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CUTTING FORCE PREDICTION OF TI6AL4V USING A MACHINE LEARNING 

MODEL OF SPH ORTHOGONAL CUTTING PROCESS SIMULATIONS 

The prediction of machining processes is a challenging task and usually requires a large experimental basis. These 

experiments are time-consuming and require manufacturing and testing of different tool geometries at various 

process conditions to find optimum machining settings. In this paper, a machine learning model of the orthogonal 

cutting process of Ti6Al4V is proposed to predict the cutting and feed forces for a wide range of process conditions 

with regards to rake angle, clearance angle, cutting edge radius, feed and cutting speed. The model uses training 

data generated by virtual experiments, which are conducted using physical based simulations of the orthogonal 

cutting process with the smoothed particle hydrodynamics (SPH). The ML training set is composed of input 

parameters, and output process forces from 2500 instances of GPU accelerated SPH simulations. The resulting 

model provides fast process force predictions and can consider the cutter geometry in comparison to classical 

analytical approaches. 

1. INTRODUCTION 

Models for the prediction of process forces from metal cutting operations can be 

classified into empirical, analytical and numerical approaches. Empirical models like the 

Kienzle equation [1] are fitted to measured process forces from cutting experiments. Based 

on experimental observations, analytical modelling approaches were introduced with Ernst 

[2] and Merchant [3]. These were refined with Oxley’s [4] machining theory and extended to 

more recent material models in [5] and [6]. These approaches excel in very low computational 

times, but all these models have in common that they lack the consideration of the clearance 

angle or the influence of the cutting edge radii. The availability of computers enabled the use 

of numerical approaches and it became possible to simulate the cutting process on a physical 
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level including a detailed representation of the cutter geometry. Critical problems in the 

numerical modeling approach of the cutting process are the modeling of the material behavior 

as well as the numerical method to resolve the continuum, see also [7] and [8]. Mostly the 

finite element method (FEM) is used for numerical cutting simulations. The FEM is a versatile 

tool, but frequent remeshing is required due to the large deformations, which occur in the 

simulation of machining processes. The time consuming remeshing can be avoided by using 

an alternative numerical method, which does not rely on a mesh but particles: smoothed 

particle hydrodynamics (SPH). Particles move with the continuum and can easily handle large 

deformations. The SPH is well suited for massive parallelization on the GPU which results in 

short runtimes of machining simulations, see for example [9]. 

In the present study, the SPH is used to perform virtual experiments, where instead  

of real cutting experiments, numerical simulations of orthogonal cuts are performed based on 

a design of experiments (DOE). The results of the virtual experiments are used to train  

a machine learning (ML) model, which can then be used to predict process forces for different 

tool geometries (clearance angles, rake angles, and cutting edge radii) at different process 

conditions. Theoretical aspects of the SPH and ML- theory are introduced hereafter. This is 

followed by a description of the numerical model used to generate the virtual experiments and 

an explanation of the ML model. Finally, the ML model is used to predict cutting and feed 

forces for different clearance angles, rake angles, and cutting edge radii at varying feed and 

cutting speeds. The predictions are compared to experimental results from the literature. 

2. THEORETICAL BACKGROUND 

 This chapter is devoted to shortly outlining the fundamentals of the SPH used for the 

virtual experiments and is followed by a brief introduction to machine learning. 

2.1. SPH FUNDAMENTALS 

The SPH was introduced 1977 in astrophysics by Gingold and Monaghan [10] for the 

calculation of a smoothed density from point clouds. A simple derivation of the method is 

based on the partition of unity [11], where a field value at a spatial location 𝑥 can be 

determined as: 

𝑓(𝑥) = ∫ 𝛿(𝑥 − 𝑥′)𝑓(𝑥′)𝑑Ω𝑥′
ℝ𝑑  ∀𝑥𝜖ℝ𝑑 (1) 

The Dirac-delta function 𝛿(𝑥) in equation (1) has two important properties: 

∫ 𝛿(𝑥)𝑑𝑥 = 1
+∞

−∞
 (2) 

∫ 𝛿(𝜁 − 𝑥)𝑓(𝜁)𝑑𝜁 = 𝑓(𝑥)
+∞

−∞
 (3) 
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Replacing the Dirac-delta function 𝛿(𝑥) with a smoothing function, the so-called Kernel 

𝑊(𝑥 − 𝑥′, ℎ); e.g., the Gauß-function, with ℎ being a smoothing length, the behavior of the -

NEWDirac-delta can be reproduced for the limit: 

lim
ℎ→0

𝑊(𝑥 − 𝑥′, ℎ) = 𝛿(𝑥 − 𝑥′) (4) 

Inserting (4) into equation (3) gives an approximation of the function value 𝑓(𝑥) at 𝑥: 

< 𝑓(𝑥) >= ∫ 𝑊(𝑥 − 𝑥′, ℎ)𝑓(𝑥′)𝑑𝑥′
+∞

−∞
 (5) 

This can be integrated within a discrete neighborhood using a Riemann-sum: 

< 𝑓𝑖 >= ∑ 𝑓𝑗  𝑊(𝑥𝑖𝑗 , ℎ)∆𝑉𝑗𝑗  (6) 

with the point index 𝑖 at which the function value is to be approximated by its neighbor points 

𝑗, 𝑥𝑖𝑗 is the spatial distance between point 𝑖 and 𝑗 and ∆𝑉𝑗 being an integration weight of point 

𝑗. Computation of the function’s derivative leads to 

< ∇𝑓𝑖 >= ∑ 𝑓𝑗  ∇𝑊(𝑥𝑖𝑗 , ℎ)∆𝑉𝑗𝑗   (7) 

where only the derivative of the Kernel 𝑊(𝑥𝑖𝑗 , ℎ) is required. In this way, derivatives  

of values given at point cloud locations can be computed without the requirement  

of a functional description or a mesh-based relation between these points (particles). With this 

meshfree approximation, derivatives in the continuum mechanics equation can be computed 

by sums of discrete values in the neighborhood of the particles. Meshfree techniques were 

adopted in the early 1990s to structural simulations [12] and for numerical cutting simulations 

first in [13]. At the institute of machine tools and machine tools (IWF) of ETH Zürich, the 

software mfree_iwf was developed in the past years for SPH-based machining simulations 

[14]. The software is capable of performing CPU as well as GPU-enhanced computations of 

metal cutting simulations. It establishes the state-of-the-art in SPH simulations as it facilitates 

the most recent correctors and stabilization measures for mechanical [15] and thermal 

simulations [16]. The software successfully demonstrated computationally highly efficient 

metal cutting simulations [9], identification of friction parameters [17], and its ability to 

adaptive refinements [18]. Further, single grain grinding simulations of engineered grinding 

tools [19] were successfully demonstrated. In the presented investigation, the software is used 

to simulate orthogonal cuts with a flow stress model according to Johnson and Cook [20]. 

The model is commonly used to describe metal plasticity within machining simulations and 

is given as: 

𝜎𝑌 = (𝐴 + 𝐵 ∙ 𝜀𝑝𝑙
𝑛 ) ∙ (1 + 𝐶 ∙ 𝑙𝑛

𝜀̇𝑝𝑙

𝜀̇𝑝𝑙
0 ) ∙ (1 −

𝑇−𝑇𝑟𝑒𝑓

𝑇𝑓−𝑇𝑟𝑒𝑓
)

𝑚

     (8) 

With 𝐴, 𝐵, 𝐶, 𝑚 and 𝑛 being material parameters, 𝜀𝑝𝑙  the current plastic strain, 𝜀𝑝̇𝑙 the current 

plastic strain rate and T the current temperature. 𝑇𝑓 is the melting temperature, 𝑇𝑟𝑒𝑓 is the 
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reference temperature and 𝜀𝑝̇𝑙
0  the reference plastic strain rate. The first two terms describe 

hardening due to plastic strain and plastic strain rate, respectively. The third term controls 

thermal softening upon increasing temperature. In this investigation, material parameters for 

Ti6Al4V according to [21] are used. 

2.2. MACHINE LEARNING 

Machine learning is a set of algorithms capable of independently learning patterns 

within a dataset. Due to the progress in parallel computing technologies, machine learning is 

causing a paradigm shift in many areas of science and engineering [22, 23]. A specific subset 

of machine learning is deep learning, which contains algorithms based on neural networks 

capable of learning structures and patterns from large amounts of data. Because deep learning 

algorithms are very good at discovering intricate structures in high-dimensional data, it is well 

applicable to many domains. Inspired by the human brain, neural networks are the core of 

deep learning. In its most basic and general form, the multi-layer perceptron (MLP) is 

composed of an input layer, hidden layers, and an output layer. Every layer consists of 

activation units (sometimes labeled neurons), which are connected with the units from 

previous layers through weighted edges. In supervised learning, the training data that is fed 

to the algorithm already includes the desired solution, called labels. During the training of the 

neural network, the weights are adapted such that the output of the neural network for each 

training sample approaches the desired solution. It is important that there is enough data for 

training to reasonably capture the relationship that may exist between the input features and 

the labels. One of the advantages of machine learning is its computation time. Cambioni et al. 

[24] show that their machine learning model, which is trained using SPH simulations for giant 

impacts, is able to accurately map the parameter space to the outcome of the simulations and 

runs in less than a second compared to days of simulation efforts. Specifically, once the ML 

model is trained on the available data, the model parameters can be saved, thus allowing for 

very fast inference. The usage of ML models for fast interpolation from simulation data is  

an emerging area of research [25–28]. 

3. NUMERICAL MODEL FOR VIRTUAL EXPERIMENTS 

A parameterized numerical model is created for the orthogonal cutting simulation of 

Ti6Al4V. The geometry of the numerical model is depicted in Fig. 1. The cutter is modeled 

as a rigid body with an analytical description of the cutter geometry comprising the clearance 

angle α, rake angle γ, and the cutting edge radius rn. The workpiece is discretized with 

particles, where the model height 𝑤 and the model length 𝑙 are related to the feed 𝑓 (uncut 

chip thickness) by 𝑤 = 3𝑓 and 𝑙 = 10𝑓, respectively. Along height and length direction 

30×100 particles are used giving a total number of particles of 3000. Plastic dissipation into 
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heat is considered with a Taylor-Quinney coefficient of η = 0.9, and the heat conduction is 

considered in the workpiece only. Friction between tool and workpiece is modeled with  

a Coulomb model and a constant friction coefficient of µ = 0.35 [29] without consideration 

of frictional heating. 

 

Fig. 1. Geometry of the numerical model of the orthogonal cut 

The material properties used in the numerical simulations are provided in Table 1.  

The constitutive parameters for the Johnson-Cook flow stress model stem from an inverse 

parameter identification conducted in [21] based on a cutting experiment with a cutting speed 

of 𝑣𝑐 = 381 m/min and a feed of 𝑓 = 0.1 mm. An uncoated cutter has been used in this 

experiment and the cutter geometry was measured with the following parameters: rake angle 

γ = 0°, clearance angle α = 7° and a cutting edge radius rn = 33 µm. The material batch of 

Ti6Al4V in [21] has a proof strength of 𝑅𝑝0,2% = 869 MPa and a tensile strength of 𝑅𝑚 =

952 MPa. 

Table 1. Material properties of Ti6Al4V used in the virtual experiments 

Parameter Symbol Value Unit Data Source 

Young’s modulus E 110 GPa [30] 

Poisson ratio ν 0.35 - [30] 

Density ρ 4430 kg/m³ [30] 

Specific heat cp 526 J/kgK [30] 

Thermal conductivity λ 6.8 W/mK [30] 

Friction coefficient µ 0.35 - [29] 

Taylor-Quinney coefficient η 90% - [31] 

JC constant A 852.1 MPa [21] 

JC constant B 338.9 MPa [21] 

JC constant C 0.02754 - [21] 

JC constant m 0.5961 - [21] 

JC constant n 0.148 - [21] 

JC constant 𝜀𝑝̇𝑙
0  1.0 1/s [21] 

Reference temperature Tref 300 K  

Melting temperature Tf 1836 K  
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A full factorial design is chosen to perform 2’500 virtual experiments in total as input 

for the machine learning model. The corresponding parameter ranges of the DOE are given 

in Table 2. The simulations are computed on 5 GPUs (NVidia GTX660, GTX970, GTX1650, 

Tesla P100, and Quadro GP100) within five days. The process force results from the SPH 

simulations are standardized to a cutting width of b = 1 mm and all results of the DOE are 

displayed in the charts in Fig. 2 versus all input and output quantities. An increasing rake 

angle γ leads to decreasing process forces while the cutting edge radius rn has almost no 

impact on the cutting force but a moderate impact on the feed force. The feed f has a major 

impact on the cutting force, while the feed force shows larger scattering towards increasing 

feeds. 

Table 2. DOE parameter ranges 

Quantity Symbol Unit Steps Values 
Clearance angle α ° 5 5, 10, 15, 20, 25 

Rake angle γ ° 5 -10, 0, 10, 20, 30 

Cutting edge radius rn μm 5 10, 20, 30, 40, 50 

Feed (uncut chip thickness) f mm 4 0.05, 0.1, 0.2, 0.3 

Cutting speed vc m/min 5 20, 100, 200, 350, 500 

 

Fig. 2. SPH results from the DOE. The color of the data points corresponds to the feed of the respective simulation 

4. MACHINE LEARNING MODEL 

A total of 2’500 simulations, with the parameters given in Table 2, are used to train an 

ML model to interpolate the simulation results over a continuous range of input parameters. 

can replace the classical simulations for faster inference. The trained model MLPs are 

universal approximators and can therefore be used as suggested by [32] to approximate the 

SPH simulations. The simulations can be represented as a function 𝑆: ℝ5 →  ℝ2. The input is 

a vector [𝛼, 𝛾, 𝑟𝑛, 𝑓, 𝑣𝑐], where 𝛼, 𝛾, 𝑟𝑛, 𝑓, 𝑣𝑐 are the controllable parameters of the experiment. 

[𝐹𝑐 , 𝐹𝑓] is the output vector, where 𝐹𝑐 , 𝐹𝑓 are the cutting force and the feed force measured in 

the virtual experiment. For better performance, two separate MLPs are trained for both forces. 

Each MLP consists of five input units and a single output unit for the respective force. Fig. 3 

shows the architecture of the MLP. 
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Fig. 3. Representation of the two MLPs used to approximate the simulations. The MLPs have three hidden layers. For 

readability reasons the layers in the image have only 8 units, while in the implemented models they have a size of 32 

 

Fig. 4. Representation of the performance of the model on the unseen validation test. The model successfully predicts 

the values of the forces generated by the simulation with reasonable accuracy 

The MLPs have been implemented with the framework Keras + Tensorflow 2.0. This 

framework provides an optimized environment to train MLPs using backpropagation on 

different versions of the gradient descent algorithm. The hyper-parameters used for the 

training are sigmoid activation functions in all the hidden layers units, Adam optimizer for 

the gradient descent implementation, mean squared error (MSE) as the loss function, a batch 

size of 16, and 50 epochs for each MLP. The data has been scaled before the training, so the 

input features of the MLPs have mean zero and unit variance. These values probably came 

from divergences due to numerical instabilities in the simulation. 

With these steps, the models acquire a predictive power of 𝑅𝐹𝑐

2 = 0.996 in the validation 

set for 𝐹𝑐 and 𝑅𝐹𝑓

2 = 0.948 for 𝐹𝑓. 

4.1. ADVANTAGES AND DISADVANTAGES OF USING AN ML INTERPOLATOR 

Training an ML model on data solely from SPH simulations has uncovered several 

advantages and disadvantages. The advantages are listed in the following points: 

• ML models provide a fast and efficient interpolation method to new values within the 

parameter ranges of the training sample with the computational effort being a fraction 

of a second. This is helpful to identify trends without the need to run costly 

simulations. 
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• Because ML models look for generalizations in all the given data, they may be more 

robust and accurate compared to the simulations. SPH and similar particle simulation 

methods are numerically unstable, and some conditions may cause divergences in the 

results. The ML model may identify these divergences as outliers, which can result 

in more accurate edictions. 

On the other hand, the ML model also presents some disadvantages: 

• Although the ML model can help identify simulation errors by generalizing over the 

entire dataset, this attribute may also cause disadvantages. Certain parameter 

combinations may cause divergences in the process outputs, which are explainable 

from a physical standpoint instead of being simulation errors. Hence, the ML model 

may not be able to distinguish between correct physical divergences and simulation 

errors. 

• ML algorithms depend on their underlying structure and the chosen hyperparameters. 

Thus, given a different algorithm or different choices of hyperparameters, the 

resulting function explaining the relationship between the input parameters and the 

process outputs may differ.  

Figure 5. shows the relationship between the cutting forces and the feed forces of both 

the simulations (markers) and the ML predictions (lines). Because the ML model allows for 

interpolation, intermediary results are easily available for the ML model, which for the SPH 

simulations would require additional simulation time. Thus, the ML model reveals 

relationships between the process forces, the feed force, and the cutting edge radius, which 

may not be visible by the SPH simulations alone.  

 

Fig. 5. Influence of the cutting edge radius rn and feed f on cutting forces Fc and feed forces Ff, standardised to  

a cutting width of b = 1mm at vc = 350 m/min with a clearance angle of α = 5° and a rake angle of γ = 0°. Results from  

the SPH simulation and the interpolation with the ML model 

5. ML MODEL PREDICTIONS 

The fitted ML model from chapter 0 is used to calculate the process forces for varying 

cutting edge radii 𝑟𝑛, clearance angles 𝛼, rake angles 𝛾, feed 𝑓 and cutting speeds 𝑣𝑐. The 

results are compared against experimental results on Ti6Al4V from Wyen [29], who 

investigated the effect of varying cutting edge radii as well as different rake and clearance 

angles on the process forces with uncoated tools. In his experiments each test was performed 
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with a fresh cutter insert to exclude any geometrical changes due to wear effects. The material 

batch of Ti6Al4V in the experiments of Wyen [29] has a proof strength of 𝑅𝑝0,2% = 920 MPa 

and a tensile strength of 𝑅𝑚 = 965 MPa, which indicates a higher strength than the batch of 

[21]. 

5.1. INFLUENCE OF THE CUTTING EDGE RADIUS ON SPECIFIC CUTTING AND FEED FORCES 

The specific cutting and feed forces are predicted for varying cutting edge radii in  

the range of 𝑟𝑛 = 10 … 50 𝜇𝑚, varying feeds from 𝑓 = 0.01 … 0.2 𝑚𝑚 and for constant 

cutting speed 𝑣𝑐 = 70 𝑚/𝑚𝑖𝑛, clearance angle 𝛼 = 8° and rake angle 𝛾 = 10°. In Fig. 6 

trends for both, specific cutting and feed force, are captured well. The magnitude of the 

specific cutting force is overpredicted by 10~20% at low feeds while for high feeds it is 

slightly underpredicted. It has to be noted, that the ML model is extrapolating towards low 

feeds since the minimum feed in the virtual experiments was fmin = 0.05, see also Table 2.  

The magnitude of the specific feed force is underestimated throughout the complete feed 

range, but qualitatively correctly predicts lower specific feed forces for decreasing cutting 

edge radii. 

 
Fig. 6. Influence of the cutting edge radius rn and feed f on specific cutting and feed forces kc and kf, at vc=70m/min 

with a clearance angle of α=8° and a rake angle of γ=10°. Experimental results from [29] are shown at discrete points, 

ML-model predictions are shown with lines where dotted lines are in the extrapolation range of the ML model 

5.2. INFLUENCE OF THE CUTTING EDGE RADIUS ON THE PROCESS FORCES 

In a second example, the influence of the cutting edge radius rn on the process forces is 

investigated. For this purpose, the cutting edge radius is varied from rn = 10…50 μm and the 

feed from f = 0.01…0.3 mm. The other process parameters are set constant to a cut speed of 

vc = 70 m/min, the clearance angle to α = 8° and the rake angle to γ = 10°. In Fig.  the cutting 

forces predicted with the ML model show a similar trend but with about 10…20% smaller 

magnitude than observed in the experiments from Wyen [29]. The influence of the cutting 

edge radii on the cutting force is smaller in the ML prediction and decreases even further 

towards higher feeds which is in contrast to the experimental observation. The ML model 
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predicts too low feed forces for all feeds and all cutting edge radii. Furthermore, at this rake 

angle, the feed forces from the ML model decrease with increasing feed which is opposed to 

the experimental observation. 

 
Fig. 7. Influence of the cutting edge radius rn and feed f on cutting forces Fc and feed forces Ff, standardised to  

a cutting width of b = 1 mm at vc = 70 m/min with a clearance angle of α = 8° and a rake angle of γ = 10°.  

Dots are experimental results from [29] and lines are predicted with the ML model where dotted lines show 

extrapolated results of the ML model 

5.3. INFLUENCE OF THE RAKE ANGLE ON THE PROCESS FORCES 

 In this part of the investigation, the process forces are computed for different rake 

angles with varying feeds. The results are shown in Fig. 8 together with experimental 

values from Wyen [29]. The predicted cutting forces are 20% higher in the low feed 

range while they are 20% smaller at higher feeds. The cutting force dependency on the 

rake angle is covered well, where the lowest rake angle (γ = 0°) results in the highest 

cutting force, which is similar to the experimental observation. The feed force is 

underpredicted over the whole feed range. It is observed that towards higher rake angle 

γ, the feed force prediction worsens, and at γ = 15°, the trend with increasing feed is 

even opposite to the experimental observation. 

 
Fig. 8.  Influence of different rake angles γ and feed f on cutting forces Fc and feed forces Ff, standardized to a cutting 

width of b = 1 mm at vc = 70 m/min with a clearance angle of α = 10° and a cutting edge radii of rn = 20±1µm.  

Dots show experimental results from Wyen [29] and lines are results predicted with the ML model, where  

dotted lines show extrapolation results of the ML model 
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6. SUMMARY and CONCLUSION 

A process force prediction tool for orthogonal cutting of Ti6Al4V was proposed based 

on a machine learning model. The novelty in this approach is that cutting experiments are not 

required. Instead, virtual experiments are conducted by utilization of a numerical model  

of the orthogonal cutting process of Ti6Al4V. The proposed methodology avoids time 

consuming cutting experiments with different cutter geometries and process conditions.  

The machine learning model is trained to 2’500 virtual experiments and subsequently used to 

predict process forces for various process conditions and cutter geometries. The results are 

compared to experiments where it was found that the trends of the specific cut and feed force 

are captured well over a range of different feeds, but with smaller magnitudes than 

experimentally observed. The cutting edge radii influence on the process forces was 

qualitatively correctly approximated by the ML model where the process forces increase over 

increasing cutting edge radii. It was found that the rake angle dependency of the cutting forces 

can be covered well, but for the feed force component, a correct trend is predicted only for 

the smallest rake angle while the trend becomes even opposed to experimental observations 

in Wyen [29] for increasing rake angles. However, such behavior at higher rake angles is 

known from experiments conducted by Albrecht [33], but in the SPH simulations it occurs 

already earlier at lower rake angles. The reasons for the deviations are manifold and the main 

points, based on the author’s opinion, are summarized in the following. The JC material 

parameters which were used for the virtual experiments are derived within a parameter 

identification procedure from a different material batch of Ti6Al4V with different treatment 

prior to the cutting than the one used in the experiments by Wyen [29]. This difference in both 

material batches are reflected in the higher strength values of the material batch of Wyen. It 

was recognized that feed forces are always underpredicted and towards higher rake angles γ 

the errors in the ML model prediction increase in comparison to the experiment. On the virtual 

experiments side this indicates that the underlying numerical simulation model of the 

orthogonal cutting cannot correctly cover the physics when the rake angle increases. The 

reason for this is likely due to the constitutive model (Johnson-Cook) and the Coulomb 

friction law in the numerical simulations. The quality of the numerical predictions is expected 

to improve under consideration of more physical material models, which for example include 

effects of the dislocation density and globularization, see [34, 35], or models which 

incorporate the effect of phase transformations towards higher temperatures [36]. On the other 

hand, more sophisticated friction models, e.g. with temperature dependent friction 

coefficients [17] and [37], potentially improve the modelling of the tool-workpiece 

interaction.  

With the proposed improvements to the modeling approach, it is expected that the SPH 

simulations can be extended to predict also the effect of built-up edges and tool wear on the 

process forces. On the ML model side, reasons for inaccuracies can arise due to smoothing of 

the experimental data and extrapolation beyond the experimental data which is seen for 

example at very low feeds. Further investigations are required in how far the number of 

evaluations for the DOE can be reduced or optimized, for example by using a fractional 

factorial plan instead of a full factorial plan, which was used here. 
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