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OPERATOR INTEGRATED –  

CONCEPT FOR MANUFACTURING INTELLIGENCE  

Increasing autonomy and sustainability are major goals in manufacturing. Main technological trends provide 

enablers for achieving these goals and need to be implemented and combined in manufacturing machinery in  

a suitable manner. The paper exposes a vision of modern manufacturing machines, where the complexity  

of manufacturing processes is handled within the manufacturing machine and a simplistic front end is presented 

to the operator, which means that major elements of operators’ tasks are fulfilled by the intelligence of the machine. 

Research vectors paving the ground for this concept from different points of view are then discussed. Research is 

presented on intelligent grinding, intelligent recognition and suppression of chatter, adaptive thermal and motion 

error compensation exploting also self-learning abilities. It is necessary to point out, that not only intelligent 

mastering of process and machine becomes more and more important but communications among machine tools 

enabling process chain overarching intelligent approaches and creating intelligent factories. 

1. INTRODUCTION  

Manufacturing processes are complex and complicated. This especially holds true  

the stricter the requirements in terms of economy, ecology and part quality become. The term 

“advanced manufacturing” in the correct sense of the wording is not the trial of new and 

incapable manufacturing technology approaches, but the realization of products with large 

serial numbers or exit rates, extremely high and constant quality under ecologic and economic 

pressure, which is mostly done by technologies developed to highest maturity and being 

mastered to the utmost possible extent. Mastering of manufacturing processes to this extent 

requires excellent skills of the operators, which are lacking more and more, and the “keep it 

simple” approach is an absurdity, if the physics of the process is difficult. The slogan must 

run “keep it suitable”, which requires the right means for the tasks to be fulfilled. And it might 

be interesting to keep manufacturing simple for the operators, but that means that the 
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production machine must be capable of coping with the full complexity of the process under 

each and every arising condition. Fail safe, self monitoring, self healing, health reserves are 

then the attributes for advanced manufacturing machinery, granting a high degree  

of autonomy and reducing the influence of the operators in the day to day production to  

a minimum. The domain of human intelligence and skills is then engineering in the design, 

construction and layout phase, the design for X and especially design for reliability, which 

becomes a more and more prominent task. Flexible, fast and reliable automation technology 

is an indispensable characteristic for advanced manufacturing technologies.  

Mastering manufacturing processes can be measured by OEE, availabilities, scrap rates, 

process capability indicators, etc. and scatter of results. Tightening the tolerances then 

requires to reduce the scatter and increase process and machine understanding. Characteristic 

for manufacturing is that the manufacturing processes are strongly intertwined with the 

respective machines and cannot be mastered without knowing the behavior of the machines. 

Model based technologies digital twins or digital images of processes and machines are  

the immediate entry points for enhanced mastering of processes. These are the enablers to 

predict and counteract the systematic part of what for convenience and simplicity is normally 

subsumed as part of the scatter. Process and machine understanding need therefore to take 

into account the behaviors under all arising internal and external conditions and includes 

today some aspects of machine intelligence. Enhanced process understanding is also  

the precondition for fast startup and first part right, which can drastically increase  

the productivity. 

Given these aspects and requirements of manufacturing, the paper first outlines in 

Chapter 2 a vision to where the large trends in manufacturing might converge in future. Being 

still a vision, further chapters contain different approaches in this direction, but all of them 

are still only individual elements pointing in the direction of this vision. They contribute 

different approaches for enhanced and intelligent mastering of processes, namely grinding in 

Chapter 3 and milling in Chapter 4. Intelligent machines for enhancing accuracy are presented 

in Chapter 5 and 6, approaches, which increase quality and autonomy.  

2. ARTIFICIAL OPERATOR 

From the aforementioned argumentation the role distribution between a human operator 

and the machine control needs to be re-defined. Certain properties of biological systems shall 

then be realized in the manufacturing system. Bio-inspiration is not a new topic, but nowadays 

instead of only copying natural structures the inspiration concerns the adoption of functional 

properties of biological systems, which offer the opportunity to gain a deeper relieve of the 

operator and thus higher degree of autonomy. After some preliminary work from Ueda [1] 

and Malshe et al. [2] the biological transformation in manufacturing was launched Byrne et 

al. [3]. Also, the keynote paper by El Maraghy et al. [4] rolled out a road map for the future 

development of manufacturing systems. Fig. 1 introduces a vision of a bio-intelligent 

manufacturing system, which is conceptualized for laser powder bed fusion, but can be 

adapted to any other manufacturing technology. Especially manufacturing technologies that 

are largely dependent on operator’s experience are useful to consider in this context, such as 
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all the additive technologies, but also grinding and other surface technologies, etc. Important 

properties in which at least some biological systems are superior to technical systems are  

the following: 

1. Intelligence: Advanced biological systems as mammals have implanted rules to allow 

them reasoning about environmental signals and react in a complex manner. As this is 

done according to multiple inputs which are as well external and internal, their 

behaviour is only partly predictable according to externally predefined rules. This means 

complexity in the original sense as the decision making of a biological system depends 

on a large number of parameters, which all have some scatter. Also the decision rules 

are unsharp and scatter prone.  

2. Abundance of sensors: To start reasoning, input signals are required and cognitive 

capability is needed. All biological systems have sensors in abundance (ie. 10 coldness 

sensors per cm2 as average on the human skin). These sensors together with their 

evaluation methodology develop an impression or picture of the surrounding 

environment, which is as complete as necessary for the organism and its relevance is 

filtered in the brain. The sensors are organized in sensor networks, which are 

counterchecked with each other to determine plausibility and have the ability to 

recalibrate themselves. A large number of animals and especially humans have optical 

sensors as broad band sensors capturing colour, brightness and direction, as well as 

broad-band acoustic sensors able to capture loudness, frequency and direction. 

3. Exchange of information: Humans and a large number of other biological, living 

systems communicate, gain additional knowledge, and transfer experience. This 

completely coincides with the intentions of Industry 4.0, the integration of data from 

different subsystems, which still today is one of the jobs reserved for human intelligence. 

4. Health maintenance: A biological system is able to self-repair (heal damage and adjust 

for wear) to a certain extent. Biological systems regrow wear layers in joints and skins 

and thus continually degrade until end of life. They also can abandon functionality and 

utilize redundancy to counterweight the loss to a certain extent.  

5. Functional integration: convincing property of biological structures is not only how well 

it is adapted to the loads, but how well different functions are integrated within load 

carrying structures.  

The first three properties are the capabilities expected from the machine operator and 

need to be mapped onto the technical system. Important aspect of the bio-inspired 

functionality is the degree of integration of the different properties, unprecedented in 

technology. This includes the already described sensor fusion and mutual plausibility 

checking, it is part of the health reserve, to relocate functionality at least partially and it is 

visible in the inclusion of information from outside instead of making own experience.  

Core of the concept in Fig. 1 therefore is an expert system, which needs to be connected 

to all the information providing subsystems, the sensors for environmental influences, for the 

machine status and the process behavior, the information channels to the outside world by 

internet with other machines in other application fields and naturally the operator. Though 

expert systems have been developed in the last two decades of the 20th century as a predefined 

repository of data, mainly parameters suitable for carrying out manufacturing processes,  

the term “expert system” is utilized here for a more advanced vault of knowledge, being 
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capable to adapt to new situations, to learn and to generate and provide new knowledge out 

of what has been stored so far. 

 

Fig. 1. Concept of an intelligent LPBF-machine (SLM) integrating operator’s capabilities for increased autonomy  

The old expert systems have been developed under the scope of technologies so far 

available, and it seems suitable to transfer it to modern approaches. Highest priority has  

the communication with the operator. Companies are relying on a wealth of implicit 

knowledge of their employees, which can only be safeguarded with the help of an expert 

system that is able to learn from the inputs, setup of processes from experienced operators. 

As setup of the process the manufacturing strategy and the individual process parameters are 

understood. The whole required information with the individual case must be handed over 

into the machine to make the process run. Missing is that the machine resp. the expert system 

must generate autonomously an understanding to apply the available knowledge to similar 

cases. This is the task of the “learning machine”. On the other hand the machine needs to be 

able to use the acquired knowledge to propose setups for new manufacturing tasks for  

an unskilled user. A crucial point is to distinguish between the inputs of skilled and unskilled 

operators, which needs to be done with plausibility checks out of the acquired process 

understanding. All experience based human knowledge has a certain degree of uncertainty, 

which must be mirrored in the expert system. The uncertainty of knowledge must be attributed 

to each piece of information within the expert system. Next important source of information 

is the data describing the manufacturing task. This concerns the specification of powder, alloy 

part geometry, quality requirements and batch composition. Powder specification to  

the preciseness required for the SLM process and its influence on the part quality is still in 

debate. Therfore the precision requirements of powder specification and what needs to be 

entered into the machine is unknown. To avoid exaggerated requests from the machine,  

the observation of the first generated layers and closing the loop with adaptation strategies 

can solve the problem, but requires the threefold learning loop specified in Fig. 1 and 

discussed to more detail in [5]. A collection of technologies for self optimizing machines for 

the sake of autonomy is presented by Möhring et al. [6]. Fleet- and transfer learning requires 

besides internet connectivity technologies to transfer results found on one machine to  
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the other. This is even on the level of machines of the same type not yet satisfactorily solved. 

A model based approach for the transfer is foreseen. Some work is done in this respect and 

presented in [7].  

Monitoring of the machine’s status is one of the requirements for increased autonomy 

and predictive maintenance, which today is discussed for all the manufacturing equipment 

and for the SLM system was exposed in [8] The status of the machine, for instance 

temperature in the building chamber, degree of contamination of optical systems etc. require 

strategies to circumvent the effect on the quality of the part, which is the very basic approach 

to self healing, as to a certain extent the absorption of laser power in the optics for instance 

can be counteracted by increasing the laser power of the beam source.  

Most important is the monitoring of the process zone. It is the key stone for increasing 

part quality and at the same time the autonomy of the machine. In [9] technologies are 

reviewed. For the sake of robustness multiple layers defined by their time scale of interaction 

need to be defined and are used to correct the flaws generated by process steps before. At 

least three layers as indicated in Fig. 1 are necessary. Closed loop control to keep immediate 

disturbances out of the process and acting between the sensory and the laser power is the 

mostly applied technology as for example demonstrated in [10]. Flaws within a layer and 

origins of faults that develop over several layers shall be detected layer wise and a correction 

strategy needs to be setup in a rule based manner and by application of machine learning [11]. 

Image recognition technologies based on pretrained neural networks, which are already 

available and only need tuned to the faults to be recognized are a promising technology here. 

Still the rule basis needs to be generated but needs to be setup on the detectability of the 

different flaws. A wealth of monitoring technologies has been developed as collected in [8] 

and [9]. But for none of them a thorough analysis on the fault detection capabilities has been 

achieved. Correction strategies and monitoring technologies need to be developed integrated 

with each other. The outer control loop specifies the learning ability and storage of gained 

knowledge out of the process monitoring within a vault of technologies, a geometry or part 

related data base. A human feedback, an automatic feedbak from a subsequential quality 

assurance step is required to stamp the data as approved. As LPBF is a technology for small 

serial numbers down to one, learning a strategy for making just this part is not of great 

usefulness. Therefore a feature separation and feature parametrization respecting critical 

geometries in LPBF and described in [8] combined with automatic feature recognition is 

necessary for the setup of a new process. The outer learning cycle then has the task to teach 

in processing strategies and process parameters to be reused in other part geometries.  

The collection of input channels and expected results from the expert system specifies 

its structure and functionality. The structure is specified in the headlines of the colorful 

bubbles in Fig. 1. Essential and structuring aspect is the requirement that the different 

influences need to be computed separately and superposed to other influences. A simple data 

base as well as neural networks as the first choice of artificial intelligence will not work alone. 

Requirement is the development of new knowledge out of what has been experienced and is 

stored in the data vault. The new type of expert systems can be based on ontologies. It needs 

different intelligence tools. It contains learning tools adapted to the individual tasks. The great 

potential of artificial neural networks has been pointed out by Barschdorff and Monostori 

[12], Monostori et al. [13] and Pham and Pham [14]. Artificial neural networks necessarily 
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are part of the integrated intelligent machine, but also the rule sets for different tasks, physical 

models to predict process windows from similar but different situations, may that be similar 

alloying composition, different particle shapes, different laser beam properties and for  

the optimization of part orientation and part position within the working space, which both 

define the build job. Even for the decision whether to start the build job or to wait for better 

opportunities to better fill the building chamber, tools like partial observable Markov decision 

processes are available and applicable. 

The description concerns a manufacturing process with still scarcely available 

generalized process planning tools. But it shows stringently that the technology planning 

needs to be part of the intelligence of the machine, and either the CAM tool has a bi-

directional interface to the machine tool be fed and exploited by it, or the CAM tool is tailored 

directly to the machine. The future belongs to fully integrated intelligent manufacturing 

systems, which are termed throughout this paper and in accordance to Byrne et al. [15] 

“biointelligent systems”. Fully integrating different information channels, sensors and 

actuators with AI tools, knowledge base (experience) and reasoning capabilities are required 

to achieve similar properties like highly developed biological (living) systems and exploit 

their benefits. Being still a vision in its full elaboration already realized achievements  

in the direction of this goal and their already visible benefits for manufacturing are rolled out 

in the remainder of the paper.  

3. GRINDING INTELLIGENCE 

Grinding is a process difficult to control, requiring the selection of various parameters 

such as cutting speed, feed rate and dressing parameters. Typically, the objective of the 

parameter selection is to achieve a cost-efficient grinding process and produce parts which 

fulfil quality requirements without damaging the machine or components. Today process 

parameters are mainly selected by human operators, using a combination of trial and error 

and experience. Rowe et al. [16] and Sakakura and [17] introduced already artificial neural 

networks for the selection of grinding process parameters to master the difficulties to control 

the process. This chapter shows deficiencies of conventional expert systems together with 

their amelioration by adding self-learning and self-optimization components. 

An approach to automate the selection of process parameters is the use of expert 

systems, as illustrated in Fig. 2. The main idea of expert systems is to provide knowledge 

from domain experts to all operators. Therefore, knowledge of domain experts is transferred 

to a knowledge base by a knowledge engineer. An inference engine utilizes the stored 

knowledge and provides recommendations to operators through a user interface. Sometimes 

the recommendation is enhanced by an explanation module to provide reasons for the 

recommendation. The individual expert systems may differ in the structure of the knowledge 

representation. Commonly used representations are rule-based systems, such as used in [18] 

for the optimization of centerless grinding, or case-based systems in combination with 

adaptive control as proposed in [19]. Expert systems of the elder type have a static knowledge 

base and lack the learning possibility. 
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Figure 3 shows a comparison between the performance of 75 human operators and  

a grinding expert system, where the performance is evaluated based on the operation time and 

the degree of feature fulfilment. It can be seen that the operator results vary greatly, clearly 

showing the improvement potential of today’s approach. The task to be solved in Fig. 3 is 

described as to make 3 cylinders of different diameters within the prescribed tolerance and 

the required surface quality amounting to 6 properties to be fulfilled. 

 

 

Fig. 2. Structure of a former expert system adapted from [20] and [21] without self-learning ability 

The curve of used manufacturing times is per person divided in 6 equidistant segments 

and becomes green in the first n segments if n features fulfilled the requirements. The expert 

system is able to outperform many human operators, but some operators still show a better 

performance than the expert system. This result is expected because the expert system by 

design cannot outperform the knowledge engineer and the domain expert designing the expert 

system. Therefore, expert systems so far existing typically miss a possibility to autonomously 

acquire new knowledge and improve over time and heavily depend on the initial knowledge 

provided by domain experts. Hence, a big challenge for expert systems is the selection  

of process parameters for new workpieces, machine and / or tool combinations because less 

precise knowledge is available for such cases. 

 

 

Fig. 3. Operator time and degree of fulfilment for industrial expert systems and human experts according to [22].  

6 properties are required to fulfil. The green part represents the fulfilled requirements. The expert system  

fulfilled all requirements, but some human grinders were even faster and equally successful 
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Table 1. Methods for grinding process optimization from literature 

Source Method for 

selection of 

experiments 

Modelling 

techniques for 

grinding process  

Method to determine 

optimal parameters 

Objective & Constraints on output 

[23] Taguchi 

method 

(orthogonal 

array) 

Parametric 

regression of 

empirical models 

 

Genetic algorithm Multi-objective optimization of surface 

roughness, grinding time, and 

production costs constrained to 

workpiece removal parameters and 

wheel wear parameters 

[24] Taguchi 

method 

(orthogonal 

array) 

Second order 

polynomial fit 

(response surface 

methodology) 

1) Taguchi (signal to 

noise ratio) 

2) Graphically 

1) Minimize geometric error 

2) Minimize geometrical error with 

surface roughness and material 

removal constraint 

[25] Full factorial 

design 

Neural networks Combination of 

weighting method 

(described in [26], 

branch and bound 

method, and generalized 

reduced gradient method  

Multi-objective optimization of power, 

normal force, surface roughness, and 

material removal rate 

[27] Fractional 

factorial 

design 

Neural networks Back propagation 

algorithm with 

Boltzmann factor 

Weighted multi-objective optimization 

of material removal rate, surface 

roughness, grinding force per width, 

and grinding power per width 

constrained to a maximum grinding 

power per width and a maximum 

surface roughness 

[28] 
[30] 

No 

experiments 

for 

modelling 

Empirical models 

from literature 

[28] 

Quadratic programming 

[29] 

Particle swarm 

optimization 

[30] 

1) Artificial bee colony 

algorithm 

2) Harmony search 

algorithm 

3) Simulated annealing 

algorithm 

1) Rough grinding: weighted multi-

objective optimization of 

production costs and production 

rate constrained to thermal damage, 

wheel wear, machine tool stiffness, 

and surface roughness 

2) Finish grinding: weighted multi-

objective optimization of 

production costs and surface finish 

constrained to thermal damage, 

wheel wear, machine tool stiffness, 

and production rate 

[31] Taguchi 

method 

(orthogonal 

array) 

None Grey relational analysis Optimization of material removal rate, 

surface roughness, and grinding force 

[32] Taguchi 

method 

(orthogonal 

array) 

None Principal component 

analysis combined with 

grey relational analysis 

Optimization of surface roughness, out 

of cylindricity, and diametral tolerance 

[33] Box-

Behnken 

design 

Second-order 

polynomial fit 

(response surface 

methodology) 

Multi-objective genetic 

algorithm 

Optimization of vibration and surface 

roughness 

[34] Central 

composite 

design 

Second-order 

polynomial fit 

(response surface 

methodology) 

 

1) Non-linear 

programming 

2) Genetic algorithm 

Minimization of surface roughness 
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Another approach to autonomously select process parameters is optimization.  

The example outlined here presents a tool to transfer the task of selecting process parameters 

from the operator to the machine. Often, the optimization objective is to minimize production 

costs while simultaneously fulfilling quality constraints of the final part such as a maximal 

surface roughness. In general, the optimization procedure consists of methods for experiment 

selection, process modelling, and methods to determine optimal parameters, as listed in 

Table 1. Typically, the experiments are selected first using a classical design of experiments 

(DoE) such as the Taguchi method. Modelling is often achieved by empirical models, 

polynomial fits and neural networks. After a model of the process is established, the optimal 

parameters can be determined by optimising the model. Often meta-heuristics such as genetic 

algorithms or particle swarm methods are used to determine optimal parameters. A key issue 

with this approach is that simple models such as empirical models and second order 

polynomial fits typically only show good performance for specific tasks but not for general 

applications. Flexible models such as neural networks can be applied to very general tasks 

but require many costly experiments.  

To improve the current optimization approaches, [35] demonstrated self-optimization  

of a grinding process by using adaptive sampling combined with Gaussian process models. 

Gaussian process models are flexible and provide an uncertainty estimation of the prediction, 

which is not provided by neural networks. Therefore, flexible Gaussian process models can 

be combined with only a few data points. In contrast to classical DoE, adaptive sampling uses 

the model prediction to select experiments, which are informative about the optimum.  

An acquisition function provides the position of the next experiment as a trade off between 

the optimality of parameters and lack of knowledge within the parameter space. A typical 

optimization procedure is shown in Fig. 4. It can be seen that many points are sampled close 

to the optimum (10th experiment) while areas far away are only sampled sparsely. In this way, 

optimal parameters are determined with a few experiments. 

 

       

Fig. 4. Gaussian process models combined with adaptive sampling from [35]. Left side presents in green the 95% 

confidence interval and the acquisition function, the maximum of which gives the new parameters for the next 

experiment. Right side shows the parameter space and the parameter points for the subsequent choice of experiments 
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In conclusion, expert systems still today are often based on knowledge alone and do not 

adequately adapt to process responses and changes. Similar issues arise by using simple 

models for optimization because they have a limited flexibility. By using advanced models it 

is possible to adapt well to process responses and changes but typically require many costly 

experiments. An advantage of using adaptive sampling combined with Gaussian process 

models is that it allows to exploit knowledge gained during the optimization by the acquisition 

function. To further reduce the number of experiments, including expert knowledge in  

the optimization is a promising direction for future research.  

4. ADVANCED CHATTER MITIGATION 

Stability lobe diagrams are a well-known method to differentiate stable from unstable 

cutting conditions and to indicate stability pockets with high productivity in milling [36]. 

Unstable process conditions lead to self-excited vibrations between the tool and the work-

piece, so-called chatter vibrations, which have highly negative consequences such as reduced 

machine and tool lifetimes and deteriorated workpiece surface qualities. The creation  

of stability lobe diagrams, however, is typically associated with an extensive measurement 

effort [37] and the usage of expensive equipment. Besides, model parameters are eventually 

associated with uncertainties [38] and vary in different machine and process configurations 

[39]. Consequently, the agreement between predicted and experimentally observed stability 

limits is not satisfactory and reliable, which prohibits the full exploitation of the stability 

reserves. 

The proposed approaches are steps towards the self-enhancing milling machine in  

the direction of the vision presented in Chapter 2, which continuously monitors process 

conditions and stability states of cuts, and which uses this data to yield increasingly precise 

stability lobe diagrams over time. The approach combines physical modelling and self-

learning. Compared to the outcomes of state-of-the-art analytical modelling approaches [40], 

results show prediction accuracy improvements of more than 40%. Contrasted to state-of-the-

art algorithms that are solely based on machine learning [41], [42], approximately five times 

fewer experimental training samples are necessary to reach the same prediction accuracy on 

a test set. 

Three solution examples for this model enhanced machine learning are presented on 

how neural networks and analytical models for the machine dynamics, the cutting 

coefficients, and the stability evaluation can be linked to allow for rapid estimation of the 

shape of the stability lobes. Different from any previously developed approach, any stable or 

unstable cut recorded during arbitrary cutting operation can be included in the optimizations, 

and dedicated experiments become obsolete. With the acquisition of more data, the precision 

of the stability predictions increases over time. These points make the developed approaches 

valuable tools for an application in a real production environment. 

4.1. NEURAL-NETWORK SUPPORTED INVERSE PARAMETER IDENTIFICATION 

 In the first approach [43] with the framework shown in Fig. 5, neural networks are 

implemented upstream of the stability solution to identify unknown relationships between 
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easily measurable and unknown, hard-to-measure parameters. The networks are trained with 

a genetic algorithm using a cost function that compares model stability predictions with  

the experimental stability states of the training samples.  

 

Fig. 5. Framework for neural network supported parameter identification and stability predictions [43] 

4.2. ENHANCED MODULARIZED MODELS OF MILLING MACHINES THROUGH MACHINE LEARNING 

The second approach [44] extends this idea by including a modularized model  

of the machine structure and of the cutting coefficients, which allows transferring the gained 

knowledge to new cases with different machine and process configurations. The realized 

modularization scheme (Fig. 6) is the result of a trade-off between an accurate representation 

of the behaviour of the single components and a reasonable characterization detail. 

 

Fig. 6. Schematic representation of an exemplary realization of the proposed model improvement framework [44].  

The individual components are represented with physical models and parameters that are self-learned  

by the machine from every cut executed on the machine 
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In the optimization process, the algorithm can correct the assumptions on the model 

behavior of the components. By introducing a penalty for cases where the algorithm deviates 

strongly from the expected model parameters, physically reasonable solutions are favoured 

and the physical interpretability of the results is enabled. Furthermore, the introduction of  

a sensitivity analysis step helps selecting only the most relevant optimization parameters, and, 

hence, reduces the computation time significantly. 

4.3. ENSEMBLE DEEP TRANSFER LEARNING 

In the third example, a new hybrid approach for the refinement of stability limits in 

milling operations is presented [45]. While Deep Neural Networks (DNN) have been used in 

previous approaches for chatter prediction in milling and turning [42, 46], the methods 

required a very large amount of data samples for training. Here, a so-called transfer learning 

approach is used to decrease the number of necessary experimental training samples. It 

combines knowledge about the general dynamic behavior of spindle-holder-tool assemblies 

and the resulting shapes of stability lobe diagrams under various cutting conditions with 

experimental data by employing ensemble transfer learning on deep neural networks.  

The training is made on numerical results of the model, where an uncertainty about the real 

values of the model parameters is taken into account. Finally the stability lobe diagrams from 

different parameter assumptions within a range of expectation are averaged. A detailed 

overview of this approach is illustrated in Fig. 7 and Fig. 8.  

In the first place, simulated stable and unstable points are generated using receptance 

coupling theory and an analytical stability model. These stability states deviate from  

the actual, experimentally observed stability states due to the imperfections of the models and 

uncertainties in the model input parameters. To be able to compensate for these deficiencies, 

the whole modelling strategy is transferred into a deep neural network by training it with  

the simulated data. The network is now aware of the general dependencies of the stability 

boundary on some easily measurable parameters and the concept of stability pockets and takes 

the uncertainty of model parameters into account.  

In the second place, few experimental samples are now used to fine-tune the network 

and adapt it to the real behavior of the system. The approach hence compensates uncertainties 

in the modelling stage regarding both uncertain input parameters as well as inaccuracies  

of the models used. It is further shown that the overall test performance is improved by 

employing an ensemble learning strategy, where the predictions of multiple networks are 

combined. 

Figure 8 shows the individual predictions for three sample cases mentioned in Table 2 

along with the truncated mean of all predictions. It can be seen that, while a significant number 

of individual predictions diverge strongly from the experimental stability boundary, the trun-

cated mean yields a reasonable estimate of the actual stability boundary.  

The presented method avoids any kind of measurement, except for one initial 

identification of machine tool and spindle dynamics, which could be done at the machine tool 

manufacturer when the machine leaves the assembly line. This makes it an attractive solution 

for industrial implementation. 
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Fig. 7. Ensemble transfer learning strategy with Nnet networks [45]. Step 1: All uncertain parameters are sampled Nnet 

times from their respective distributions. Step 2: Nsim samples are generated with random clamping lengths, spindle 

speeds, and axial and radial engagements. Step 3: Theoretical tooltip dynamics and stability states of the respective 

samples are evaluated using receptance coupling theory and an analytical stability model. Step 4: The gathered inputs 

(clamping lengths, spindle speeds, axial and radial engagements) and outputs (stabilities of the simulated cuts) are used 

for the pre-training of the networks. Step 5: These networks are then fine-tuned using experimental data. Step 6: For  

a new cutting scenario, the resulting stability predictions of the individual networks are averaged using a truncated 

mean approach 
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Fig. 8. Details on the ensemble prediction in three sample cases: Individual predictions of all 200 networks (grey dashed 

lines) and resulting ensemble predictions (black continuous lines as averages). Also shown are the predictions  

of the theoretical model alone (blue dashed lines) [45] 

Table 2. Cutting cases and number of cuts (training samples) that were included in the fine-tuning [45] 

 

5. THERMALLY SELF-EQUILIBRATING MACHINES 

In modern manufacturing of complex workpieces, 5-axis machine tools often face  

the trade-off between high productivity and high precision. According to Mayr et al. [47] 

thermal errors have a large impact on the attainable accuracy of machine tools. Either  

the machines become air-conditioned or the skilled operator is the one that adjusts  

the machine according to its thermal state. The presented approach is one of the tasks of the 

intelligent machine, transferring the adjustment tasks from the operator to an intelligent 

module acting on the machine without operator interference. Model-based compensation 

strategies are a promising approach to minimize the effect of thermal errors on the overall 

accuracy of the machine tool. Furthermore, these compensation strategies enable a shift from 

resource-based design measures towards an intelligence-based procedure to improve  

the precision of produced workpieces. Especially phenomenological compensation models, 

as presented for example by Gebhardt et al. [48], Brecher et al. [49] and Mareš et al.  [50], 

are frequently applied to reduce the occurring thermal errors of machine tools. However, 

databased phenomenological compensation models can result in inaccurate compensation 

when thermal boundary conditions arise which are absent from the underlying data for  

the parameter identification. Therefore, Blaser et al. [51] developed the Thermal Adaptive 

Learning Control (TALC), which combines phenomenological compensation models and 

automatic on-machine measurements to increase the long-term robustness of phenomeno-
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logical compensation models. Consequently, the TALC enables an automated and rule-based 

adaption of the model parameters even after the initial model training phase as presented by 

Mayr et al. [52]. The TALC uses as phenomenological models autoregression with exogenous 

inputs (ARX).  

This allows a precise representation of the dynamic system behavior, compared to the 

static models which are often used in industry [53]. In comparison to the model parameters, 

the model inputs of the original TALC are predefined and cannot be adapted during  

the compensation phase. To further improve the self-learning capability Zimmermann et al. 

[54] extended the TALC by the adaptive input selection method. The concept of the TALC 

without and with adaptive input selection is shown in Fig. 9. 

 

Fig. 9.  Concept of the TALC and the adaptive input selection method adapted from [54]. After the training phase  

of the phenomenological model, where the parameters are identified, the errors become reduced (blackline in 

comparison to dashed grey line). While temperature sensors provide the input for the phenomenological model,  

the validation is done by geometrical measurements from time to time (blue vertical lines). If an out-of-tolerance 

situation (NG mode) is detected, the phenomenological model is updated by more frequent measurements. Adaptive 

input selection then in addition allows to select the most relevant temperature sensors 

The adaptive input selection method enables an automatic and individual selection and 

reselection of the inputs from all available sensors for the phenomenological compensation 

model of each considered thermal error. Consequently, the self-learning ability of the model 

setup and the model updates are significantly increased, and the required operator interaction 

to setup the TALC is further reduced. Fig. 10 exemplarily illustrates the compensation results 

for the thermal error EZ0T applying the TALC and the adaptive input selection method to  

a random speed profile of the C-axis as presented by Zimmermann et al. [54].  

Zimmermann et al. [54] also show that the adaptive sensor selection method not only 

increases the self-learning capabilities but also improves the robustness of phenomenological 

compensation models even in the case of short model training. The increased robustness  

of the thermal compensation models due to recalibration of the model inputs is illustrated in 

Fig. 11. In the case of the static sensor set the model inputs are only selected once after 

 the initial model training. During the compensation phase, only the model parameters are 

updated. As explained by Zimmermann et al. [54] the exceedances of the action control limit 

can be reduced from seven to two using the adaptive input selection approach. This 

corresponds to a 45% reduction of the productivity loss due to the required on-machine 

measurements. 
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Fig. 10. Compensation results for the thermal error EZ0T using the TALC in combination with the adaptive input 

selection and the selected model inputs using the experimental setup described in [54]. The solid vertical line  

indicates the end of the training phase and the time of the first model setup. The dashed vertical lines represent  

the exceedance of the action control limit and the dotted vertical lines illustrate the change of selected input  

variables within the model updates after the triggered relearning phase. The defined action control limits  

are illustrated by the dashed horizontal lines  

 

Fig. 11. Comparison of the compensation results for the translational errors of the C-axis using the TALC with  

a static and an adaptive sensor set [54]. The black vertical line marks the end of the training phase, the vertical  

dashed lines indicate the recalibration of the model with geometrical on-machine measurements 

In order to demonstrate the industrial feasibility and the accuracy improvement due to  

the TALC, Blaser et al. [55] applied the TALC during the manufacturing of thermal 

test-pieces. The used thermal test-piece was developed by Wiessner et al. [56] and is able to 

represent the three translation and one rotational thermal errors of a vertical rotary axis over 

eight time steps. The corresponding errors of the thermal test-piece with inactive and active 

TALC are illustrated in Fig. 12. The results show that the TALC reduces the thermal errors 

on the produced thermal test-piece by up to 91%.  
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The TALC and the adaptive input selection provide an applicable basis for self-

optimizing thermal compensation strategies for machine tools. The combination of these two 

methods significantly increases the self-learning ability for thermal compensation models, so 

that the operator interaction is reduced to a minimum and no specific knowledge of the 

thermal behaviour is needed in prior. Consequently, the machine tools can autonomously 

realize a site- and situation-specific adaption of the thermal compensation models. 

 

Fig. 12. Identified thermal errors measured with the thermal-test piece with and without active TALC [54] 

6. MACHINE ERROR COMPENSATION 

While Chapter 5 shows how self-learning and self-adaptation in combination with 

physical modelling transfers adjustment tasks from the operator to the machine tool for 

correction of thermal errors, this chapter shows a similar approach for the correction  

of dynamic behavior of the uncontrolled mechanical machine tool structure, which today is 

typically done during path planning by a skilled human NC-programmer. And again, it is one 

aspect of the intelligent machine tool to adjust parameters in future automatically. Increasing 

demands on performance, especially energy efficiency are the driver for the on-going increase 

of part accuracy requirements together with cost reduction and productivity improvements 

over the years. This development has been pointed out by Taniguchi [57] in 1983 in detail. 

Increased part accuracy requirements are directly linked to machine tool (MT) accuracy 

performance and juxtaposed to productivity requirements. Path and speed profile adjustment 

become necessary. Application of corrections as pointed out in [58], especially on NC-side is 

the common way to increase machine accuracy with justifiable effort required and without 

interaction of human operators, which is exposed in the following.  

6.1. SYSTEM UNDERSTANDING 

A general system understanding [59] of the various interactions in machine tools is given 

in Fig. 13. Based on the movement set points, the numerical control (NC), consisting of set-

point value generation and control interacts with the electro-mechanical system. Here, the 

amplifier, the electric drives and the mechanical components such as transmission elements 
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and the moving axes but also the other structural components are included. As significant 

property, the feed-back for the control is limited to the sensors arranged as semi-closed and 

closed-loop configuration. The entity of control and the part of the system where feed-back 

information is available from sensors on-line is the controlled electromechanical system. 

Unfortunately, the real movements of the tool centre point (TCP) are significantly 

influenced by contributions of the remaining uncontrolled structure, outside of control loops, 

on which the control has only limited influence. During the design of a machine tool system, 

major efforts are applied to minimise the effects of the uncontrolled structure, such as 

straightness and Abbé errors, dynamic crosstalk, in-talk but also structural thermal 

deformations etc. Typically, these effects are intended to be corrected by the CNC [60] after 

having carefully exploited the mitigation means by design. Limitations for this approach are 

the repeatability of the mechanical system and the capability, resp. uncertainty of the metro-

logy approach that is applied to gather the behaviour of the uncontrolled system. Repeatability 

is the systematic behaviour of the system which can be represented quantitatively based on 

on-line attainable system states.  

Another property of these systems is the fact that the controlled axes, given by  

the concept of having a serial axis configuration, can only influence directions of motions 

which are in parallel to the direction of the individual drive. Effects in other direction than  

the direction of the drive itself require structural damping in order to become mitigated. 

Alternative design means can be applied to minimise cross-axis effects as shown later. 

 
Fig. 13. System understanding of the chain between set-points and the real movements at the TCP  

given for mechatronic systems such as machine tools 
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6.2. DYNAMIC COMPENSATION VIA NC 

On the metrology side, the ISO 230 series provides specific procedures for the quanti-

fication of the geometric behaviour. While in ISO 230-1:2012 [61] methods are specified for 

testing the accuracy of machine tools, operating either under no-load or under quasi-static 

conditions, by means of geometric and machining tests, in ISO 230-2:2014 [62] the accuracy 

and repeatability of numerically controlled axes is regarded. How to handle this class  

of effects is be discussed in the next section. Covering the interaction of more than one axis, 

ISO 230-4 [63] provides a procedure for testing and evaluation of circular paths created by 

two interpolating linear axes. These standards provide the quantified behavior of the MT 

which can directly be applied for NC- compensation as input for compensation tables but also 

for the validation of the behavior after the compensation is applied. Explicitly in ISO 

16907/TR:2015(E) [64], the case of dynamic forces due to high-speed machine motions are 

not covered.  

As pre-requisite, the systematic share of dynamic effects has to be revealed and 

quantified. Important are appropriate measurement devices such as the cross-grid by 

Heidenhain [65] or the R-Test [66], which allow to capture the spatial nature of the dynamic 

effects. 

For the spatial quantification of cross-talk effects, the measurement of dynamic circles 

in the three coordinate planes has been proposed [66]. Based on the quite systematic nature 

of the inertial based crosstalk effects, shown in Fig. 14, proportionality factors describing the 

dependency of lateral displacements in the three Cartesian directions caused by arbitrary axis 

accelerations depending on the actual location in the working envelope of the MT are derived. 

Based on these measurements systematic effects can be corrected as long as the effects 

can be quantified and as additional pre-requisite, the NC is capable to use the internally 

available values for corrective actions. An example of such capabilities is the Dynamic 

Precision by Heidenhain [67]: The CTC (Cross Talk Compensation) allows to compensate 

for acceleration dependent position deviations by using the actual axis acceleration for 

derivation of position corrections. The Heidenhain NC-functionalities LAC (Load adaptive 

control) and PAC (Position adaptive control) consist of adapting the control parameters based 

on actual load / work-piece mass and based on the actual axis position. These functionalities 

increase the contour accuracy together with potentially increasing productivity by higher 

feed-rates by exerting influence on the uncontrolled system.  

As MTsa high degree of repeatability, which is a pre-requisite for all kinds of correc-

tions, the repetitive behaviour can be used for the iterative application of correction means. 

Iterative learning control (ILC) is such an approach [68], which iteratively improves the path 

behaviour based on the basis of previous runs. ILC can be applied if the machining task is 

medium to high volume production and therefore the same trajectories are to be followed 

consecutively. But upon feature segmentation of paths with parametrized path features,  

the applicability of ILC can be extended down to single piece production, with the prerequisite 

that trained data for each feature can be retrieved from the expert system. 

Figure 15 illustrates the concept: Without application of ILC the example trajectory 

shows significant path deviations (red). Consecutively, measurement values of the axis 

encoders CO-ILC (ENC) or measurement results at the TCP with a cross grid CO-ILC (KGM) 
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are used for a convex optimisation approach. As expected not the same amount of improve-

ment can be obtained: Cross grid measurements (blue) show a quite good accordance of the 

TCP trajectory with the desired path in the middle of the dashed lines. If the axis encoder 

values are used for the learning procedure, obviously effects between the encoder locations 

and the TCP are due to the uncontrolled structure and remain hidden.  

  

Fig. 14. R-Test for dynamic measurements: left: measurement setup: precision sphere and three incremental probes; 

right: representation of circular trajectories in YZ-plane for a jerk of 0.5 m/s3 (top) and 4.5 m/s3 (bottom) [67] 

 

Fig. 15 . Comparison of path deviations: Path deviations with standard control scheme (red), Path measured on 

encoder level applying ILC convex optimisation approach (green), Path measured at TCP applying 

ILC convex optimisation approach (blue), [68] 
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7. CONCLUSION 

Manufacturing technology is submerged to drastic changes. These stem from the dicta-

torship of ever-increasing productivity, accuracy, sustainability but also arise from the deve-

lopment of enabling technologies from outside of manufacturing. It is recognized that cheap 

devices developed in incredible mass production for the consumer market take over the lead 

in the equipment of production machines. Large number of sensors, optical, acoustical 

monitoring of processes and machines, communication technologies and artificial intelligence 

provide the technological basis for future manufacturing systems. This fuels the exposed 

vision of machine tools with functionalities of the operator integrated in an intelligent and 

self-learning expert system, which then increases the autonomy of the machine, reduces setup 

times and stores and safeguards implicit knowledge of operators. Taking this as the overall 

development goal, different technological research vectors and their already available results 

are shown, which eventually become aspects of the intelligent manufacturing machine. Setup 

of grinding processes is an experience based and laborious task. AI with the support  

of physical modelling so called physics supported AI can be seen as corner stone of an intelli-

gent grinding machine. Chatter is limiting the productivity in cutting with geometrically 

defined cutting edges. Despite being well researched, industrially viable solutions for reliable 

chatter suppression are lacking. Here also physics supported AI approaches are of benefit 

showing that even with AI approach human intelligence and system understanding is still 

valuable. Increasing the accuracy are requirements that benefit from AI on the basis of a phy-

sical model of the system.  

The understanding of the system with human intelligence is the key technology to gain 

accuracy increase beyond what can be achieved in manufacturing of the machine tool. This 

class of technologies is shown to be useful already for the autonomous suppression of thermal 

and dynamic misbehavior of machine tools.  

REFERENCES  

[1] UEDA K., 1992, An Approach to Bionic Manufacturing Systems Based on DNA-Type Information, Proc. of the 

ICOOMS’92, 303–308. 

[2] MALSHE A., RAJURKAR K., SAMANT A., NOERGAARD-HANSEN H., BAPAT S., JIANG W., 2013, Bio-

inspired Surfaces for Advanced Applications, CIRP Annals, 2/2, 607–628. 

[3] BYRNE G., DIMITROV D., MONOSTORI L., TETI R., VAN HOUTEN F., WERTHEIM R., 2018, 

Biologicalisation: Biological Transformation in Manufacturing, CIRP Journal of Manufacturing Science and 

Technology, 21, 1–32. 

[4] EL MARAGHY H., MONOSTORI L., SCHUH G., EL MARAGHY W., 2021, Evolution and Future of Manufac-

turing Systems, CIRP Annals 70/2, 35–658. 

[5] WEGENER K., SPIERINGS AB., STAUB A., 2020, Bioinspired Intelligent SLM Cell, 12th CIRP Conference on 

Intelligent Computation in Manufacturing Engineering (ICME), Procedia CIRP, 88, 624–630. 

[6] MÖHRING H-C., WIEDERKEHR P., ERKORKMAZ K., KAKINUMA Y., 2020, Self-Optimizing Machining 

Systems, CIRP Annals 69/2, 740–763. https://doi.org/10.1016/j.cirp.2020.05.007. 

[7] DALAEE M., 2020, Enhancement in Deposition rate of LASER DMD, PhD-thesis ETH Zürich, No. 26987. 

[8] WEGENER K., SPIERINGS A.B., TETI R., CAGGIANO A., KNÜTTEL D., STAUB A., 2021, A Conceptual 

Vision for a Bio-Intelligent Manufacturing Cell for Selective Laser Melting, CIRP Journal of Manufacturing Science 

and Technology, 34, 61–83.  

https://doi.org/10.1016/j.cirp.2020.05.007


26 K. Wegener et al./Journal of Machine Engineering, 2021, Vol. 21, No. 4, 5–28 

 
[9] MC CANN R., OBEIDI M.A., HUGHES C., MC CARTHY E.,  2021, In-Situ Sensing, Process Monitoring and 

Machine Control in Laser Powder Bed Fusion: A Review, Additive Manufacturing, https://doi.org/10.1016/ 

j.addma.2021.102058  

[10] RENKEN V., von FREYBERG A., SCHÜNEMANN K., PASTORS F., FISCHER A., 2019, In-Process Closed-

Loop Control for Stabilising the Melt Pool Temperature in Selectivelaser Melting, Progress in Additive Manufac-

turing, 4/4, 411–421, https://doi.org/10.1007/s40964-019-00083-9. 

[11] FLEMING T.G., NESTOR S.G.L., ALLEN T.R., BOUKHALED M.A., SMITH N.J., FRASER J.M., 2020, 

Tracking and Controlling the Morphology Evolution of 3D Powder-Bedfusion in Situ Using Inline Coherent 

Imaging, Additive Manufacturing, 32, doi:10.1016/j.addma.2019.100978. 

[12] BARSCHDORFF D., MONOSTORI L., 1991, Neural Networks – Their Applications and Perspectives in Intelli-

gent Machining, Computers in Industry, 17, 101–119. 

[13] MONOSTORI L., MARKUS A., VAN BRUSSEL H., WESTKÄMPER E., 1996, Machine Learning Approaches 

to Manufacturing, CIRP Annals, 45/2, 675–712. 

[14] PHAM D.T., PHAM P.T.N., 1999, Artificial Intelligence in Engineering, International Journal of Machine Tools 

and Manufacture, 39, 937–949.  

[15] BYRNE G., DAMM O., MONOSTORI L., TETI R., VAN HOUTEN F., WEGENER K., WERTHEIM R., 

SAMMLER F., 2021, Towards High Performance Living Manufacturing Systems - A New Convergence Between 

Biology and Engineering, CIRP Journal of Manufacturing Science and Technology, 34, 6–21. 

[16] ROWE W.B., YAN L., INASAKI I., MALKIN S., 1994, Applications of Artificial Intelligence in Grinding, CIRP 

Annals, 43/2 521–531, https://doi.org/10.1016/S0007-8506(07)60498-3. 

[17] SAKAKURA M., INASAKI I., 1992, A Neural Network Approach to the Decision Making Process for Grinding 

Operations, CIRP Annals, 41, 353–356. https://doi.org/10.1016/S0007-8506(07)61221-9. 

[18] MORGAN M.N., CAI, A.R.. GUIDOTTI ALLANSON D.R., MORUZZI J., ROWE W., 2007, Design and 

Implementation of an Intelligent Grinding Assistant System, International Journal of Abrasive Technology, 1/1, 106–

135. 

[19] BARRENETXEA D., MARQUINEZ J. I., ÁLVAREZ J., FERNÁNDEZ R., GALLEGO I., MADARIAGA J., 

GARITAONAINDIA I. , 2012, Model-Based Assistant Tool for the Setting-up and Optimization of Centerless 

Grinding Process, Machining Science and Technology, 16/4, 501-523. 

[20] GOTTLOB G., FRÜHWIRTH T., HORN W., 1990, Expertensysteme, Springer Vienna. 

[21] WATERMAN D.A., 1986, A Guide to Expert Systems. The Teknowledge Series in Knowledge Engineering, 

Reading-Mass, a.o. Addison-Wesley.  

[22] GAEGAUF F., 2011, Technologie Schafft Wettbewerbsvorteile, Schweizer Präzisionstechnik, 26–28. 

[23] GHOLAMI M.H., AZIZI M.R., 2014, , Constrained Grinding Optimization for Time, Cost, and Surface Roughness 

Using NSGA-II, The International Journal of Advanced Manufacturing Technology, 73/5, 981-988. 

[24] KWAK J-S., 2005, Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface 

Grinding Process, International Journal of Machine Tools and Manufacture, 45/3, 327–334. 

[25] SATHYANARAYANAN G., JOSEPH LIN I., CHEN M-K., 1992, Neural Network Modelling and Multiobjective 

Optimization of Creep Feed Grinding of Superalloys, International Journal of Production Research, 30/10, 2421–

2438. 

[26] ZADEH L., 1963, Optimality and Non-Scalar-Valued Performance Criteria, IEEE Transactions on Automatic 

Control, 8/1, 59–60. 

[27] LIAO T.W., CHEN L., 1994, A Neural Network Approach for Grinding Processes: Modelling and Optimization, 

International Journal of Machine Tools and Manufacture, 34/7, 919–937. 

[28] WEN X.M., TAY A.A.O., NEE A.Y.C., 1992, Micro-Computer-Based Optimization of the Surface Grinding 

Process, Journal of Materials Processing Technology, 29/1, 75–90. 

[29] PAWAR P.J., RAO R.V., DAVIM J.P., 2010, Multiobjective Optimization of Grinding Process Parameters Using 

Particle Swarm Optimization Algorithm, Materials and Manufacturing Processes, 25/6, 424–431. 

[30] RAO R., PAWAR P., 2010, Grinding Process Parameter Optimization Using Non-Traditional Optimization 

Algorithms, Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 

224/6, 887–898. 

[31] MANIMARAN G., KUMAR M.P., 2013, Multiresponse Optimization of Grinding AISI 316 Stainless Steel Using 

Grey Relational Analysis, Materials and Manufacturing Processes, 28/4, 418–423. 

[32] SIDDIQUEE A.N., KHAN Z.A., MALLICK Z., 2010, Grey Relational Analysis Coupled with Principal Component 

Analysis for Optimisation Design of the Process Parameters in In-Feed Centreless Cylindrical Grinding, The 

International Journal of Advanced Manufacturing Technology, 46/9, 983–992. 

[33] RUDRAPATI R., PAL P.K., BANDYOPADHYAY A., 2016, Modeling and Optimization of Machining Parameters 

in Cylindrical Grinding Process, The Inter. J. of Advanced Manufacturing Technology, 82/9, 2167–2182. 

https://doi.org/10.1007/s40964-
https://doi.org/10.1016/S0007-8506(07)60498-3
https://doi.org/10.1016/S0007-8506(07)61221-9


K. Wegener et al./Journal of Machine Engineering, 2021, Vol. 21, No. 4, 5–28 27 

 
[34] KRAJNIK P., KOPAC J., SLUGA A., 2005, Design of Grinding Factors Based on Response Surface Methodology, 

Journal of Materials Processing Technology, 162, 629–636. 

[35] MAIER M., RUPENYAN A., BOBST C., WEGENER K., 2020, Self-Optimizing Grinding Machines Using 

Gaussian Process Models and Constrained Bayesian optimization, The International Journal of Advanced 

Manufacturing Technology, 108/1, 539–552. 

[36] ALTINTAS Y., BER A.A., 2001, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, 

and CNC Design, Appl. Mech. Rev., 54/5, B84. 

[37] NAMAZI M., ALTINTAS Y., ABE T., RAJAPAKSE N., 2007, Modeling and Identification of Tool Holder–Spindle 

Interface Dynamics, International Journal of Machine Tools and Manufacture, 47, 1333–1341. 

[38] LÖSER M., GROSSMANN K., 2016, Influence of Parameter Uncertainties on the Computation of Stability Lobe 

diagrams, Procedia CIRP, 46, 460–463. 

[39] POSTEL M., BUGDAYCI B., MONNIN J., KUSTER F., WEGENER K., 2018, Improved Stability Predictions in 

Milling Through More Realistic Load Conditions, Procedia CIRP, 77, 102–105. 

[40] GROSSI N., SALLESE L., SCIPPA A., CAMPATELLI G., 2014, Chatter Stability Prediction in Milling Using 

Speed-Varying Cutting Force Coefficients, Procedia CIRP, 14, 170–175. 

[41] FRIEDRICH J., HINZE C., RENNER A., VERL A., LECHLER A., 2017, Estimation of Stability Lobe Diagrams 

in Milling with Continuous Learning Algorithms, Robotics and Computer-Integrated Manufacturing, 43, 124–134. 

[42] CHERUKURI H., PEREZ-BERNABEU E., SELLES M., SCHMITZ T., 2019, Machining Chatter Prediction Using 

a Data Learning Model, Journal of Manufacturing and Materials Processing, 3, 45. 

[43] POSTEL M., BUGDAYCI B., KUSTER F., WEGENER K., 2020, Neural Network Supported Inverse Parameter 

Identification for Stability Predictions in Milling, CIRP Journal of Manufacturing Science and Technol., 29, 71–87. 

[44] POSTEL M., 2020, Model-Supported Improvement of Stability Limit Predictions in Milling Through Artifical 

Neural Networks, PhD thesis. (IWF), ETH Zurich. 

[45] POSTEL M., BUGDAYCI B., WEGENER K., 2020, Ensemble Transfer Learning for Refining Stability Predictions 

in Milling Using Experimental Stability States, The International Journal of Advanced Manufacturing Technology, 

107, 4123–4139. 

[46] FRIEDRICH J., HINZE C., LECHLER A., VERL A., 2016, On-line Learning Artificial Neural Networks for 

Stability Classification of Milling Processes, International Conference on Advanced Intelligent Mechatronics 

(AIM), 357–364. 

[47] MAYR J., JEDRZEJEWSKI J., UHLMANN E., ALKAN DONMEZ M., KNAPP W., HÄRTIG F., WENDT K., 

MORIWAKI T., SHORE P., SCHMITT R., BRECHER C., WÜRZ T., WEGENER K., 2012, Thermal Issues in 

Machine Tools, CIRP Annals – Manufacturing Technology, 61/2, 771–791. 

[48] GEBHARDT M., MAYR J., FURRER N., WIDMER T., WEIKERT S., KNAPP W., 2014, High Precision Grey-

box Model for Compensation of Thermal Errors on Five-Axis Machines, CIRP Annals – Manufacturing Technology, 

63/1, 509–512. 

[49] BRECHER C., HIRSCH P., WECK M., 2004, Compensation of Thermo-Elastic Machine Tool Deformation Based 

on Control Internal Data, CIRP Annals – Manufacturing Technology, 53/1, 299–304. 

[50] MAREŠ M., HOREJŠ O., HAVLÍK L., 2020, Thermal Error Compensation of a 5-Axis Machine Tool Using 

Indigenous Temperature Sensors and CNC Integrated Python Code Validated with a Machined Test Piece, Precision 

Engineering, 66, 21–30. 

[51] BLASER P., PAVLIČEK F., MORI K., MAYR J., WEIKERT S., WEGENER K., 2017, Adaptive Learning Control 

for Thermal Error Compensation of 5-Axis Machine Tools, Journal of Manufacturing Systems, 44, 302–309. 

[52] MAYR J., BLASER P., RYSER A., HERNANDEZ-BECERRO P., 2018, An Adaptive Self-Learning Compensation 

Approach for Thermal Errors on 5-Axis Machine Tools Handling an Arbitrary Set of Sample Rates, CIRP Annals, 

67/1, 551–554. 

[53] ZIMMERMANN N., LANG S., BLASER P., MAYR J., 2020, Adaptive Input Selection for Thermal Error 

Compensation Models, CIRP Annals, 69/1, 485–488. 

[54] BLASER P., MAYRJ., WEGENER, K., 2020, Simulation Based Comparison of Thermal Error Modelling Methods 

for Machine Tools, In euspen Special Interest Group Meeting, Thermal Issues, 2–5. 

[55] BLASER P., MAYR J., WEGENER K., 2019, Long-Term Thermal Compensation of 5-Axis Machine Tools Due to 

Thermal Adaptive Learning Control, MM Science Journal, 4, 3164–3171. 

[56] WIESSNER M., BLASER P., BÖHL S., MAYR J., KNAPP W., WEGENER K., 2018, Thermal Test Piece for 

5- Axis Machine Tools, Precision Engineering, 52, 407–417. 

[57] TANIGUCHI N., 1983, Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials 

Processing, Annals of the CIRP, 32/2, 573–582. 

[58] SARTORI S., 1995, Geometric Error Measurement and Compensation of Machines, Annals of the CIRP, 44/2, 

599–609.  



28 K. Wegener et al./Journal of Machine Engineering, 2021, Vol. 21, No. 4, 5–28 

 
[59] WEIKERT S., 2000, Beitrag zur Analyse des dynamischen Verhaltens von Werkzeugmaschinen, Diss. ETHZ No 

13596, doi:10.3929/ethz-a-003896403. 

[60] SCHWENKE H., 2008, Geometric Error Measurement and Compensation of Machines – An update, Annals of the 

CIRP, 57/2, 660–675. 

[61] ISO 230-1:2012, Test Code for Machine Tools – Part 1: Geometric Accuracy of Machines Operating Under No-

load or Quasi-Static Conditions. 

[62] ISO 230-2:2014, Test Code for Machine Tools – Part 2: Determination of Accuracy and Repeatability of Positioning 

of Numerically Controlled Axes. 

[63] ISO 230-4, Test code for machine tools – Part 4: Circular Tests for Numerically Controlled Machine Tools.  

[64] ISO/TR 16907:2015(E), Machine tools – Numerical Compensation of Geometric Errors. 

[65] http://www.heidenhain.com/site.html. 

[66] THOMA S., HAAS T., NGUYEN M.H., WEIKERT S., WEGENER K., 2015, In- and Cross-Talk Evaluation 

of Different Machine Concepts, Landamap Conference. 

[67] https://www.klartext-portal.de/de_DE/tipps/funktionen/dynamic-precision/. 

[68] HAAS T., LANZ N., KELLER R., WEIKERT S., WEGENER K., 2016, Iterative Learning Approach for Machine 

Tools Using a Convex Optimisation Approach, Procedia CIRP, 46, 391–395. 

 

 

 

http://www.heidenhain.com/site.html
https://www.klartext-portal.de/de_DE/tipps/funktionen/dynamic-precision/

