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AND CONTROL USING ROBOT OPERATING SYSTEM 

Standardized and universal solutions for industrial robot integration are increasingly urgent requirements for 

companies looking for machine interconnectivity, and flexibility in creating tailor made manufacturing systems. 

These solutions must be supported by modular and open-source components able to easily integrate new control 

methods and advanced Extended Reality (XR) interfaces. Robot Operating System (ROS) has proven to be  

a reliable standard for industrial robot integration. ROS compatibility software is provided by many producers and 

allows for the implementation of modular control units by unifying development practices along the same libraries 

and methods. Digital Twins (DT) of industrial equipment and processes offer a solid base to develop innovative 

digital tools relying on synchronization between physical and digital entities and to easily setup intuitive XR 

interfaces for teleoperation and programming. This work presents the integration of the OMRON TM5-9000 

collaborative industrial robot into the IVAR laboratory DT system at Tallinn University of Technology. By using 

Unity3D game engine and developing a ROS package for the specific machine, the digital model of the 

collaborative robot is integrated into the existing twin. Synchronization with the real counterpart is provided by 

MQTT protocol while a robot user interface is developed in Unity and provides robot joints visualization and 

remote control. 

1. INTRODUCTION  

Collaborative robots or “cobots” are bridging the divide between human based and 

automated working environments, shortening the distance between operators and machines 

on the production floor. They are designed to allow and account for different assignments, 

sharing the workspace with humans and accomplishing tasks simultaneously, jointly, and 

possibly interchangeably with the operators.  
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The implementation of Industry 4.0 (I4.0) technologies and the rapid evolution of new 

production models driven by flexibility and rapid adjustments to the market [1], is reflected 

by the interest and robots [2] towards the Operator 4.0 paradigm [3]. As the market diversifies 

and the number of companies developing cobots increases, the usage of Robot Operating 

System (ROS) [4] as the cross-platform software for robot development grows, while more 

leading manufacturers provide ROS drivers and integration to the new products (e.g. 

Universal Robots, ABB or Techman Robot) [5]. ROS has many advantages by providing high 

level functionalities, easy integration of different machines and sensors, and the benefits  

of an operating system with reusable services and development tools. Integration, reconfigu-

ration, and interoperability become easier to handle tasks under these premises, facilitating 

the development of smart and highly dynamic industrial collaborative systems. Furthermore, 

these characteristics lead to an increased research interest for implementation of applications 

specifically designed in ROS and taking advantage of its possibilities. The study presented in 

[6], for instance, describes a new method of time synchronization for modular collaborative 

robots using ROS. The research presented in [7] focalizes on a ROS based integration API 

for the KUKA iiwa lightweight robot facilitating the development of new collaborative 

processes and integration with other machines. The study by Kallweit et al. [8] uses ROS to 

integrate a novel collision detection safety system to an industrial robotic arm. The robot 

operating system is used for sensor integration and prediction of the worker behavior, 

collision detection and robot control and path planning tasks. The study in [9] proposes a ROS 

based integration for electric propulsion drive Digital Twin (DT) synchronization with  

the real-world counterpart and aimed at autonomous driving vehicles. The system grants 

faster data collection and exchange from the real to the simulated testbench allowing for 

optimization of the propulsion system with improvements in energy consumption and path 

planning of the vehicle itself. Baklouti et al. [10] present an experimental work aimed at 

optimizing the control and teleoperation of the Motoman robots adopting the standard open-

source ROS based drivers. The study proposes a new velocity control mode for the ROS 

driver to improve response time, delay, and motion quality. The study in [11] presents a ROS 

based system integrating depth sensor camera-based image recognition for a simple pick and 

place task using RB5 robotic arm. The work demonstrates the flexibility of ROS in integrating 

sensors and machines for fast collaborative production system setups and experimentation. 

Thanks to the system presented in [12] the authors are able to simulate a robot-based 

monitoring task in Unity. The monitoring and welding processes, which are performed  

by two different robots, are synchronized through a ROS – Unity node which operates as  

a main bridge between the different machines. A clear advantage of the solution is that  

the system is hardware agnostic as any ROS compatible machine would be able to perform 

the monitoring task.  

 The emergence of the Industry 5.0 concepts with collaborative technologies and 

advanced DT interface based solution for the cooperative robots in new workspaces [13], 

makes cobots one of the sectors that could benefit from ROS the most. This can further 

contribute to the industry and the developing of hybrid workspaces where multiple workers 

operate alongside several cobots and other machines, all in need for integration and 

synchronization. DT of industrial systems are already employed for testing and commissio-

ning advanced production lines allocating human and robots on simultaneous and joint tasks 
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[14]. These highly dynamic operations may also frequently require quick changes and testing 

to determine what configuration provides the best increase of productivity between the 

humans and the robot. Adopting ROS in combination with DT solutions allows to optimize 

setup time and resources while providing easy integration for different machines [15] and safe 

test bench for workspace configuration. Examples can be found in the works by Bilberg et al. 

[16] and Perez et al. [17] were both monitor based simulations and immersive virtual reality 

(VR) environments are used to design, control, deploy and monitor collaborative production 

processes. A mixed reality (MR) solution is proposed in [18] were Unity and ROS are adopted 

in the implementation of an application supporting design and evaluation of different Human 

Robot Collaboration (HRC) environments [19]. Similarly, the research presented in [20] 

proposes a ROS based module to manage different machines, robots and sensors aimed at the 

design and reconfiguration of HRC assembly lines. The configuration process is supported 

by the dynamically synchronized digital counterparts of the real systems. Implementation  

of HRC methods with support from ROS allows for a flexible, modular and accessible 

systems, that does not compromise the inherent safety features of the collaborative robots 

(e.g., force sensors and speed limitations). Combining ROS and DT solutions is also filling 

the niche for a system that can enable rapid programming and development of safe 

collaborative practices, without the need for extensive training and potentially even a unified 

safety development space for multiple instances of potentially different robots.  

In this study we present the integration of the OMRON TM5-9000 collaborative 

industrial robot using ROS and Unity with the existing integrated DT interface of the IVAR 

laboratory DT system at Tallinn University of Technology lab at allowing for collaboration 

assessment and reconfiguration of the industrial systems present in the lab. This work benefits 

from both the above-mentioned advantages of ROS (modularity, interoperability, univer-

sality) and the use of Unity in creating advanced interfaces for testing collaboration flows, 

safety methods, training operators and evaluating user performance and health state.  

The proposed architecture and interface provide an easy teleoperation and visualization 

method for the existing robot, while being the base for the integration of the user in the DT 

loop by means of extended reality (XR) technologies through Unity. 

2. SYSTEM ARCHITECTURE 

The presented solution makes use of the OMRON TM5-900 which is a multi-joint 

cooperative robot produced by Techman Robot [21]. This robot has 6 joints that define its 

possible movements and provide hardware limitations to its trajectories within the operational 

workspace. Figure 1 shows the robot joints and dimensions specifications. The position of the 

end-effector of the robot changes based on the local angles assumed by each joint and is 

essential for planning and execution of movements done with digital reproductions of the 

robot. The system natively utilizes TMflow, a Techman Robot software which is intended for 

programming, and allows the user to add/remove nodes, to implement logic, variables, motion 

types and actions which form a list of pre-defined programs/options to be used with  

the OMRON TM5-900. The software bears some integration features with other products 

designed by Techman Robot and most importantly allows for ROS set-up through a “Listen” 
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node. Before proceeding with the integration of the robot and connection to Unity3D a modi-

fication is made in the provided TM ROS Driver. Accordingly, a listening task is set up for 

the robot in TMflow by opening a listen node granting data reception. 

 

Fig. 1. OMRON TM5-900 joints and workspace dimensions  

The TM ROS Driver is implemented in a dedicated Linux Virtual Machine which 

connects to the Listen node in TMflow via an Ethernet Slave at the driver startup. The archi-

tecture of the system is shown in Fig. 2. 

 

Fig. 2. Proposed architecture of the system 
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 The ROS package created in the virtual machine transfers the received real robot 

parameters through the TM ROS Driver to Unity3D engine. These two are connected through 

an MQTT LAN Bridge modified to suit the Omron robot and based on the work presented in 

[22]. The MQTT ROS bridge server publishes the state and new positions of the real robot 

joints. The ROS Bridge Client on the Unity3D side is used by the robot controller. This is 

developed to control and update the DT robot joint positions based on the MQTT message 

subscription and publishing, and as a base for the User Interface (UI) command issuing and 

controls. After comparing different solutions MoveIt [23] was selected as a path planning 

software for this system. The following paragraphs explain more in detail the implementation 

of the software and DT control in Unity.  

3. IMPLEMENTATION 

The following paragraph will exemplify the implementation of the basic components  

of the proposed system including the choice of path planning software and methods, the ROS 

Unity communication, the creation of the robot DT, controller and UI in Unity3D. 

3.1. PATH PLANNING 

 While Techman Robot does provide a TM ROS Driver that connects their TM Flow to 

ROS, the Driver has only limited pre-setups and few developed options. During the initial 

stage of development different solutions were evaluated including Gazebo, ROS industrial, 

and TM ROS Driver. MoveIt was chosen as the final approach as it allows efficient path 

planning, is part of the ROS ecosystem, makes use of URDF robot models provided by the 

TM ROS Driver including their visualization through Rviz, and easily allows to process data 

communication with the Unity3D controller. The move_group_python_interface script is 

created in python and aimed at path planning and execution. This script has several methods 

dedicated to receiving and processing the information exchanged from the MQTT bridge, 

storing them and calculating new trajectories. These methods are summarized in Table 1.  

Table 1. Move_group_python_interface script methods 

METHOD FUNCTION 

Joint_callback Callback method that assigns received subscriber data to script position values. 

all_close 
Method for testing if a list of values is within a tolerance of their counterparts in 

another list. 

__init__ Basic method which initialises MoveIt and assigns groups and interfaces 

go_to_joint_state 
Main method used for trajectory planning and execution; It uses the values received 

through the MQTT Bridge to initiate a new movement for the robot 

go_to_pose_goal, 

plan_cartesian_path, 

execute_plan 

MoveIt configuration supports movement planning based on end-effector pose and 

Cartesian path planning. These functions are not used in the scope of this work. 
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The script integrates a queueing capability to counterbalance the multi-axial movement 

deficiency of MoveIt and allowing for up to 10 movement commands to be temporarily 

stored. This allows each command to start after the previous goal state has been reached when 

the user tries to execute several publishes one after the other. 

3.2. MQTT ROS-UNITY COMMUNICATION 

The communication between ROS and Unity3D is provided by MQTT bridge 

published/subscriber scripts. The move_group_python_interface serves the OmronMove 

message type created to fit the specific robot requirement for transferring data referring to 

each joint angle. The message is sent through LAN Server to Unity3D. The two commu-

nication topics involved are:   

• /omron/joints/feedback – ROS topic sending the constructed OmronMove message 

consisting of robot current positions to Unity3D 

• omron/joints/command – ROS topic receiving an OmronMove message from 

Unity3D consisting of the goal angles chosen by the user and to be transferred to the 

path calculation and real robot movement 

 The provided communication method can be easily modified and extended to transfer 

additional variables and data for other types of robots. From the Unity3D side there are two 

scripts written in C# managing the publication and subscription of the robot joints positions. 

The first, MqttOmronMovePublisher, packages the input joint angle values into the 

OmronMove message type and publishes them on the omron/command MQTT topic which is 

received by /omron/joints/command at the ROS side after the conversion and JSON de-

serialization. The second script, MqttOmronMoveSubscriber, receives the OmronMove 

message type which is then passed onto each joint of the digital robot model and used by  

the DT controller script to reposition the robot joints. 

3.3. UNITY INTEGRATION  

 Unity3D game engine is employed in the implementation of the robot DT, controller 

and UI. Unity3D is a powerful tool supporting a wide range of hardware and software 

development kits which enable application developments for a variety of operating systems. 

The first step of the DT implementation is the integration of the OMRON TM5-900 3D model 

in a new Unity project. One of the main requirements for the Unity robot DT integration is 

the correspondence and fidelity to the real machine geometry ensuring no differences existing 

between real and digital counterpart. The mesh and URDF definitions for the models are 

provided with TM ROS Driver and already employed for MoveIt-Rviz path planning and 

visualization. Unity3D does not support URDF files import. For this reason, we made use  

of the Unity3D-URDF import plugin provided by Unity Technologies. This plugin is based 

on ROS#, which is a ROS to Unity integration project written in C# programming language 

and widely employed in similar scenarios. Through the adopted plugin the model is imported 

in Unity along with the correct axis reference system. After importing, the OMRON TM5-
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900 3D model went through an optimization process including mesh simplification and 

hierarchy structuring. The final robot DT is constituted by a nested tree structure of Unity 

GameObjects, with each subsequent joint being a child object to the previous one starting 

with the base of the robot and ending with the end-effector. Each joint carries the relevant 

scripts necessary for controlling and rotating the joints angles. The resulting DT robot is 

shown in Fig. 3.  

 A second robot model, ‘ghost’, was created in the scene, and differentiated from the 

main DT by applying a different texture material. While the purpose of the main 3D model is 

to represent the angle/joint values of the real OMRON TM5-900 robot and serve as the Digital 

Twin, the purpose of the ghost robot is to preview the robot position and joint angles when 

the user interacts with the UI and provide visual feedback to user interactions with the control 

application. 

 

Fig. 3. OMRON TM5-900 DT in Unity3D 

3.4. ROBOT CONTROLLER AND USER INTERFACE 

 The robot controller is constituted by a collection of scripts written in C# programming 

language and employed to manipulate both the DT and ghost robot in Unity. The controller 

accomplishes two main functions: it achieves the implementation of DT as a concept, and it 

provides a visual representation to the goal state of the robot by means of the ghost preview 

method, Fig. 4.  

 

Fig. 4. DT and ghost robot when the position is published (left), midway (center), and having reached  

the goal state (right) 
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The OmronMovePublisherWrapper checks for the UI sliders inputs and transfers the 

values to the robot joint angles, Fig. 5. Additionally, it uses the Mqtt-MovePublisher to 

publish the values to the topic and initiating the physical robot movement.  

I 

Fig. 5. OMRON TM5-900 DT remote control U 

The JointRobotROSPreviewer script controls the preview state of each new position by 

sending the rotational angle value to the assigned ghost robot joints by means of the 

ArmedRobotJoint. The angle input is taken from the values passed by the MqttOmron-

MovePublisher. The JointRobotROSStateUpdater is equivalent to the JointRobotROSP-

reviewer for the DT robot.  

 This script passes the values received from MqttOmronMoveSubscriber, holding  

the joint angles of the real robot, to the assigned DT joints whom position is updated through 

the ArmedRobotJoint script. This last script is attached to each of the joints the DT robot and 

the ghost robot. The code gets the angles values from either JointRobotROSStateUpdater or 

JointRobotROSPreviewer and locally rotates the joint to the correct position along the selec-

ted axis. Furthermore, the script defines rotational limits for each joint that can be modified 

from the Unity inspector component. The monitor based remote control UI is also developed 

in Unity3D and provides several visualization and control functions for the DT robot and 

consequently its real counterpart. The interface provides the user with full camera view over 

the DT and ghost robot and the possibility of adjusting the camera position, rotation and zoom 

by means of user interface sliders overlayed on top of the scene view. These controls include 

a Reset Position button used to reposition the camera in its original location after being 

modified. The robot control interface displays the six different joint names (shoulder-1, arm-

1, arm-2, wrist-1, wrist-2, wrist-3) and values for the goal position of each joint and current 

robot joint position, (in degrees). The values are updated dynamically by means of the UI 

scripts SliderValueShow and CurrentPOSUI. Six sliders are controlling the desired joint 

rotation angle goal position whom values are updating the ghost robot dynamically. Finally, 



D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67  65 

 

the Publish button sends the selected goal state values to ROS for the update of the real robot 

joint positions.  

4. CONCLUSION AND FUTURE WORKS 

The developed solution exemplifies the capabilities of ROS-Unity architecture by 

successfully providing a DT interface for OMRON TM5-900 and an architecture that would 

allow for future easy expansion of UI components and connected machines. The system 

provides a simple UI for remote operation and visualization of the robot. The proposed 

software consists of a desktop-based application and UI developed in Unity3D. The ROS 

package and custom-made logic are installed on the same local network of the real robot, used 

to execute the commands received from the UI and for the synchronization of real and DT 

robotic arm positions by means of MQTT communication protocol. MoveIt is used for path 

planning and calculation. The presented DT UI system for the OMRON TM5-900 achieves  

a high level of modularity and shows the potential of ROS in providing a significant degree 

of flexibility in integrating different automated robotic systems. The solution responds to  

the increasing needs of the modern production lines resulting in dynamically changing 

scenarios and demanding for universal software tools and methods facilitating the exploitation 

of human machine collaboration, limiting the costs, and optimizing the production processes.  

Future developments will include the optimization of more advanced interface 

functions, controls, and interaction methods. Different UI controls for joint angle target 

position should be taken into consideration as much as the possibility of controlling and 

visualizing the robot in Cartesian space. The assessment of the proposed UI against the real 

robot control and programming methods, by evaluating their usability and design features, is 

another important aspect which will include the estimation of hardware-based delay and 

angular errors on the specific machine manipulation. The possibility of integrating remote UI 

controls for different end effectors should be taken into consideration and integrated as 

selectable list of tools in the main system interface. At last, both the planning limitation of the 

MoveIt libraries and impossibility of accessing the OMRON TM5-900 security force sensor 

parameters might be addressed to improve usability, error notification, safety, and control 

over the joint’s movements.  

The main future goal will be integrating the proposed architecture in the mobile based 

dashboard and full immersive Virtual Reality (VR) DT interfaces already implemented in  

the IVAR laboratory DT system at Tallinn University of Technology. The integration of the 

OMRON robot DT into a highly interactable XR environment would allow a fully immersive 

or augmented interface experience for different machines. The operator will be able to interact 

with virtual, augmented and real components and equipment both locally and remotely.  

The system will provide a base for advanced interaction methods, gesture or voice control, 

exploiting the easy XR hardware integration of Unity3D. Furthermore, by putting the user at 

the center of the DT loop and within the user interface through sensor integration and VR 

interaction and visualization tools, the system will provide a base to implement advanced I5.0 

monitoring, collaboration method evaluation, and assessment of the operator health and 

performance in the production system. 
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