Information-Knowledge-Wisdom (DIKW) hierarchy or 

pyramid, connects data, information, knowledge, and wisdom in four layers as illustrated in 

Fig. 6. The foundation of the pyramid is data, followed by information, knowledge, and 

wisdom at the top. The characteristics of each data are summarized as follows [45]: 

 Data: Are observed, Collected as Facts, Signals and Symbols. 

 Information: Meaningful, purposeful, and relevant data. It will answer interrogative 

questions. 

 Knowledge: Provides framed, contextual information, expert insights, and even 

grounded intuition. 

 Wisdom: Adds value, which requires the mental function that we call judgment. 
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Fig. 6. The data–information–knowledge–wisdom (DIKW) hierarchy as a pyramid to manage knowledge [39] 

3.2. TOWARDS WISDOM MANUFACTURING  

The Future Internet (FI) is becoming a strategic focus of research in Europe and other 

parts of the world. According to the European Union's Framework Programme (FP), the future 

networked society will be supported by four pillars: a) Internet by and for People (IbfP),  

b) Internet of Contents and Knowledge (IoCK), c) Internet of Things (IoT), and d) Internet  

of Services (IoS). Without a doubt, the FI will have a significant impact on Computer 

Integrated Manufacturing (CIM) and Enterprise Integration (EI). In fact, the so-called wisdom 

manufacturing (WM) [46] has been proposed as an analogy for future networked 

manufacturing, as shown in Fig. 7. 

 

Fig. 7. Wisdom Manufacturing (WM) overview [40] 
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Moving on, Oxford dictionaries [47] defines wisdom as ‘the quality of having 

experience, knowledge and good judgement’. Five subcomponents of wisdom most 

commonly cited in order from high to low are listed as follows:  

 decision making/knowledge, 

 prosocial attitudes, 

 self-reflection, 

 acknowledgment of uncertainty, 

 emotional homeostasis. 

 

Fig. 8. M turing models corresponding to the DIKW and semiotic levels [48] 

Moreover, Fig. 8 presents the “DIKW Pyramid”, the “Knowledge Hierarchy”,  

the “Information Hierarchy”, and the “Knowledge Pyramid”, and refers to a class of models 

for representing structural and/or functional relationships between data, information, 

knowledge, and wisdom, where information is defined in terms of data, knowledge in terms  

of information, and wisdom in terms of knowledge [48]. 

3.3. SEMANTICS FOR BIG DATA ACQUISITION 

The semantic aspect can be added to the acquisition step, which represents the process 

of gathering, filtering, and cleaning data before storing it. Furthermore, data analysis can be 

triggered to capture relevant and valuable information. As a result, effective analytical 

algorithms are required to comprehend the data source, continuously process the data, and 

reduce the data prior to storage [49]. The authors in [50] proposed a scheme for retrieving and 

storing large amounts of Resource Description Framework (RDF) data in Hadoop Distributed 

File System (HDFS). The system parses RDF data and saves it to a file. The authors then 

propose an algorithm for determining the best query plan for executing multiple queries on 

datasets of various sizes. As a result, this system is scalable and efficient enough to handle 
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billions of RDF triples with ease. The authors in [51] include three layers of MDA (Model 

Driven Architectures) in their paper: the CIM (computational dependent model), the PIM 

(platform independent model), and the PSM (platform specific model) (platform specific 

model). These layers are then converted into a Big Data architecture, which entails identifying 

a set of predefined parameters. The PIM and PSM are then mapped to these models 

(depending on the accurate deployment constraint). Finally, the TOREADOR platform can 

be used to run them. As presented in Fig. 9, the system optimizes reuse, reduces development 

costs, and provides a programming interface to interact with distributed memory (using  

the spark framework, which implements a fault-tolerant distribution in a cluster). 

 

Fig. 9. Model Driven Approach [51] 

3.4. SEMANTICS FOR BIG DATA INTEGRATION 

It relates with the semantic dimension being introduced after the data acquisition and 

cleansing step is done in the integration phase. It has to do with the clean integration and 

aggregation of unstructured Big Data, which lacks convincing information. These data 

integration techniques aim to combine data from various sources and provide users with  

a unified view of the data being analysed. The authors in [52] propose a method for dealing 

with large amounts of semantic data. It has four layers: the metadata layer, which describes 

tourism data such as geographic location and relationships between resources using different 

metadata rules such as MARC, DC, and GILS. The ontology layer ensures semantic 

interoperability across a variety of metadata types. To this end, two options are available: the 

first is to use the OWL knowledge representation language to integrate the attributes and 

concepts of the various metadata rules into an ontology. The second method involves 

converting the metadata format to RDF using an ontological language. The data is published 

using the Linked Data principle by the Linked Data layer. It creates semantic interoperability 

between data by providing a unified access mechanism for various data formats. The data 

application layer enables Interactive research to provide both traditional keyword-based 
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retrieval and a more user-friendly interface. Next, using semantic integration techniques,  

a system for combining different sources of air traffic management data is presented. It 

converts data from various sources into a standardized semantic illustration in a triples store 

using ontology-based sherlock data. Another approach uses the Semantic Sensor Network 

ontology to transform sensor data into semantic data [53]. In this study, the authors proposed 

several methods for storing and processing semantic data. The semantic data obtained is 

analysed to uncover useful information. Furthermore, Big Data technologies are used to 

transform raw sensor data into semantic data and achieve the required scalability in intensive 

data scenarios. The application of the SSN (Semantic Sensor Network) ontology to sensor 

data adds semantic compatibility. The primary issue is the increasing complexity of sensors 

used in new systems. 

Large data sets, by definition, contain a lot of unstructured information. As a result, 

large-scale processing of such semi-structured or unstructured datasets poses a significant 

challenge [54]. The authors in [55] propose an empirical investigation of character-

convolutive networks for text classification. ConVnets were created by the authors using  

an English thesaurus obtained from WordNet, in which each synonym for a sentence or  

a word is classified by semantic proximity in the most widely understood sense. Next,  

the authors in [50] propose a method for selecting an appropriate model for analysing Big 

Data using semantic technologies. In order to aid inference for semi-automated model 

selection, an analytics ontology is created using the Ontology Web Language (OWL). In the 

analysis phase, a hierarchical workflow for predictive analytics is created. The first step in 

the workflow is to choose a practical model based on the dataset properties. In the second 

step, the data is prepared for analysis. The third step is to fine-tune the models that will be 

used. A set of predictor variables is suggested for each step. Next, an ontology-based 

workflow generation approach is proposed in [56] to automatically generate the workflow 

depicted in Fig. 10. 

 

Fig. 10. Process for Big Data Analytics [51] 

The Cross-Industry Standard Process for Data Mining (CRISPDM) method is 

computerized using the Automatic Service Composition (ASC) method. Two different 

workflow approaches are developed based on an ontology designed for CRISP-DM. To begin, 
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a rule-based approach to inferences is proposed. It uses Semantic Web Rule Language 

(SWRL) rules to find abstract services based on the properties of datasets and the require-

ments of the users. Second, two use case scenarios are used to demonstrate the feasibility  

of a query-based approach. As a result, this approach can be used to generate more 

application-specific abstract workflows. Moving on, the authors in [58] propose a novel 

framework for combining semantic methods and Big Data processing in Big Data security 

analysis. To begin, the framework gathers and preprocesses a large amount of data from 

various sources. Then, it provides large spaces to store the collected data. The data is then 

processed using a variety of tools and libraries. Finally, the framework describes three types 

of analysis: data analysis (data mining, machine learning, and statistic analysis methods), and 

statistical analysis methods. Human Computer Interaction (HCI) analysis, which employs 

semantic analysis and data analysis, and semantic analysis, which is based on the use  

of ontology. This framework improves security analysis techniques such as real-time Big 

Data, computational performance, batch processing, data association, and data mining in 

order to meet data volume performance requirements. In order to address these gaps,  

the authors in [45], propose a method that employs semantic memory to aid in the semantic 

classification of data involving the value and type characteristics as presented in Fig. 11. 

 

Fig. 11. Semantic Memory for Big Data Analysis Architecture [45] 

3.5. AUTOMATED PREDICTIVE BIG DATA ANALYTICS USING ONTOLOGY BASED SEMANTICS 

Predictive big data analytics is based on decades of statistical and machine learning 

advancements. Several frameworks are being developed to support large-scale data analytics. 

Drill, Hadoop, Mahout, Storm, Spark, and SCALATION are among the members of the 

group. These frameworks aim to speed up computation and support a larger volume of data 

by utilizing databases and distributed file systems, as well as parallel and distributed 

processing. Many complex steps are involved in predictive big data analytics, many of which 

necessitate a high level of expertise. The hierarchical workflow for the predictive analytics 

process to help manage the complexity is presented in Fig. 12 and depicts the top level of our 

hierarchical workflow. 



D. Mourtzis /Journal of Machine Engineering, 2021, Vol. 21, No.  , 5–39 21 

 

 

Fig. 12. Predictive Analytics Workflow [59] 

4. ARTIFICIAL INTELLIGENCE APPROACHES IN BIG DATA ANALYTICS 

In the following paragraphs, an analysis of AI technologies in Big Data analytics is 

performed. Ultimately, the purpose of this Section, is to identify the correlation between AI, 

Big Data analytics and most importantly Semantics, in an attempt to unify the information 

context of manufacturing processes, aiming to provide a framework for process optimization. 

By extension, the combination of AI technologies and techniques is already facilitating 

engineers to gain useful insights for various aspects of manufacturing and production systems, 

with the installation of suitable monitoring and sensing systems (e.g., Wireless Sensor 

Networks – WSN). However, in order to transform raw data into knowledge, and ultimately 

to wisdom, the combination of Ontologies with AI technologies will play a key role. 

4.1. APPLICATIONS OF DEEP LEARNING IN BIG DATA ANALYTICS 

The raw data in Big Data systems is becoming increasingly diverse and complex, 

consisting of un-categorized/unsupervised data along with a small amount of 

categorized/supervised data. Working with the diversity of data representations in a repository 

presents unique challenges for Big Data, which necessitates Big Data pre-processing  

of unstructured data in order to extract structured/ordered data for human and/or downstream 

consumption. Beyond the four Vs, Big Data Analytics faces a number of challenges. Some 

key problem areas include: data quality and validation, data cleansing, feature engineering, 

high-dimensionality and data reduction, data representations and distributed data sources, 

data sampling, scalability of algorithms, data visualization, parallel and distributed data 
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processing, real-time analysis and decision making, crowdsourcing and semantic input for 

improved data analysis, tracing and analyzing data provenance, data discovery and 

integration, parallel and distributed computing, exploratory data analysis and interpretation, 

integrating heterogenous data, and developing new models for massive data computation [60]. 

Deep Learning algorithms extract meaningful abstract representations of raw data using  

a hierarchical multi-level learning approach, in which more abstract and complex 

representations are learned at a higher level based on less abstract concepts and 

representations learned at lower levels of the learning hierarchy. While Deep Learning can be 

used to learn from labelled data, if there is sufficient amount of it, it is best suited for learning 

from large amounts of unlabelled/unsupervised data, making it ideal for extracting 

meaningful patterns and representations from Big Data [61]. Once Deep Learning has learned 

hierarchical data abstractions from unsupervised data, more traditional discriminative models 

can be trained with fewer supervised/labelled data points, where the labelled data is typically 

obtained through human/expert input. Deep Learning algorithms have been shown to perform 

better than shallow learning architectures at extracting non-local and global relationships and 

patterns in data [62]. Other useful characteristics of Deep Learning include: (1) relatively 

simple linear models can effectively work with knowledge derived from more complex and 

abstract data representations, (2) Increased automation of data representation extraction from 

unsupervised data allows it to be applied to a wide range of data types, including image, 

textural, audio, and so on, and (3) relational and semantic knowledge can be obtained at higher 

levels of abstraction and representation of the raw data. Deep Learning algorithms and 

architectures are better suited to address issues related to Volume and Variety of Big Data 

Analytics when considering each of the four Vs of Big Data characteristics, i.e., Volume, 

Variety, Velocity, and Veracity. Where algorithms with shallow learning hierarchies fail to 

explore and understand the higher complexities of data patterns, Deep Learning inherently 

exploits the availability of massive amounts of data, i.e. Volume in Big Data. Furthermore, 

because Deep Learning deals with data abstraction and representations, it is likely suited for 

analysing raw data presented in various formats and/or from various sources, i.e. Big Data 

variety, and may reduce the need for human experts to extract features from each new data 

type observed in Big Data [63]. 

4.2. SEMANTIC INDEXING 

Information retrieval is a key task associated with Big Data Analytics (BDA). Large-

scale quantities of data such as text, image, video, and audio are being collected and made 

available across various domains, e.g., social networks, machine monitoring and so on, 

making efficient storage and information retrieval a growing problem in Big Data. Massive 

amounts of data are available in these systems, which require semantic indexing rather than 

being stored as data bit strings. Semantic indexing improves the efficiency of data 

presentation and makes it more useful as a source for knowledge discovery and 

comprehension, for example, by making search engines work faster and more efficiently. 

Deep Learning can be used to generate high-level abstract data representations that will 

be used for semantic indexing instead of using raw input for data indexing. These 
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representations can reveal complex associations and factors, leading to semantic knowledge 

and understanding (especially when the raw input is Big Data). However, it should be noted 

that in order to actually grant a good semantic understanding and comprehension of the input, 

the high-level abstract data representations must be meaningful and demonstrate relational 

and semantic association. While Deep Learning aids in the semantic and relational 

understanding of data, a vector representation (corresponding to the extracted representations) 

of data instances would allow for faster searching and retrieval of information. For many 

domains, document (or textual) representation is an important aspect of information retrieval. 

The goal of the document representation is to create a representation that condenses specific 

and unique aspects of the document, such as the document topic. Word counts, which 

represent the number of times each word appears in the document, are used in document 

retrieval and classification systems. In such document representation schemas, individual 

words are considered dimensions, with different dimensions being independent. 

Hinton et al. [64] present a Deep Learning generative model for learning document 

binary codes. The lowest layer of the Deep Learning network represents the wordcount vector 

of the document, which is high-dimensional data, and the highest layer represents the 

document's learnt binary code. Further to that, Deep Learning generative models can also be 

used for the generation of shorter binary codes by limiting the number of the variables used 

by the highest layer in the learning hierarchy. The memory addresses for these shorter binary 

codes can then be used. Additionally, semantic hashing techniques are appealing for 

information retrieval because documents that are similar to the query document can be 

retrieved by locating all memory addresses that differ by a few bits from the query document's 

memory address. Next, the authors in [65] describe a study in which Deep Learning model 

parameters are learned using both supervised and unsupervised data. The benefits of this 

strategy are that there is no need to completely label a large collection of data (because some 

unlabelled data is expected) and that the model has some prior knowledge (via the supervised 

data) to capture relevant class/label information in the data. Another technique for automated 

extraction of semantic representations from Big Data is “word2vec” tool by Google. The word 

vectors are generated from a large-scale text corpus using this tool. It builds a vocabulary 

from the training text data and then learns vector representations of words, which can then be 

used as features in many Natural Language Processing (NLP) and Machine Learning 

Applications [66]. 

4. 3. BIG DATA OPTIMIZATION 

The growing popularity of Big Data applications, many of which require the processing 

of large amounts of data arriving at high speeds from streaming data sources, has opened up 

new opportunities for dynamic multi-objective optimization. The content of Big Data has 

been increasing in recent years, and the goal of Big Data analytics has also changed over time. 

More specifically, not only should the algorithm be able to handle dynamically changing data, 

but it should also be able to adjust the data analytic target. One of the most important 

characteristics of Big Data is that the data was collected from various sources in order to 

create a large dataset. In most cases, multiple objectives must be met at the same time in these 
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large datasets. Traditional methods can only be used on continuous and differentiable 

functions, and they require a series of separate runs to meet various goals [60]. Several 

approaches based on adapting metaheuristic techniques to work in parallel on Hadoop 

ecosystems have been proposed in the last decade. These suggestions are for data mining or 

data management applications, such as: 

 a swarm intelligence method to optimize the feature selection in Big gene expression 

datasets [68], 

 data partitioning in Big Databases [69], 

 dimension reduction in Big Data analytics [70], 

 pattern detection with Artificial Immune Algorithms [71], 

 a parallel MapReduce evolutionary algorithm for graph inference [72], 

 and a parallel artificial ant colony optimization for task scheduling in clusters 

environments [73]. 

Therefore, the four components of Big Data analytics and specifically Big Data 

optimization are as follows: a) handling large amounts of data, b) high dimensional data,  

c) dynamical data, and d) multi-objective optimization. The majority of real-world Big Data 

issues can be modelled as large-scale, dynamical, and multi-objective issues. This sub-section 

presents in a brief manner the principles of optimization using dynamic multi-objective 

algorithms, metaheuristics, for dealing with Big Data optimization problems [74]. 

The optimization in Big Data as one of the most important opportunities and challenges 

in the field [75]. Big Data optimization is a novel research area in which traditional problems, 

and thus traditional metaheuristics, must account for the newly created amount of data in their 

context. For example, a few years ago, The Travelling Salesman Problem (TSP) would only 

be created using static data from a city and would not adapt to real-time changes in the city 

(traffic jam, work on roads and so on). However, thanks to Open Data websites, we can now 

change the data of the problem in real-time via streaming, resulting in better and more realistic 

routes. Because of the nature of the problem, optimization algorithms for resolving Big Data 

optimization should be able to manage streaming data sources, and the algorithms should be 

able to solve multi-objective problems because more than one objective must be satisfied at 

the same time. As a result, they have to be Dynamic Multi-Objective algorithms. 

4.4. SEMANTIC WEB 

Semantic Web is an activity led by World Wide Web Consortium (W3C) to enhance 

documents available on WWW so that they would have meaning understandable to 

computers. The languages such as Resource Description Framework (RDF) and Web 

Ontology Language (OWL) allow us to describe the data in a way that they can be easily 

integrated and queried. The key effort is to use semantic web technology (via ontology) to 

represent all Big Data Analytics (BDA) knowledge. The next step is to use reasoners or 

SPARQL queries to fetch this information or derive new knowledge from it. The main 

technologies used in Semantic Web models related to BDA are presented in brief as follows: 

a) Ontology, b) Resource Description Framework (RDF), c) Ontology Web Language 

(OWL), d) SPARQL and e) Semantic Web Rule Language (SWRL). 
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The main idea is to use semantic web technology (via ontology) to represent all Big Data 

analytic knowledge, and then use reasoners or SPARQL queries to fetch this information or 

derive new knowledge from it. The main technologies used in Semantic Web models related 

to BDA are presented in brief as follows: 

 Ontology. As per the definition in [76], a formal representation of the real world is 

provided by an ontology. Ontologies define data models in terms of classes, 

subclasses, and properties, which define an explicit description of concepts in  

a domain of discourse (classes or concepts), properties of each concept describing 

various features and attributes of the concept (properties), and restrictions on 

properties. Ontologies are part W3C (World Wide Web Consortium) standard stack 

of the Semantic Web. A knowledge base is made up of an ontology and a set  

of individual instances of classes that provide services to enable interoperability 

across multiple, heterogeneous systems and databases. 

 RDF. A W3C recommendation called Resource Description Framework defines  

a language for describing web resources. RDF statements are used to describe 

resources in terms of their properties and value. The RDF Schema (RDFS) defines 

the RDF vocabularies [77]. 

 OWL. The Ontology Web Language, which extends RDF and RDFS by adding a 

vocabulary, is used to define ontologies on the Web. OWL is equivalent to a very 

expressive description logic (DL) from a formal standpoint, where an ontology 

corresponds to a Tbox (terminological component). OWL-DL is a syntactic 

description that allows for maximum expressiveness while maintaining 

computational completeness and decidability [78]. 

 SPARQL. It is a query language that allows to quickly access RDF data. SPARQL 

is a graph-matching query language for extracting knowledge from models [79]. 

 SWRL. The Semantic Web Rule Language adds procedural knowledge to OWL-

based ontologies, overcoming some of the limitations of ontology inference, 

particularly in identifying semantic relationships between people. To represent 

semantic rules, SWRL employs the common logic expression “Antecedent => 

Consequent” [80]. 

The W3C Semantic Sensor Network (SSN) is an Ontology expressed in OWL2 and 

describes sensors capabilities, measurements, observations, and deployments. Moreover,  

the key concepts and relations, split by conceptual modules are presented in Fig. 13. IoT 

adoption in manufacturing allows for the transformation of traditional industrial systems to 

new digitalized ones, resulting in enormous economic prospects through industry reshaping. 

Industrial IoT enables modern businesses to more readily implement new data-driven 

strategies and deal with global competitive pressure.  

However, as IoT becomes more widely adopted, the total volume of created data grows, 

changing industrial data into industrial Big Data. To demonstrate how industrial data may be 

generated and how it can lead to Industrial Big Data, the authors in [82] developed IoT 

application is used in a mould-making industry with 100 machine tools and 150 personnel. 

The designed and developed tool was implemented in one machine tool, and the data  

captured and communicated to the gateway were measured to determine the volume of data 

generated. 
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Fig. 13. Semantic Sensor Network (SSN) Ontology structure [81] 

The camera is thought to be for ten of the most important machine tools in  

the manufacturing process. Afterwards, the volume of the generated data per machine tool 

was calculated, along with the total volume of generated data from the entire shopfloor.  

The volumes calculated clearly indicate the enormous data volumes that can be generated in 

a shopfloor using the aforementioned types of sensors. This yields a volume of generated data, 

which are displayed in (Table 2), in correlation with the sampling rate of each sensor used. 

Table 2. Data generated by the developed DAQ [82] 

DAQ Level –Generated data 

Sensor Sampling rate Megabytes per hour 

Spindle Closed-loop Hall 

sensor 
1 MHz 13,733 

Axis X split-core CT 1 kHz 13,73 

Axis Y split-core CT 1 kHz 13,73 

Axis Z split-core CT 1 kHz 13,73 

Mains current split-core CT 1 kHz 13,73 

Mains voltage insulation 

Transformer 
1 kHz 13,73 

Camera 10 screens/min 293 

SUM  14,095 

The firmware of the proposed monitoring tool is designed to provide and transmit 

processed data to the Cloud at a rate of 4 measurements per second. Based on this rate,  

the Table 4, below, presents the meaningful data that resulted from the Data Acquisition 

(DAQ) processing. These data are generated using the various types of sensors comprising 

the sensing system of the IoT tool, engineering data, and business data generated in the case 

of the mould–making industry. The selected transmission rate of the generated data in this 

case study is based on the production of the mould-making industry. 
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Table 3. Industrial Data Transmitted [82] 

Data source 
Generated 

Data/day 
Generated 

Data/month 

Generated 

Data/year 

Machine tool 1,356MB 39.73 GB 0.47TB 

Camera 7,200MB 211GB 2.47TB 

Shop-floor 204GB 6TB 72TB 

Production Network 

(50 industries) 
10TB 300TB 3.6EB 

The engineering data contain all the necessary documentation for the products from a 

manufacturing standpoint. Furthermore, business data includes information from Information 

Technology (IT) tools (Enterprise Resource Planning, accounting software, and communi-

cation software). If we consider data from a variety of IoT tools, data from human operators' 

mobile devices, and data from various and different IT tools in the company that can be 

interfaced through the OPC-UA architecture, a large volume and variety of data will be 

considered, thereby reaching the starting point for Industrial Big Data. One of the most 

difficult aspects of Industrial Big Data is gathering and considering only the most important 

data for each decision that must be made. Data can be processed locally by the machine tools 

nodes and the microcomputer using the proposed monitoring system, reducing the volume  

of data that must be transmitted and stored in the Cloud database. Moving in this direction, 

the actual data transmitted will be of low volume, allowing for quick and efficient decision-

making. 

4 .5. FRAMEWORKS OF BIG DATA ANALYTICS FOR INTELLIGENT MANUFACTURING SYSTEMS 

The big data-driven operation of manufacturing systems shifts to a framework  

of “correlation & prediction & regulation” under the data science paradigm as presented in 

Fig. 14. From the data point of view, correlation analysis means quantifying the relationship 

between various factors in manufacturing systems. (2) Prediction refers to using machine 

learning methods to forecast the performance indicators of manufacturing systems (e.g., cycle 

time). (3) Regulation is the process of improving the performance of the system by optimizing 

the controllable variables.  

The framework below follows a four-step process in terms of data processing: (1) 

Manufacturing data is combined and pre-processed to produce data that is both reliable and 

reusable, (2) Correlative analysis is used to determine the explanatory factors for 

manufacturing system performance indicators. The fluctuation of system performance 

indicators can be modelled using the explanatory factors, (3) The performance indicators  

of the system can be predicted using the explanatory factors to provide information for 

decision-making. For accurate prediction, various types of machine learning models are 

developed. Prediction is broadened in this section to include fault detection, classification, 

and other advanced prediction tasks in manufacturing systems, (4) Decision-making methods 

can be implemented to improve the performance of the system based on the predicted value. 
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Design data analysis can usually be used to improve the function, structure, and process  

of a product. Manufacturing systems can be made more efficient by using planning and 

scheduling. Process and quality control systems were used to control and improve product 

yield. 

 

Fig. 14. The framework of big data driven intelligent manufacturing [75] 

4. 6. APPLICATION AREAS OF SEMANTICS IN INDUSTRIAL COMPANIES 

Semantic Intelligence is a topic that brings together the activities of the AI, Machine 

Learning, and Semantic Web communities. The selection of an appropriate processing model 

and analytical technique is a complex TASK that is influenced by the business concerns  

of the targeted domain, such as sensing and cognition in production plants, automated 

response in control rooms etc. Advanced analytical services and semantic data lakes 

integration is a complex research area. The goal of semantic intelligence is to make business 

intelligence solutions accessible and understandable to humans, rather than making data and 

processes understandable to machines. Natural language processing (NLP) and semantic 

analysis, for example, are used in human-machine interactions to interpret and respond to 

posed inquiries while incorporating semantic information (digital assistants). In this scenario, 

NLP techniques integrate statistical and linguistic techniques with graph-based AI.  

The following Table 4 summarizes some key application areas of semantics in industrial 

companies. 
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Table 4. Industrial applications of semantics 

Industry 4.0 Frameworks / Developments 
References / 

Source 

1. Marketing and Sales Application 

 

Product catalogues 

 semantic product catalogues in 

Open Linked Data 

 Current topic in Productive 4.0 

(EU funded) and Smart Stage 

(BMWi funded) 

 

[84] 

2. Internal Application 

 Knowledge management, e.g. for 

large IT projects with many 

stakeholders 

 Data warehousing, e.g. for spare 

parts in a car repair information 

service 

 

 [85] 

3. Procurement and Supply Chain 

Management Appli-cation 

 Unifying supplier catalo-gues 

 Knowledge management on 

potential suppliers and their offers 

 

[86] 

4. Business Transaction Application 

 Information exchange for tender 

processes / RFQs 

 Order and Call-off processing 

 

[87] 
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5. BIG DATA ANALYTICS AND INDUSTRY 5.0 CONCEPTUAL FRAMEWORK 

To meet the future manufacturing complexity of increasing customization through an 

optimized manufacturing (robotized) process, Industry 5.0 recognizes that man and machine 

must be interconnected. Industry 5.0 is likely to affect the economy, ecology, and the social 

world. Reduced waste material could have a significant impact on both the economy and  

the environment as manufacturers move toward zero-waste production, lowering material 

costs and waste management costs. In a nutshell, Industry 5.0 will completely delegate 

mechanical tasks to robots, while humans will be in charge of the creative side. The nine pillar 

technologies of Industry 5.0 are listed below: 

 Big Data Analytics 

 Augmented Reality 

o Improves Decision Making and Work process 

o Time Saver 

o Cost effective 

o Effort Precision 

o Provides real-time information to workers 

 Autonomous Robots/Drones 

o Assist in Manufacturing 

o Usage shall Impact on the Cost Benefit 

o Facilitate in Quality 

 Timeline on Delivery 

 Simulation 

o Simulation Augments the Precision of Quality, 

o Cost and Process 

o Optimizing the Productivity in Virtual mode 

o Synchronising real-time Data 

o Virtual model 

o Interacting Machines, Work force and Products 

 Horizontal and Vertical System Integration 

o Cohesive System Integration 

o Enterprise Data Integration 

o Value Chain Integration 

 The Industrial Internet of Things 

o Centralized Controllers with Embedded Computing 

o Analytics and Decision-Making Systems Enabling Real-time Responses 

 Cyber Security 

o Deployment 

o Use of Standard Communication Protocols 

o Well Defined Industrial Systems 

o Sophisticated Identity and Access Management 

 The Cloud 

o Datta Driven Services for Production Systems 
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o Business Process and Workflow on Cloud 

o Data Information and Interchange Across Cloud 

 Additive Manufacturing 

o Optimizes workflow 

o Process through 3D Printing on Prototype and Individual Component Production. 

Big data-driven intelligent manufacturing applications have begun to emerge, fuelled by 

intelligent sensing, the Internet of Things (IoT), distributed storage computing, machine 

learning, and other Industry 4.0 technologies. Applications in product design, planning and 

scheduling, quality optimization, and equipment operation and maintenance as shown in the 

framework of Fig. 15. 

 

Fig. 15. The applications of BDA in manufacturing systems [88] 

6. DISCUSSION 

The third and fourth generation (3G, 4G) mobile networks, as well as other 

communication technologies, are unable to meet the demands of Cyber Physical 

Manufacturing Systems (CPMS) [77], such as high data rate, high reliability, high coverage, 

low latency, and so on, obstructing the development and implementation of the system. 

Manufacturing is the second-most attacked industry, yet the manufacturing sector lags when 

it comes to security. Smart factories can be subject to the same vulnerability exploitation, 

malware, denial of service (DoS), device hacking, and other common attack methods that 

other networks face. And the smart factory’s expanded attack surface makes it extra difficult 

for manufacturers to detect and defend against cyberattacks. These threats now work on an 

entirely new level with the dawn of the IoT, and they can result in serious physical 

consequences, especially in the realm of the Industrial IoT. A few of the new security 

challenges that businesses face in the age of Industry 4.0 are listed hereinafter [89]: 
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 Every connected device is a potential vulnerability, 

 Manufacturing systems, such as Industrial Control Systems (ICS), have specific 

vulnerabilities that make them especially vulnerable to cyberattacks, 

 Because Industry 4.0 connects previously isolated systems, the attack surface 

expands, 

 Upgrades are often installed piecemeal since the systems are very complex, 

 Manufacturing has many fewer regulated compliance standards than other sectors, 

 Visibility is poor across separate systems and isolated environments. 

Therefore, protecting against evolving threats is an active challenge, which is evolving 

to a full-time job as more connected systems are deployed and the opportunities for an attack 

on intellectual property increase. As a result, the manufacturing sector needs to [90]: 

 Adopt a risk-based security mindset, 

 Keep an accurate inventory of all Operational Technology (OT) assets in real-time, 

Combine the best of IT and OT as an integrated defense strategy across all attack 

surfaces, 

 Identify and fix outdated systems, unpatched vulnerabilities, and poorly secured 

files, 

 Adopt a security-first strategy to the deployment of new connected systems, 

 Spot potential threats with real-time vulnerability assessments and risk-based 

prioritizations, 

 Ensure that technology suppliers and connected equipment manufacturers commit 

to regular security and software patches and audits. 

 

 

 

Fig. 16. Key features, the goals, the technological enablers, and the challenges of Industry 5.0 [91] 
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Similarly, 5G has a lot of potential as a future advanced wireless transmission 

technology for Industrial Internet of Things (IIoT) and CPMS. Moreover, Industry 5.0 has 

arrived, and involves combining increasingly powerful and precise machinery with the unique 

creative potential of the human operator. Industry 5.0 has already triggered unstoppable 

changes. By combining the capabilities of increasingly powerful machines with better-trained 

experts, this process allows businesses to produce more effectively, sustainably, and safely. 

Industry 5.0 is a paradigm shift in manufacturing that has implications for productivity, 

economics, and business. Therefore, companies that do not adapt their business model to the 

factory 5.0 model will quickly become obsolete, unable to benefit from the competitive 

advantages it offers. Towards that end, European Commission highlights the key features,  

the goals, the technological enablers and the challenges of Industry 5.0 in the framework 

presented in Fig. 16. Finally, the benefits of Industry 5.0 can be summarized as follows:  

a) Cost optimization, b) Personalization and Creativity and c) Greener and sustainable 

solutions [91]. 

7. CONCLUSIONS 

BDA as a pillar technology of Industry 4.0 is becoming a core technology for forecasting 

and decision making in manufacturing systems towards the next Industrial Revolution 

(Industry 5.0). Big Data technologies consider not only the solution for large datasets, but 

also the ability to comprehend and fully exploit their value. BDA is a key future perspective 

in both the research and industrial communities, as it adds value to a variety of products and 

systems by incorporating cutting-edge technologies into traditional manufacturing products. 

Data can benefit from IoT, AI, and Industry 5.0 with built-in amendments to the design  

of future innovation ecosystems. Information technologies and manufacturing processes are 

brought together in Industry 4.0.  

The production line may be tuned to near-optimum efficiency and even altered on the 

fly thanks to developments in robotics and automation, as well as in data collection and AI. 

Therefore, manufacturers are able to produce products and services of higher quality taking 

into consideration the following benefits [92]: 

 Return of Investment (ROI), 

 Higher revenue and profitability, 

 Opportunities for innovation, 

 Cost reductions, 

 Improved customer experience, 

 Compliance, 

 Flexibility and Agility, 

 Knowledge sharing and collaboration, 

 Efficiency, 

 Productivity. 

Consequently, at this point it can be concluded from the above-mentioned points and 

the analysis of the corresponding research works, the fusion of the cutting-edge digital 
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technologies (e.g. AI, robotics and automation, etc.) have enabled engineers to design resilient 

manufacturing and plants, which are capable of adapting and aligning their operating 

specifications/characteristics to the volatility of current market demands. By extension, these 

new type of manufacturing and production systems enables companies to handle more 

successfully market crises, such as the global pandemic caused by the SARS CoV-2 virus. 

Similarly, Automation benefits can also be evident in the supply chain, as per the 

benefits below: 

 In real-time, track the position of your goods, 

 Track the status of your items in real time, 

 Real-time data capture and analysis, 

 Inventory/Warehouse Management: Ensure that the appropriate products are 

delivered to the right location at the right time. 

In Industry 4.0, the abovementioned features are conceivable. However, the simplest 

way to define 5.0 is that it injects a conventional, individualized human touch into the 

automated and efficient concepts discussed before. Therefore, the benefits of Industry 5.0 in 

manufacturing can be summarized as follows [92]: 

 Customization and personalization, 

 Upskilling, 

 Better roles for the human worker, 

o Using robots for repetitive and labor-intensive work, 

o Using humans for customization and thinking radically out of the box, 

 Enhanced Customer Experience, 

 Co-existence of humans and robots. 

To summarize, based on the abovementioned challenges and case studies the quality  

of data is a major issue. However, with the combination of two major industry 4.0 

technologies and techniques (AI, Ontologies) engineers are capable of fully connecting 

machine tools and creating things on the Internet (IIoT) in order to acquire meaningful 

insights for the manufacturing/production processes. On the other hand, in order to fully 

utilize this massive amount of data, engineers are developing frameworks for processing / 

cleaning raw data based on the integration of AI techniques. Moreover, ontologies can be 

realized as a technological field (specifically in Computer Science) with which engineers are 

capable of extracting context from raw data. By extension, the combination of the 

abovementioned technologies is believed to lay the foundations for acquiring the necessary 

amount of data (quantity of data) and simultaneously extract the informational context 

(quality of data). Ultimately, under the Industry 4.0 framework engineers had the opportunity 

to retrofit existing manufacturing/production systems with sensing systems, develop suitable 

network infrastructures (e.g. Wireless Sensor Networks – WSN) for fast and reliable 

transmission of data, as well as design and develop frameworks for monitoring and adjusting 

manufacturing process parameters. As a result, from our point of view Industry 4.0 is not in 

its infancy, there is however room for further improvement.  

Finally, building complex and hyperconnected digital networks without compromising 

the long-term safety and sustainability of an innovation ecosystem and its constituents is the 

goal of Industry 5.0. In this paper, we summarized the state of the art in AI and semantic for 

Big Data analytics towards the 5th Industrial Revolution. Future research work as  
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a continuation of this paper will be focused on the investigation of adding semantic in 

dynamic and interactive multi-objective algorithms for solving Big Data Optimization 

problems. 
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