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INTELLIGENT CYBER-PHYSICAL MONITORING AND CONTROL OF I4.0 

MACHINING SYSTEMS – AN OVERVIEW AND FUTURE PERSPECTIVES 

Rapid evolution in sensing, data analysis, and industrial internet of things technologies had enabled  

the manufacturing of advanced smart tooling. This has been fused with effective digital inter-connectivity and 

integrated process control intelligence to form the industry I4.0 platform. This keynote paper presents the recent 

advances in smart tooling and intelligent control techniques for machining processes. Self-powered wireless 

sensing nodes have been utilized for non-intrusive measurement of process-born phenomena near the cutting zone, 

as well as tool wear and tool failure, to increase confidence in the process and tool condition monitoring accuracy. 

Cyber-physical adaptive control approaches have been developed to optimize the cycle time and cost while 

eliminating machined part defects. Novel artificial intelligence AI-based signal processing and modeling 

approaches were developed to guarantee the generalization and practicality of these systems. The paper concludes 

with the outlook for future work needed for seamless implementation of these developments in industry. 

1. INTRODUCTION 

Recently, manufacturers have realized the benefits of advances in digital technologies 

along with the development of the Industrial Internet of Things (IIoT), where a multitude  

of devices connected by communication technologies monitors, analyzes, and delivers 

valuable new insights. The IIoT has expanded at a rapid rate due to the development of smart 

sensors and data storage capacities that has led to “Industry 4.0” revolution. Advanced 

manufacturing techniques are combined with IIoT to drive further intelligent actions back in 

the physical world, motivating unmanned manufacturing. This can result in industrial 

competitive advantage by reducing cost, increasing productivity, improving part quality, and 

preventing damage to machined parts during processing. A recent survey that was conducted 

in Europe showed that more than 90% of industrial companies are investing in digital factories 
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with the aim of increasing the efficiency by 12% [1]. The Canadian aerospace industry, as  

an example, has a long-term plan to drive economic growth through innovation, investing 

approximately $1.5 billion yearly in research and development activities [2]. Approximately, 

70% of this sector activities are manufacturing, providing more than $25 billion of direct 

revenue annually. Manufacturing of large aerostructures requires hours of complex metal 

removing processes. Evaluation of these processes through inspection of the finished 

workpiece, at the end of the manufacturing cycle, is insufficient since any shortfall cannot be 

corrected and the product may be scraped. In addition, 7–20% of total tool machine downtime 

is caused by tool failure, and the cost of tools and tool changes accounts for 3–12% of the 

total processing cost [3]. Proper and reliable manufacturing of aerostructures requires 

accurate prediction of the condition of the cutting tool and continuous control of the variations 

of the cutting process. It is clear that improvement and optimization of metal cutting processes 

are essential for the continuous growth of this sector, which is characterized by high variety-

low volume production. Investigations based on advanced Tool Condition Monitoring (TCM) 

techniques and Adaptive Control (AC) systems are required to achieve this goal of unmanned 

machining system. Hence, tremendous efforts are exerted towards developing innovative 

technologies to improve the performance of these systems and to introduce novel approaches 

that can provide solutions to the challenges facing manufacturers. 

An adaptive control (AC) system is a digital controller that adapts itself to the time 

varying parameters of cutting process dynamics at each control interval [4]. Different 

approaches have been implemented in adaptive control systems, including model-based and 

AI approaches, to maintain or optimize a certain performance index, such as process 

economics, tool life or machined part quality. Cutting forces can change significantly during 

the course of cutting operations and are directly related to most of the cutting process aspects. 

Consequently, the bulk of the available research work, as well as commercial systems, have 

concentrated on adaptive control with constraint type systems, which use real–time feedback 

to maintain a fixed spindle force/power level. These systems depend on empirical system 

learning, which requires extensive experimental training and calibration and does not take 

into account the considerable process variability, as well as the impact of the modified feed 

on the produced part quality at different tool wear levels. 

Several TCM systems have been developed and reported in literature for discrete 

manufacturing to monitor various aspects of cutting tool deterioration, such as tool wear, 

chipping, and breakage. These tool failure mechanisms are affected by the cutting conditions 

and the tool and workpiece materials. As a result, different consequences, such as high cutting 

forces and temperatures, are expected to affect the deviation in the dimensional accuracy and 

surface integrity of the machined part. The complexity of the tool deterioration phenomena 

alongside the high dynamics of cutting processes have limited the opportunities of developing 

a unique solution to analytically model the complete process [5, 6]. Additionally, the harsh 

environment of the cutting process has restricted the applicability of real-time direct 

monitoring, such as using a machine vision system to capture actual geometric changes due 

to tool wear. An effective real-time sensor-based TCM, therefore, can utilize indirect 

measurements to put a cutting tool under continuous surveillance to safeguard the workpiece 

from damage. Sensor selection, multi-sensor fusion, signal processing, feature extraction and 

selection, and prediction models are the major research topics in indirect TCM systems.  
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Different indirect measurements have been utilized and reported in the open literature 

and correlated to the cutting tool state in machining applications. Cutting forces are 

considered as the best variable to describe the cutting process due to the completeness of the 

process information and the sensitivity of the cutting force to tool geometry changes [3, 7, 8]. 

However, such a measurement is difficult to make during cutting in real industrial 

environment. On the other hand, the power and current signals of the spindle driving motor 

can easily be monitored and used to give an indication of the tool condition as they are directly 

related to the cutting forces [9, 10]. Acoustic emission AE sensors can capture abnormalities 

during the turning or milling operations, and have the flexibility to be mounted on the tool or 

the workpiece without major disturbances to various machining activities [11, 12]. Worn and 

broken tools can cause high vibrations during cutting operations; these vibrations can be 

detected using accelerometers [13–15] Additionally, temperature and ultrasonic sensors have 

been used to monitor the tool condition and surface roughness, respectively [16–18]. 

Nevertheless, they did not show their readiness to be applied in industrial applications.  

The literature on TCM systems has witnessed several contradictions in selecting the 

appropriate sensor to detect the type(s) of tool failure. This is due to the dependency of the 

sensor signals on the failure mechanism, the mounting location, orientation, and the tool path, 

among other factors.  

The recent revolution in sensing technologies and wireless communication, as part  

of the IIOT, has enabled the development of tool-embedded sensors. This allows real-time 

measurement of primary machining phenomena as close as possible to the signal source. 

Hence, the acquired signal coherence and accuracy are increased. Miniature wireless 

accelerometers, strain gauges, polyvinylidene fluoride (PVDF) sensors, and thermocouples 

have been embedded on either the cutting tool body or the machine spindle to measure 

the process vibration, torque, deflection, and temperature in milling and other machining 

operations [19–22]. Such systems have enabled acquiring in-process data near a rotating tool 

tip. However, several challenges are still to be overcome for industrial implementations  

of these systems. These include the limited accuracy, sensitivity and bandwidth of miniature 

sensors and the power management needed to continuously operate over a full working shift. 

Additionally, most of the available tool-embedded sensors affect the cutting tool rigidity, 

which may limit their use. 

The signal processing methods used in TCM cover the majority of conventional 

processing techniques, including time domain analysis [3, 23–25], frequency domain analysis 

[12, 26–29] time–frequency analysis techniques [10, 30–32] and artificial intelligence 

techniques [14, 30–36]. Despite the tremendous effort exerted in this field, there is still no 

clear generalized methodology for developing a system to accurately detect the tool condition 

in real-time, and even worse, to take a proper action. Although several physical and statistical 

features have been reported as sensitive features to the tool condition, they cannot be 

generalized as they were extracted from process-dependent data. The level of sensitivity was 

much dependent on the cutting parameters, acquired signal quality, and signal conditioning 

and processing method. A smart system should be capable of providing faithful feedback on 

the state of the monitored process. Additionally, an intelligent system can further take 

corrective actions based on this feedback to optimize or stop the process, leading to unmanned 

manufacturing systems. This is achievable through developing hybrid cyber-physical 
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monitoring and control systems that utilize analytical physical-based models with AI 

approaches to deal with the prediction uncertainty in real-time. Such approach is favourable 

for real-time optimization and control of machining processes through integrating digital 

shadows with AI monitoring systems to adaptively take corrective actions in real-time. 

However, to generalize this approach, AI self-learning capability is required for in-process 

training of monitoring and control systems. 

2. SEAMLESS IMPLEMENTATION OF TCM IN MACHINING SYSTEMS 

2.1. GENERALIZED SIGNAL PROCESSING AND DECISION-MAKING APPROACH  

The cyclic load in milling processes generates a steady signal that is developed by  

the periodic engagement and disengagement between tool and workpiece. The characteristics 

of this signal, e.g., amplitude and frequency, mainly depend on the cutting parameters such 

as cutting conditions (i.e., speed, feedrate, axial and radial depth of cut), tool geometry and 

tool path. During a cutting process, progressive tool wear alters the tool edge geometry and 

hence change the acquired signal properties, which can be distinguished in the frequency and 

time domains [37, 38]. However, this change is usually distorted in a nonlinear fashion by 

variations in the cutting parameters and interfering noises in industrial environment. This 

limits the capability of the features extracted directly from raw signals to globally represent 

the tool wear state. Recently, Hassan et al. [13] developed a novel signal processing and 

decision making approach that can mask the effect of cutting parameters and accentuate  

the tool wear effect in the extracted features. Additionally, this approach greatly minimizes 

the learning effort needed to train the decision making model and reduces the signal noises 

effect on the extracted features, which enables its implementation in industrial environment. 

This generalized approach is based on a two-stage hybrid signal processing technique that 

integrates time-frequency signal analysis with deep and conventional machine learning 

approaches. In the first stage, a signal scattering representation technique that fuses wavelet 

analysis within the convolution neural network layers is adopted. This multi-layer time-

frequency analysis technique separates multiscale signal information for low-variant features 

extraction. It provides locally transposition invariant representation that reduces the extracted 

features space while preserving the signal energy [39]. Hence, it masks the effect of the 

cutting conditions variation and the noise on acquired signals, without the loss of valuable 

tool wear information. To further maximize the variance between tool condition classes over 

the variance within the extracted features of the same class, a linear discriminant analysis 

(LDA) structure was developed in the second stage to define the tool condition in real-time. 

Wavelet-scattering convolution neural network framework (WSCNN) provides stable and 

invariant signal representation through cascaded layers of tri-step processing framework. 

Figure 1 illustrates the structure of the developed approach. A moving windowing function is 

applied to segment the signals. Each segment information is separated among WS framework 

layers. In the zeroth layer, the segment signal is filtered by low pass filter, which is  

an averaging scaling function of the signal. The high frequencies information is captured by 
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creating a new representation of the same signal segment by applying wavelet transform with 

each wavelet filter in the filter bank and taking the modulus [39]. These three steps, i.e., 

scaling, wavelet convolution and modulus, are cascaded in successive layers using the 

generated segment representation as the input signal. The output of the scaling step of all 

layers are the scattering features that represent the processed segment. Through these stages, 

signal deformations, caused by variations in the cutting conditions or the noise, are linearized 

by separating the variations across different frequency scales [40].  

 

Fig. 1. WSCNN-LDA hybrid approach flow chart [13] 

The number of layers, depth of each layer and wavelet function parameters, e.g., type  

of wavelet and frequency resolution, are predefined parameters that can be adjusted based on 

the processed signal properties and the required resolution level. This facilitates WSCNN 

framework for accurate signal representation using low training data, as compared to deep 

machine learning approaches, where nodes weights and biases need to be learned. 

Additionally, it eliminates the expert’s time and effort for feature extraction and optimization 

for conventional ML models. A Morlet wavelet, which is a Gaussian windowed sinusoid, is 

employed in this framework. The wavelet filter banks are automatically selected to have 

enough frequency resolution to separate harmonic structures based on the passing and rotating 

frequency of the cutting tool. To generate generalized low-variance features, the scattering 

features is normalized to de-correlate them at different orders. This approach provides  

a cutting conditions-independent representation of tool condition, and thus, significantly 

reduces the required learning effort. An N-way ANOVA analysis of the WSCNN extracted 

features has shown the features' high sensitivity to the tool condition compared to the cutting 

conditions (feedrate and depth of cut), tool geometry (number of flutes, diameter, and corner 

radius) and their interactions [13]. The features provided a distinguished and stable 

representation of tool wear state over time. The WSCNN-LDA approach has proven to reduce 

the learning efforts needed to train the classification model to only a couple of seconds  

of machining using a fresh and a worn tool. This is up to 97% reduction in learning efforts 

compared to typical learning approaches. The approach achieved a 98% detection accuracy 
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within more than 500 cutting tests using a wide range of tool paths, where cutting conditions 

were varied by multiples of up to 10, in conventional and high speed milling processes  

of titanium and aluminum alloys.  

In [13], the developed approach has been applied to signals acquired from a high-end 

triaxial accelerometer mounted on the spindle head near the cutting tool, which was wired to 

a National Instrument data acquisition card type NI 9232. It discussed the system applicability 

to conditions far from the training data and demonstrated the approach capability to accurately 

detect the tool condition at different cutting conditions. The results showed that by using only 

one combination of cutting conditions per tool condition for training, the system accurately 

detected the tool condition in up to 79 unlearned combinations of cutting conditions for  

the same tool. Hence, the proposed approach can successfully extrapolate results far from  

the training dataset. 

In addition to changes in cutting parameters, it is known that the frequency response 

functions of each sensor can have an effect on the vibration signal characteristics. Therefore, 

in this work, the WSCNN-LDA approach sensitivity to the sensor frequency response is 

benchmarked through developing and utilizing a cost-effective, self-powered spindle-

mounted wireless vibration sensor, as shown in Section 2.2.1. Additionally, the practicality 

and generalization ability of this approach is examined by utilizing different means of sensing 

and different machine tools. The spindle feedback signals, namely the driving motor current, 

voltage, and power, acquired from two different machine tools using different transducer 

types have been analyzed using the WSCNN-LDA approach, as seen in Section 2.2.2. In total, 

five sensor/machine tool combinations have been tested and benchmarked. The results  

of applying the WSCNN-LDA approach to these combinations are presented in Section 2.2.3.  

2.2. GENERALIZED SIGNAL PROCESSING AND DECISION-MAKING APPROACH AS A DRIVER FOR 

DIGITAL TRANSFORMATION  

2.2.1. IMPLEMENTATION OF AI SENSOR-BASED APPROACHES 

The quality of the acquired vibration signals are highly dependent on the path between 

the vibration source and the accelerometer location. The use of spindle-mounted 

accelerometers, which requires invasive embedding for sensor wiring, may limit the machine 

workspace. Miniature wireless micro-electromechanical system MEMS accelerometers are a 

cost-effective solution that can be utilized to avoid such machine retrofitting. However, their 

signals have limited bandwidth and notoriously difficult to filter, making them prone to 

delivering inaccurate information [41]. The power management of wireless accelerometers 

adds another layer of complexity as well. The authors’ effort to use a self-powered wireless 

vibration sensing node is presented in this section. Figure 2 shows the developed spindle-

mounted self-powered vibration-sensing node and its main components. A smart, low power, 

miniature tri-axial accelerometer ⑥ with high speed analog-to-digital A/D converter has 

been used to acquire and digitalize the tool vibration signals. A miniature micro-controller 

unit (MUC) with built-in wireless transmitter ⑤ was utilized for signal conditioning and 
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transmission. The data is then acquired on a personal computer for processing and TCM. The 

MCU was powered by a rechargeable battery ③. One of the main drawbacks of available 

sensing nodes in TCM literature is the need for battery recharging, which interrupt the 

machining process and require repetitive maintenance actions. To enable self-powering 

capability, a hybrid energy-harvesting module has been developed using a Radio frequency 

RF ① and mechanical energy ② harvesting components. 

 

Fig. 2. Wireless spindle-mounted vibration sensing node (a), its components (b) 

The RF module harvests the energy from an electromagnetic field generated by an RF 

transmitter positioned outside the machine tool. The mechanical module converts the machine 

vibration energy to the electrical energy using piezo ceramics. The harvested energy has been 

used to charge the powering battery through a power conditioning board ④. The developed 

node can provide continuous data stream of tri-axial vibration signals for more than eight 

hours. The MCU can be configured into low power mode during the machine inactive periods 

to save energy and prolong the battery life. The physical size of the main components of the 

developed sensing node are shown in Fig. 2b relative to the size of a Lonnie. 

2.2.2. EXPERIMENTAL SETUP AND TEST MATRIX 

In order to assess the performance of the proposed approach, two sets of conventional 

roughing operations of Ti6Al4V workpiece under flood cooling condition were performed. 

Table 1 shows the full factorial matrix of the cutting speed n, feedrate f and axial ap and radial 

ae depths of cut. Two tungsten carbide endmills were used; T1 is a four-flute endmill with  

a 50 mm diameter and T2 is a three-flute tool with a 32 mm diameter, which were used in  

set 1 and set 2 tests, respectively. In total, 192 side-milling tests were performed including 

one repetition.  

Table 1. Cutting conditions full factorial 

Set # n (rpm) fz (mm/tooth) 
ap 

(mm) 

ae 

(mm) 
Direction Total no. of tests 

1 300 0.1, 0.14 3.5, 7 12, 24, 38 Up and down milling 96 

2 500 0.08, 0.12 2.5, 5 8, 16, 24 Up and down milling 96 

1

6

2

5
34

(a)

1 2

3 4

5

6(b)
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The experimental setup is shown in Fig. 3a. To test the developed approach against 

different spindle controller and spindle feedback transducers, two machine tools have been 

utilized. Set 1 tests were performed on a high-power horizontal machining center Makino 

A88. This machining center is featured with 50 kW spindle power, three linear and two rotary 

axes, a maximum spindle speed of 18,000 rpm and a maximum feed rate of 50 m/min, tool 

clamping force of 19.6 kN, and HSK 100 A spindle adapter. The machine has a FANUC 16i 

MA controller. The spindle feedback signals, namely the instantaneous current, voltage and 

power signals were acquired from the spindle-driving module using a BECKHOFF power 

monitoring card model EL3783. It can measure up to 690 V voltage and 5 A current with  

a reaction time, frequency bandwidth and resolution of 50 µs, 5.5 kHz and 16 bits, 

respectively. Ring-type current dividers, shown in Fig. 3b were used to measure and step-

down the primary currents of the spindle driving module while the voltage terminals were 

connected directly to the EL3783 card for voltage measurement, as shown in the connection 

scheme in Fig. 3c. A BECKHOFF CX8190 industrial computer with an 800 MHz ARM 

Cortex™-A9 processor was used to acquire and store the spindle feedback signals from the 

EL3783 card through EtherCAT connection. 

 

 

 
Fig. 3. Experimental setup (a), current dividers (b), DAQ connection scheme (c) 

Set 2 tests were performed on a DMU 100P DuoBlock Machining Centre with a maxi-

mum spindle speed and power of 18,000 rpm and 28 kW, respectively. LEM Voltage and 

current transducers type LF 310-S and DVL 1000, respectively, have been used to measure 

the instantaneous feedback signals of the spindle motor, whereas the instantaneous power was 

digitally calculated based on the acquired signals. These transducers can measure alternating 

current, direct current, and pulsed current signals with range, reaction time, and frequency 

bandwidth of ±500 A, 0.5 μs, and 100 kHz, respectively, for the current transducers, and 

±1,500 A, 30 μs, and 14 kHz, respectively, for the voltage transducers. The transducers were 

mounted on the three phases between the spindle motor and its pulse-width modulation 

(PWM) driving module. Simultaneously, tri-axial vibration signals were acquired using  

a miniature triaxial PCB accelerometer type 356A71, mounted on the spindle head. It has  

a sensitivity and a frequency range of 1.02 pC/(m/s2) and 4 kHz, respectively. A National 

Instruments data acquisition card type NI 9222 connected to an NI cDAQ 9191 chassis has 

V  U  W G

(a) (b) (c)
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been used to digitalize and store the acquired signals. In addition, the tri-axial vibration signals 

were acquired using the developed wireless sensing node, which is wirelessly connected to  

a personal computer for data acquisition.  

The flank wear VB was selected as tool life degradation measure. It was divided into 

three spans: fresh VB ≤ 0.2 mm, usable 0.2 mm <VB ≤ 0.45 mm and worn 0.45 mm < VB ≤ 

0.8 mm, as shown in Fig. 4. 

 

Fig. 4. Fresh (a), usable (b) worn tool (c) 

2.2.3. EXPERIMENTAL VALIDATION RESULTS AND DISCUSSION 

Figure 5 shows a time-frequency scattergram of the WSCNN features extracted using 

the approach developed by the authors in [13] from fresh and worn tools using three different 

sensors namely, a PCB accelerometer (model 356A71), the developed self-powered wireless 

cost-effective accelerometer, and the BECKHOFF current transducer. The shown scattergram 

was calculated for tool T1 during a side-milling test at fz = 0.1 mm/tooth, ap = 7 mm, and  

ae = 12 mm. The effect of tool wear on the extracted features can be clearly distinguished by 

the high energy stored in the worn features and maintained over time. The PCB accelerometer 

provided a concentrated energy at the fourth passing frequency of the cutting tool, as shown 

in Fig. 5a1 and 5b1. Similar stable behaviour was obtained by the spindle current signals at 

the first and second passing frequencies, shown in Fig. 5a3 and 5b3. This would provide more 

stable representation of tool condition and less misclassification errors when used for tool 

wear state detection. However, the energy stored in the features extracted from cost-effective 

wireless sensor was scattered over different frequency ranges, as shown in Fig. 5a2 and 5b2. 

This distortion is caused by the high noise-to-signal ratio in the developed wireless sensor, as 

shown in the Fast Fourier Transformation FFT in Fig. 6. The electrical and seismic noises in 

the developed wireless sensor can be caused by the limited accuracy of the used hardware and 

the signal distortion during wireless transmission, which are the main drawbacks of miniature 

cost-effective wireless sensors. Future work should focus on overcoming such limitations as 

it is a building block in enabling wireless integrated TCM. 

The training of the LDA classifiers for each testing set given in Table 1 was based on 

the features extracted from only one cut for each of the tool conditions. Each learning test was 

performed at the specified cutting speed n, minimum feedrate f, maximum axial depth of cut 

ap and median radial depth of cut ae of the testing set ranges. This significantly reduced the 

required learning efforts by up to 97% compared to the typical training procedures reported 

in literature, where up to 70% of all the acquired data are randomly selected for training  

[30, 34]. 

VB = 0.03 mm

(a)

VB = 0.8 mm

(c)

VB = 0.45 mm

(b)



14 M. Hassan et al./Journal of Machine Engineering, 2022, Vol. 22, No. 1, 5–24 

 

 

Fig. 5. Normalized scattergram of fresh(a), worn tools (b) using: (1) High-end accelerometer, (2) self-powered wireless 

cost-effective accelerometer, (3) current transducer 

 

Fig. 6. FFT of vibration signals acquired using: (a) high-end wired commercial accelerometer, (b) self-powered wireless 

cost-effective accelerometer 

In total, five classification models were developed to benchmark the WSCNN-LDA 

approach against different sensors and machine tool controls, as shown in Table 2. As 

expected, 100% accuracy was obtained using either the PCB sensor or the spindle feedback 

signals. This high accuracy is a result of the low variance of WSCNN features, the LDA 

capability to maximize separation between the tool condition clusters, and the decision 

making based on the triaxial vibration signals fusion in models 1 and 3, and the current, 

voltage and power signals fusion in model 2 and 4, which increased the approach accuracy.  
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Table 2. Developed tool wear detection models and their corresponding accuracy 

Model # Test Set # Sensor Machine/Control 
Classification 

Accuracy % 

1 1 PCB accelerometer Makino A88 / Fanuc 16i MA 100 

2 1 BECKHOFF EL3783 Makino A88 / Fanuc 16i MA 100 

3 2 PCB accelerometer DMU 100P / Siemens 840D 100 

4 2 LEM transducers DMU 100P / Siemens 840D 100 

5 2 Wireless accelerometer DMU 100P / Siemens 840D 91 

 

 

Classification model 5, which was developed based on the wireless cost-effective 

accelerometer, has shown 9% misclassification error. This degradation in accuracy is caused 

by the high noise in the acquired signals, which distorted the signal energy in the extracted 

features. This effect limited the ability of defining a representative mean and variance for each 

tool condition in the LDA developing stage. 

 

Fig. 7. Detection of tool wear evolution based on WSCNN-LDA approach using (a) spindle-mounted commercial 

accelerometer and (b) Spindle feedback transducers, up-milling of Ti6Al4V using T2 tool, n = 500 rpm,  

fz = 0.12 mm/tooth, ae = 24 mm, ap = 5 mm 

Figure 7 shows the detection of tool condition using the WSCNN-LDA approach over 

the full tool life of tool T2 when used in side milling at n, fz, ap and ae of 500 rpm, 0.12 

mm/tooth, 5 mm, and 24 mm, respectively. As mentioned earlier, three tool wear state classes 

are defined over the tool life up to VB = 0.8 mm. In Fig. 7a, vibration signals acquired using 

the PCB accelerometer were used to develop the classification model, while the spindle 

feedback signals acquired from the BEKHOFF EL3783 were used for Fig. 7b. As seen in both 

graphs, the WSCNN-LDA approach has successfully defined the tool state over the tool life 

with acceptable misclassification outliers of < 2%. However, shorter transition periods, where 

the detection output alters between two states near the state limits, were observed in Fig. 7a. 

This is due to the higher sensitivity of the vibration signals to the cutting process energy 

compared to the spindle feedback signals [37]. Hence, the variation of the extracted features 

with respect to tool condition increases, which in turn reduces the transition periods between 

sequential states of tool condition.  
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3. CYBER/PHYSICAL ADAPTIVE CONTROL 

In the new generation of cyber-physical systems (CPS) in machining, the process 

physical and computational spaces are integrated over the industrial internet of things (IIoT) 

network to allow monitoring, optimizing, and controlling the physical process based on 

information generated in both spaces and communicated therein. The physical space of the 

machining CPS focuses on extracting real-time reliable data that describes the relevant 

phenomena of the machining process, as well as the machine tool behaviour. The implemen-

tation of the physical space requires a well-designed nonintrusive sensor-based system that 

can effectively provide such description. In parallel, the cyber space hosts the digital twins  

of the machining process and the machine tool to provide additional information needed to 

better optimize and control the process. Such cyber space generated information is based on 

the real-time information extracted from the physical process; yet it has to be complementary 

to it through adding another level of knowledge that could not be physically measured. This 

involves and requires developing high fidelity physics-based predictive process models 

integrated with artificial intelligence and auxiliary models that facilitate reliable decision 

making. The effective integration of the roles of both spaces necessitates deploying  

a deterministic, high speed and secure network platform for sharing information in a time 

span that is relevant to the actual process requirements. While the CPSs aim at eliminating 

the errors induced by human in the loop to improve the process efficiency, the role of the 

human remains significant in continuously improving the intelligence of such systems.  

Therefore, smart Human-Machine Interfaces (HMIs) remain an important element of the 

cyber-physical systems. 

This section demonstrates two case studies where process efficiency has been 

significantly improved through effective implementation of CPS.  

3.1. APPROACH FOR CYBER-PHYSICAL ADAPTIVE CONTROL OF 5-AXIS MILLING OPERATIONS 

The case study on the milling cyber-physical adaptive control system discussed herein, 

shown in Fig. 8, aims at increasing the process productivity while maintaining the machined 

part quality [42]. It fuses the physical space process information with the cyber space 

information from process simulation to perform closed-loop adaptive control.  

In the physical space, product and process monitoring data are collected. The initial 

CNC machine tool settings, fixture and tool geometries, and part material are directly acquired 

from the CNC machine control. Different means of sensing are employed to collect process-

monitoring data. These data are fed to comprehensive simulation modules of the machine 

tool, workpiece, cutting process and cutting tool comprised in the cyber space to evaluate  

the machining process productivity, the part quality, the tool geometry, and their deviation 

from the optimized target. System dynamics, tool life and edge geometry, tool path tracking, 

collision scenarios and machining time are predicted in the cyber space. The prediction 

outputs are fused in a process optimization module for maximizing the toolpath accuracy, 

collision prevention, and maintaining dynamic stability. 
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Fig. 8. Cyber-physical approach for control of 5-axis milling [42] 

It adjusts the process parameters in real-time to maximize productivity and minimize 

the geometric and dimensional errors. In the case of tool wear evolution during the milling 

process, the CPS compensates in real-time for the depth of cut error through a position 

compensation coefficient that yields a predefined relationship with the flank wear VB value. 

The compensation value of the cutting depth error is estimated accordingly, and the initial 

error compensation is processed. After each process section, e.g., part, pass, or feature, the 

sensor-based system updates the actual depth of cut, which is fed to the process simulation 

module for part quality error evaluation with respect to the baseline reference. The optimiza-

tion module generates the corresponding compensation coefficients and updates the NC 

program accordingly. Machining with activated error compensation is continuously 

reprocessed to meet the required geometric and dimensional accuracy of the machined part. 

The three case studies presented in [42] showed that the CPPS framework would significantly 

increase the CNC machining intelligence and improve the machining precision and 

productivity. Future studies, however, are still needed to extend the heterogeneous data scope 

such as process textual data and the 3D CAD models for deep learning and machining process 

optimization. 

3.2. APPROACH FOR CYBER-PHYSICAL ADAPTIVE CONTROL OF DRILLING OPERATIONS  

Aerostructures pre-assembly processes usually implicates drilling operations of stacked 

materials, which involves different tool wear mechanisms due to the tool interaction with 

different materials. Undetected tool wear could result in mechanical and thermal damage to 

the machined part due to the excessive cutting forces. Model-based tool life prediction and 
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optimization systems are difficult to achieve, especially in machining of hybrid materials, due 

to the complexity of modelling the progressive tool wear. While available online adaptive 

control systems does not take into consideration the induced thermal damage and the impact 

of change in the feedrate on the quality attributes in machining hybrid materials. Therefore, 

conservative tool life criteria and cutting conditions are often used by industry to ovoid 

machine part scraping, which increases tooling cost and reduces productivity. To optimize 

the process cost, productivity, and machined part quality, model-based cyber-physical 

adaptive control are required. They optimize and continuously control the tool feedrate to 

maximize process productivity; taking into consideration, the limitations induced by tool wear 

level and thermal loads. 

3.2.1. CYBER-PHYSICAL ADAPTIVE CONTROL FOR DAMAGE PREVENTING AND TOOL WEAR 

MONITORING 

The Cyber-physical system for adaptive control of drilling of CFRPs integrates two 

interactive models for: (a) tool wear prediction and (b) cutting force prediction to optimize 

and continuously control the tool feedrate to avoid part damage by maintaining the drilling 

axial force below a critical level Fcr. A description of the system layout proposed by the 

authors is shown in Fig. 9 [43].  

 

 

 

Fig. 9. Layout of cyber-physical system approach for adaptive control of drilling of hybrid stacks [43] 

The process starts by inputting the initial process parameters and tool wear level to  

the predictive force model (box 3). Such model predicts the instantaneous cutting forces and 

their distributions along the anisotropic layers of the composite material throughout the 

drilling process, which cannot be physically measured. This enables controlling the process 

via comparing the predicted elemental forces (Fz) acting on the critical material layers to the 

critical force limits (Fcr) at each of such layers. This allows a more accurate and larger range 

 Optimized decision for 
following set of hole

Online tool 
wear detection

Tool wear ‘VB’

Feedrate 
change  Df

N

Y

Maintain feedrate

Generalized Drilling 
Model

(Fz,Fc)J,L

(Fz,Fc)I,L

Y

f(O,L)=f(J,L)?

3

Part 
Damage?

Modify feedrate

f(J,L)

Economics 
criterion?

Input: Tool geometry, 
stack material properties 

and configuration

For off-line feed 
rate optimization

Y

Tool 
change?

feedrate optimization loop

f(O,L)

4

Tool Wear Monitoring System2

Decision Making

Online tool 
wear detection

Actual drilling conditions f,n

N

Loop 1

For on-line 
Adaptive 
Control

Online Tool wear 
learning Input: System 

learning

Feature 
extraction

1 Drilling Process

Spindle 
power sensor

CNC control

Initial VB,  f(I,L),n

Loop 2
Input: Allowable 

force limits

Physical space; processes, sensors, control system Cyber computational space



M. Hassan et al./Journal of Machine Engineering, 2022, No 1, 5–24 19 

 

of process enhancement than that offered when an overall force value is used. In the feedrate 

optimization (Loop 1), if Fz < Fcr, the intermediate feedrate fJ,L is increased. The objective 

function of the AC system is to maximize fJ,L, constrained by the Fcr limit, to maximize 

productivity and preserve part quality. The tool wear “VB” is detected (Box 2) online at  

the end of each hole based on the spindle power feedback signal monitored during the drilling 

process. The module is featured with AI-based algorithms with in-process learning capability 

to minimize the system learning effort needed to adapt to the varying cutting conditions.  

The machine controller provides the actual cutting conditions to implement their 

corresponding system learning. Further online learning takes place in parallel during  

the process using the feedback signals from the sensors and CNC controller (Loop 2).  

The decision-making module (Box 4) decides to either maintain or modify the feedrate to 

maximize the process productivity and tool life. At the instant where the negative effect  

of feedrate reduction on productivity exceeds the gain obtained from further using the same 

tool, a decision for a tool change is rendered. 

3.2.2. IMPLEMENTATION OF CYBER-PHYSICAL ADAPTIVE CONTROL OF DRILLING OF HYBRID 

STACKS CFRP/METAL 

The CPAC system performance developed by the authors in [43] was demonstrated for 

a case study of drilling a set of holes in a hybrid stacked panel, shown in Fig. 10. To maximize 

the process productivity, the maximum allowable feedrate for each layer, as recommended by 

the offline model-based optimization, was used as the initial cutting condition to drill the first 

hole.  In this case study, the CPAC system successfully maximized the number of holes drilled 

by one drilling tool until its end of life, while preserving the part quality. Figure 10 shows the 

performance of the CPAC system, where it accurately detects the tool wear evolution after 

drilling each hole and accordingly shift (reduce) the feedrate to maintain the effective axial 

force acting on the bottom stack layer (L3) just below the allowable critical limit to prevent 

part damage.  

 

 

Fig.10. CPAC system performance curve with experimental validation of VB and delamination predictions at exit plane 

of L3-CFRP [43]  
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The enhancement in the process efficiency obtained by engaging the CPAC system 

could be quantified with respect to the conventional approach without engaging the CPAC 

system. In that case, seven tool changes would have been required, resulting in more than 

four-fold increase in cost to achieve only a marginal productivity gain of 5%. The CPAC 

system performance was benchmarked with respect to typical criteria followed by industry 

that enforces pre-emptive premature tool changes to preserve part quality. This comparison 

showed that the activation of the CPAC system could reduce the total cycle time and process 

cost by up to 50% and 35%, respectively.  

4. FUTURE OUTLOOK OF MACHINING DIGITALIZATION 

Today’s infrastructure of industrial internet of things (IIOT) and digital systems is an 

evolution from a previous generation in an attempt to give insight into the manufacturing 

process and enable effective model-based process control through linking black box elements 

from the cyber and physical spaces of the manufacturing system. Digital platforms and IIoT 

of the factory of the future need to see a revolution where the physical and cyber spaces can 

closely and securely interact with the critical digital process elements throughout the different 

stages of the process and product life cycle stages. Quantum computing and cyber security 

are believed to be the game changing technologies that will breakthrough to the disruptive 

computation and open IIoT architectures that are relevant to digital manufacturing needs  

of the future.  

Recent intelligent and generalized real-time TCM systems can detect and prevent 

sudden and progressive tool failure to safeguard the surface integrity of the machined part. 

They provide a generalized and practical performance and can take fast and accurate 

corrective actions in real-time. This improves the productivity and efficiency of machining 

process. However, they still require human intervention for system training, calibration, and 

tuning, which is timely prohibitive and increase the integration lead time. Further work is 

needed to facilitate the plug-and-play concept for seamless implementation in smart industrial 

factories.  

More attention should be directed toward the development of miniature tool-embedded 

wireless sensors, including force, vibration, and temperature sensors. Tool-embedded sensors 

enable direct measurement of the primary phenomena (e.g., tool wear, tool failure) of the 

machining process inside the cutting zone, which provide high confidence and accurate tool 

condition monitoring. The wireless connection ability provides high implementation 

flexibility, accessibility, and connectivity. Wireless communication with machine tool control 

through standard protocols is also required to enable real-time control of the machining 

process and executing of any corrective actions needed. Additionally, it is essential to define 

low-variant descriptive features that are sensitive only to tool condition. This facilitates 

developing a new generalized in-process self-learning capability to build a dynamic database 

to account for the process variability and minimize/eliminate the learning process overheads. 

Such self-learning capability requires a novel machine learning approach to define the tool 

life boundaries without being trained using worn tools. The approach should maintain the 

logic of the monitoring process to avoid any false alarms. Moreover, system optimization is 
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needed for industrial internet of things (IIoT) readiness and implementation cost 

minimization. 

Further efforts should be directed toward the development of reconfigurable cyber 

physical adaptive control systems that realise dynamic fusion of offline and online 

optimization approaches to obtain improvement in the process productivity, while considering 

the thermo-mechanical and dynamic constraints imposed by the tool and workpiece 

interactions. This requires the development and integration of new models to predict  

the machining forces, temperature, and the dynamic tool behavior to identify the 

corresponding optimization constraints in machining processes. Such constraints can be 

implemented in online feedrate optimization scheme, to maximize the feedrate throughout the 

tool path with respect to the simulated process limits. A 2-way real-time intelligent 

architecture, which allows data transfer between the physical and cyber models, should take 

place to solve the problem of information closure between the cyber and physical spaces. This 

facilitates adaptive optimization of the process constraints, and hence the machining 

parameters, based on the current process status that are difficult to model (e.g., tool wear).  

A wireless plug-and-play TCM system would thrive such architecture. 

Robotized machining is an essential technology in the transformation to Industry 4.0 

and the efforts to establish more agile and resilient manufacturing in the Factory-of-the-future. 

Robotized machining has exhibited the potential to significantly increase the cost 

effectiveness of machining large and complex parts in low volume and highly variable 

batches. This is based on the fraction cost of such flexible robotic machining systems 

compared to that of traditional and gantry CNC machines. However, the lightweight partially 

supported construction of industrial robots is a main factor behind their reduced rigidity, and 

hence, their limited dynamic stability. Machining is a highly complex process where  

the dynamic stability is a key element of success. Therefore, the dynamic aspect in robotic 

machining involves more limitations that need to be resolved for process conditions that could 

have been deemed stable based on the classical stability lobes criteria. The work done on 

robotized machining so far over the previous years has pointed out the necessity of developing 

reliable cyber-physical model-based systems. This will enable controlling and reconfiguring 

the robotic machining platform based on the information provided collectively from  

the physical process feedback and the digital twin predictions to meet the targeted accuracy 

and productivity levels and machined part quality [44]. This necessitates developing and 

integrating a comprehensive accurate digital representation of the robotic machining system 

through its entire working envelop in terms of multi-axial models of machining forces 

prediction, robotic structural elasto-dynamic and dynamic characteristics of the tool-

workpiece interaction. The cyber-physical optimization of the future robotic machining 

process will have to encompass the big data associated with all the relevant system elements 

including, but not limited to, the robot controller, robot arm structural dynamics, robot 

trajectory, machining fixture, end effector and cutting tool assemblies. This will require more 

robust and highly responsive robotic controllers that can keep up with the big data traversing 

the physical and cyber spaces in real-time to perform process adaptive control in a millisecond 

time range. This enables controlling the entirety of the machining system to overcome  

the challenges of low dynamic stability of robots while maximizing the process productivity 

and improving part quality. 
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5. CONCLUDING REMARKS   

This paper presented recent and future outlook of cyber-physical approaches for 

intelligent TCM and adaptive control systems. The advantages and limitations of wireless 

sensing nodes, including signal coherence and power management have been discussed and 

experimentally tested. A wireless vibration sensing node has been developed using miniature 

commercial sensors and microcontrollers. It was powered using hybrid mechanical and radio 

frequency energy harvesting modules. This allows non-intrusive instrumentation of machine 

tools and minimize the lead-time needed for system integration. Despite the practicality, 

simplicity and cost-effectiveness of such approach, the acquired signals showed high noise-

to-signal ratio, which reduced the TCM system accuracy compared to high-end wired 

accelerometers. A generalized TCM approach that can define the tool condition within a wide 

range of cutting conditions, tool geometries and tool paths has been presented. The approach 

performance has shown high practicality and accuracy when tested against different types of 

sensors, machine controls and setups. It possesses high level of decision certainty and 

minimizes the learning efforts for only a couple of seconds cut per tool condition.  

Two CPAC case studies have been presented, where machine, process, and product data 

are employed in real-time for monitoring and optimizing the cutting process in order to 

increase its productivity, reduce its cot, and maintain the desired product quality. Real-time 

reliable information from the cyber space are integrated in process mechanics and geometric 

simulations to predict the tool life, the product geometrical and dimensional accuracy, and the 

safe boundaries to boost the process productivity. Experimental validations showed such 

systems capability to reduce the total cycle time and process cost by up to 50% and 35%, 

respectively, and double the tool life. These systems require using ultra-high-speed controllers 

to facilitate robust real-time process optimization modules to render optimization commands 

within the very short time span. The integration of such systems in futuristic robotized 

machining systems is essential to compensate the limited dynamic stability of the lightweight 

partially supported construction of industrial robots. 

The outlook of intelligent cyber-physical monitoring and control systems in the IIOT 

infrastructure of I4.0 digital machining systems have been presented. The means and 

advantages of facilitating plug-and-play tool condition monitoring systems are described.  

The importance and means of reconfigurable cyber-physical adaptive control systems are 

discussed. The limitations of recent robotized machining systems and the possible avenues  

of development are listed.  
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