
Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67

ISSN 1895-7595 (Print) ISSN 2391-8071 (Online)

Received: 29 January. 2022 / Accepted: 06 April 2022 / Published online: 18 April 2022

digital twins, virtual reality,

robot operating system,

collaborative robots

Danyil DIACHENKO1, Andriy PARTYSHEV1,

Simone Luca PIZZAGALLI1*, Yevhen BONDARENKO1,

Tauno OTTO1, Vladimir KUTS3,2,1

INDUSTRIAL COLLABORATIVE ROBOT DIGITAL TWIN INTEGRATION

AND CONTROL USING ROBOT OPERATING SYSTEM

Standardized and universal solutions for industrial robot integration are increasingly urgent requirements for

companies looking for machine interconnectivity, and flexibility in creating tailor made manufacturing systems.

These solutions must be supported by modular and open-source components able to easily integrate new control

methods and advanced Extended Reality (XR) interfaces. Robot Operating System (ROS) has proven to be

a reliable standard for industrial robot integration. ROS compatibility software is provided by many producers and

allows for the implementation of modular control units by unifying development practices along the same libraries

and methods. Digital Twins (DT) of industrial equipment and processes offer a solid base to develop innovative

digital tools relying on synchronization between physical and digital entities and to easily setup intuitive XR

interfaces for teleoperation and programming. This work presents the integration of the OMRON TM5-9000

collaborative industrial robot into the IVAR laboratory DT system at Tallinn University of Technology. By using

Unity3D game engine and developing a ROS package for the specific machine, the digital model of the

collaborative robot is integrated into the existing twin. Synchronization with the real counterpart is provided by

MQTT protocol while a robot user interface is developed in Unity and provides robot joints visualization and

remote control.

1. INTRODUCTION

Collaborative robots or “cobots” are bridging the divide between human based and

automated working environments, shortening the distance between operators and machines

on the production floor. They are designed to allow and account for different assignments,

sharing the workspace with humans and accomplishing tasks simultaneously, jointly, and

possibly interchangeably with the operators.

1 Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
2 Department of Electronics and Computer Engineering., Technological University of the Shannon: Midlands Midwest,

Ireland
3 Electronic & Computer Engineering department, University of Limerick, Ireland
* E-mail: simone.pizzagalli@taltech.ee

 https://doi. org/10.36897/jme/148110

58 D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67

The implementation of Industry 4.0 (I4.0) technologies and the rapid evolution of new

production models driven by flexibility and rapid adjustments to the market [1], is reflected

by the interest and robots [2] towards the Operator 4.0 paradigm [3]. As the market diversifies

and the number of companies developing cobots increases, the usage of Robot Operating

System (ROS) [4] as the cross-platform software for robot development grows, while more

leading manufacturers provide ROS drivers and integration to the new products (e.g.

Universal Robots, ABB or Techman Robot) [5]. ROS has many advantages by providing high

level functionalities, easy integration of different machines and sensors, and the benefits

of an operating system with reusable services and development tools. Integration, reconfigu-

ration, and interoperability become easier to handle tasks under these premises, facilitating

the development of smart and highly dynamic industrial collaborative systems. Furthermore,

these characteristics lead to an increased research interest for implementation of applications

specifically designed in ROS and taking advantage of its possibilities. The study presented in

[6], for instance, describes a new method of time synchronization for modular collaborative

robots using ROS. The research presented in [7] focalizes on a ROS based integration API

for the KUKA iiwa lightweight robot facilitating the development of new collaborative

processes and integration with other machines. The study by Kallweit et al. [8] uses ROS to

integrate a novel collision detection safety system to an industrial robotic arm. The robot

operating system is used for sensor integration and prediction of the worker behavior,

collision detection and robot control and path planning tasks. The study in [9] proposes a ROS

based integration for electric propulsion drive Digital Twin (DT) synchronization with

the real-world counterpart and aimed at autonomous driving vehicles. The system grants

faster data collection and exchange from the real to the simulated testbench allowing for

optimization of the propulsion system with improvements in energy consumption and path

planning of the vehicle itself. Baklouti et al. [10] present an experimental work aimed at

optimizing the control and teleoperation of the Motoman robots adopting the standard open-

source ROS based drivers. The study proposes a new velocity control mode for the ROS

driver to improve response time, delay, and motion quality. The study in [11] presents a ROS

based system integrating depth sensor camera-based image recognition for a simple pick and

place task using RB5 robotic arm. The work demonstrates the flexibility of ROS in integrating

sensors and machines for fast collaborative production system setups and experimentation.

Thanks to the system presented in [12] the authors are able to simulate a robot-based

monitoring task in Unity. The monitoring and welding processes, which are performed

by two different robots, are synchronized through a ROS – Unity node which operates as

a main bridge between the different machines. A clear advantage of the solution is that

the system is hardware agnostic as any ROS compatible machine would be able to perform

the monitoring task.

 The emergence of the Industry 5.0 concepts with collaborative technologies and

advanced DT interface based solution for the cooperative robots in new workspaces [13],

makes cobots one of the sectors that could benefit from ROS the most. This can further

contribute to the industry and the developing of hybrid workspaces where multiple workers

operate alongside several cobots and other machines, all in need for integration and

synchronization. DT of industrial systems are already employed for testing and commissio-

ning advanced production lines allocating human and robots on simultaneous and joint tasks

D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67 59

[14]. These highly dynamic operations may also frequently require quick changes and testing

to determine what configuration provides the best increase of productivity between the

humans and the robot. Adopting ROS in combination with DT solutions allows to optimize

setup time and resources while providing easy integration for different machines [15] and safe

test bench for workspace configuration. Examples can be found in the works by Bilberg et al.

[16] and Perez et al. [17] were both monitor based simulations and immersive virtual reality

(VR) environments are used to design, control, deploy and monitor collaborative production

processes. A mixed reality (MR) solution is proposed in [18] were Unity and ROS are adopted

in the implementation of an application supporting design and evaluation of different Human

Robot Collaboration (HRC) environments [19]. Similarly, the research presented in [20]

proposes a ROS based module to manage different machines, robots and sensors aimed at the

design and reconfiguration of HRC assembly lines. The configuration process is supported

by the dynamically synchronized digital counterparts of the real systems. Implementation

of HRC methods with support from ROS allows for a flexible, modular and accessible

systems, that does not compromise the inherent safety features of the collaborative robots

(e.g., force sensors and speed limitations). Combining ROS and DT solutions is also filling

the niche for a system that can enable rapid programming and development of safe

collaborative practices, without the need for extensive training and potentially even a unified

safety development space for multiple instances of potentially different robots.

In this study we present the integration of the OMRON TM5-9000 collaborative

industrial robot using ROS and Unity with the existing integrated DT interface of the IVAR

laboratory DT system at Tallinn University of Technology lab at allowing for collaboration

assessment and reconfiguration of the industrial systems present in the lab. This work benefits

from both the above-mentioned advantages of ROS (modularity, interoperability, univer-

sality) and the use of Unity in creating advanced interfaces for testing collaboration flows,

safety methods, training operators and evaluating user performance and health state.

The proposed architecture and interface provide an easy teleoperation and visualization

method for the existing robot, while being the base for the integration of the user in the DT

loop by means of extended reality (XR) technologies through Unity.

2. SYSTEM ARCHITECTURE

The presented solution makes use of the OMRON TM5-900 which is a multi-joint

cooperative robot produced by Techman Robot [21]. This robot has 6 joints that define its

possible movements and provide hardware limitations to its trajectories within the operational

workspace. Figure 1 shows the robot joints and dimensions specifications. The position of the

end-effector of the robot changes based on the local angles assumed by each joint and is

essential for planning and execution of movements done with digital reproductions of the

robot. The system natively utilizes TMflow, a Techman Robot software which is intended for

programming, and allows the user to add/remove nodes, to implement logic, variables, motion

types and actions which form a list of pre-defined programs/options to be used with

the OMRON TM5-900. The software bears some integration features with other products

designed by Techman Robot and most importantly allows for ROS set-up through a “Listen”

60 D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67

node. Before proceeding with the integration of the robot and connection to Unity3D a modi-

fication is made in the provided TM ROS Driver. Accordingly, a listening task is set up for

the robot in TMflow by opening a listen node granting data reception.

Fig. 1. OMRON TM5-900 joints and workspace dimensions

The TM ROS Driver is implemented in a dedicated Linux Virtual Machine which

connects to the Listen node in TMflow via an Ethernet Slave at the driver startup. The archi-

tecture of the system is shown in Fig. 2.

Fig. 2. Proposed architecture of the system

D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67 61

 The ROS package created in the virtual machine transfers the received real robot

parameters through the TM ROS Driver to Unity3D engine. These two are connected through

an MQTT LAN Bridge modified to suit the Omron robot and based on the work presented in

[22]. The MQTT ROS bridge server publishes the state and new positions of the real robot

joints. The ROS Bridge Client on the Unity3D side is used by the robot controller. This is

developed to control and update the DT robot joint positions based on the MQTT message

subscription and publishing, and as a base for the User Interface (UI) command issuing and

controls. After comparing different solutions MoveIt [23] was selected as a path planning

software for this system. The following paragraphs explain more in detail the implementation

of the software and DT control in Unity.

3. IMPLEMENTATION

The following paragraph will exemplify the implementation of the basic components

of the proposed system including the choice of path planning software and methods, the ROS

Unity communication, the creation of the robot DT, controller and UI in Unity3D.

3.1. PATH PLANNING

 While Techman Robot does provide a TM ROS Driver that connects their TM Flow to

ROS, the Driver has only limited pre-setups and few developed options. During the initial

stage of development different solutions were evaluated including Gazebo, ROS industrial,

and TM ROS Driver. MoveIt was chosen as the final approach as it allows efficient path

planning, is part of the ROS ecosystem, makes use of URDF robot models provided by the

TM ROS Driver including their visualization through Rviz, and easily allows to process data

communication with the Unity3D controller. The move_group_python_interface script is

created in python and aimed at path planning and execution. This script has several methods

dedicated to receiving and processing the information exchanged from the MQTT bridge,

storing them and calculating new trajectories. These methods are summarized in Table 1.

Table 1. Move_group_python_interface script methods

METHOD FUNCTION

Joint_callback Callback method that assigns received subscriber data to script position values.

all_close
Method for testing if a list of values is within a tolerance of their counterparts in

another list.

__init__ Basic method which initialises MoveIt and assigns groups and interfaces

go_to_joint_state
Main method used for trajectory planning and execution; It uses the values received

through the MQTT Bridge to initiate a new movement for the robot

go_to_pose_goal,

plan_cartesian_path,

execute_plan

MoveIt configuration supports movement planning based on end-effector pose and

Cartesian path planning. These functions are not used in the scope of this work.

62 D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67

The script integrates a queueing capability to counterbalance the multi-axial movement

deficiency of MoveIt and allowing for up to 10 movement commands to be temporarily

stored. This allows each command to start after the previous goal state has been reached when

the user tries to execute several publishes one after the other.

3.2. MQTT ROS-UNITY COMMUNICATION

The communication between ROS and Unity3D is provided by MQTT bridge

published/subscriber scripts. The move_group_python_interface serves the OmronMove

message type created to fit the specific robot requirement for transferring data referring to

each joint angle. The message is sent through LAN Server to Unity3D. The two commu-

nication topics involved are:

• /omron/joints/feedback – ROS topic sending the constructed OmronMove message

consisting of robot current positions to Unity3D

• omron/joints/command – ROS topic receiving an OmronMove message from

Unity3D consisting of the goal angles chosen by the user and to be transferred to the

path calculation and real robot movement

 The provided communication method can be easily modified and extended to transfer

additional variables and data for other types of robots. From the Unity3D side there are two

scripts written in C# managing the publication and subscription of the robot joints positions.

The first, MqttOmronMovePublisher, packages the input joint angle values into the

OmronMove message type and publishes them on the omron/command MQTT topic which is

received by /omron/joints/command at the ROS side after the conversion and JSON de-

serialization. The second script, MqttOmronMoveSubscriber, receives the OmronMove

message type which is then passed onto each joint of the digital robot model and used by

the DT controller script to reposition the robot joints.

3.3. UNITY INTEGRATION

 Unity3D game engine is employed in the implementation of the robot DT, controller

and UI. Unity3D is a powerful tool supporting a wide range of hardware and software

development kits which enable application developments for a variety of operating systems.

The first step of the DT implementation is the integration of the OMRON TM5-900 3D model

in a new Unity project. One of the main requirements for the Unity robot DT integration is

the correspondence and fidelity to the real machine geometry ensuring no differences existing

between real and digital counterpart. The mesh and URDF definitions for the models are

provided with TM ROS Driver and already employed for MoveIt-Rviz path planning and

visualization. Unity3D does not support URDF files import. For this reason, we made use

of the Unity3D-URDF import plugin provided by Unity Technologies. This plugin is based

on ROS#, which is a ROS to Unity integration project written in C# programming language

and widely employed in similar scenarios. Through the adopted plugin the model is imported

in Unity along with the correct axis reference system. After importing, the OMRON TM5-

D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67 63

900 3D model went through an optimization process including mesh simplification and

hierarchy structuring. The final robot DT is constituted by a nested tree structure of Unity

GameObjects, with each subsequent joint being a child object to the previous one starting

with the base of the robot and ending with the end-effector. Each joint carries the relevant

scripts necessary for controlling and rotating the joints angles. The resulting DT robot is

shown in Fig. 3.

 A second robot model, ‘ghost’, was created in the scene, and differentiated from the

main DT by applying a different texture material. While the purpose of the main 3D model is

to represent the angle/joint values of the real OMRON TM5-900 robot and serve as the Digital

Twin, the purpose of the ghost robot is to preview the robot position and joint angles when

the user interacts with the UI and provide visual feedback to user interactions with the control

application.

Fig. 3. OMRON TM5-900 DT in Unity3D

3.4. ROBOT CONTROLLER AND USER INTERFACE

 The robot controller is constituted by a collection of scripts written in C# programming

language and employed to manipulate both the DT and ghost robot in Unity. The controller

accomplishes two main functions: it achieves the implementation of DT as a concept, and it

provides a visual representation to the goal state of the robot by means of the ghost preview

method, Fig. 4.

Fig. 4. DT and ghost robot when the position is published (left), midway (center), and having reached

the goal state (right)

64 D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67

The OmronMovePublisherWrapper checks for the UI sliders inputs and transfers the

values to the robot joint angles, Fig. 5. Additionally, it uses the Mqtt-MovePublisher to

publish the values to the topic and initiating the physical robot movement.

I

Fig. 5. OMRON TM5-900 DT remote control U

The JointRobotROSPreviewer script controls the preview state of each new position by

sending the rotational angle value to the assigned ghost robot joints by means of the

ArmedRobotJoint. The angle input is taken from the values passed by the MqttOmron-

MovePublisher. The JointRobotROSStateUpdater is equivalent to the JointRobotROSP-

reviewer for the DT robot.

 This script passes the values received from MqttOmronMoveSubscriber, holding

the joint angles of the real robot, to the assigned DT joints whom position is updated through

the ArmedRobotJoint script. This last script is attached to each of the joints the DT robot and

the ghost robot. The code gets the angles values from either JointRobotROSStateUpdater or

JointRobotROSPreviewer and locally rotates the joint to the correct position along the selec-

ted axis. Furthermore, the script defines rotational limits for each joint that can be modified

from the Unity inspector component. The monitor based remote control UI is also developed

in Unity3D and provides several visualization and control functions for the DT robot and

consequently its real counterpart. The interface provides the user with full camera view over

the DT and ghost robot and the possibility of adjusting the camera position, rotation and zoom

by means of user interface sliders overlayed on top of the scene view. These controls include

a Reset Position button used to reposition the camera in its original location after being

modified. The robot control interface displays the six different joint names (shoulder-1, arm-

1, arm-2, wrist-1, wrist-2, wrist-3) and values for the goal position of each joint and current

robot joint position, (in degrees). The values are updated dynamically by means of the UI

scripts SliderValueShow and CurrentPOSUI. Six sliders are controlling the desired joint

rotation angle goal position whom values are updating the ghost robot dynamically. Finally,

D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67 65

the Publish button sends the selected goal state values to ROS for the update of the real robot

joint positions.

4. CONCLUSION AND FUTURE WORKS

The developed solution exemplifies the capabilities of ROS-Unity architecture by

successfully providing a DT interface for OMRON TM5-900 and an architecture that would

allow for future easy expansion of UI components and connected machines. The system

provides a simple UI for remote operation and visualization of the robot. The proposed

software consists of a desktop-based application and UI developed in Unity3D. The ROS

package and custom-made logic are installed on the same local network of the real robot, used

to execute the commands received from the UI and for the synchronization of real and DT

robotic arm positions by means of MQTT communication protocol. MoveIt is used for path

planning and calculation. The presented DT UI system for the OMRON TM5-900 achieves

a high level of modularity and shows the potential of ROS in providing a significant degree

of flexibility in integrating different automated robotic systems. The solution responds to

the increasing needs of the modern production lines resulting in dynamically changing

scenarios and demanding for universal software tools and methods facilitating the exploitation

of human machine collaboration, limiting the costs, and optimizing the production processes.

Future developments will include the optimization of more advanced interface

functions, controls, and interaction methods. Different UI controls for joint angle target

position should be taken into consideration as much as the possibility of controlling and

visualizing the robot in Cartesian space. The assessment of the proposed UI against the real

robot control and programming methods, by evaluating their usability and design features, is

another important aspect which will include the estimation of hardware-based delay and

angular errors on the specific machine manipulation. The possibility of integrating remote UI

controls for different end effectors should be taken into consideration and integrated as

selectable list of tools in the main system interface. At last, both the planning limitation of the

MoveIt libraries and impossibility of accessing the OMRON TM5-900 security force sensor

parameters might be addressed to improve usability, error notification, safety, and control

over the joint’s movements.

The main future goal will be integrating the proposed architecture in the mobile based

dashboard and full immersive Virtual Reality (VR) DT interfaces already implemented in

the IVAR laboratory DT system at Tallinn University of Technology. The integration of the

OMRON robot DT into a highly interactable XR environment would allow a fully immersive

or augmented interface experience for different machines. The operator will be able to interact

with virtual, augmented and real components and equipment both locally and remotely.

The system will provide a base for advanced interaction methods, gesture or voice control,

exploiting the easy XR hardware integration of Unity3D. Furthermore, by putting the user at

the center of the DT loop and within the user interface through sensor integration and VR

interaction and visualization tools, the system will provide a base to implement advanced I5.0

monitoring, collaboration method evaluation, and assessment of the operator health and

performance in the production system.

66 D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67

ACKNOWLEDGEMENTS

The research was conducted using the Smart Industry Centre (SmartIC) core facility funded by the Estonian Research

Council grant TT2. In addition, Vladimir Kuts has received funding from the European Union's Horizon 2020 research

and innovation program under the Marie Skłodowska‐Curie grant agreement No. 847577; and a research grant from

Science Foundation Ireland (SFI) under Grant Number 16/RC/3918 (Ireland's European Structural and Investment

Funds Programmes and the European Regional Development Fund 2014‐2.

REFERENCES

[1] BASTIDAS-CRUZ A., HEIMANN O., HANINGER K., KRÜGER J., 2020, Information Requirements and

Interfaces for the Programming of Robots in Flexible Manufacturing, Annals of Scientific Society for Assembly,

Handling and Industrial Robotics, 183–192.

[2] SHERWANI F., ASAD M.M., IBRAHIM B.S.K.K., 2020, Collaborative Robots and Industrial Revolution 4.0 (IR

4.0), International Conference on Emerging Trends in Smart Technologies, ICETST 2020.

[3] ROMERO D., BERNUS P., NORAN O., STAHRE J., FAST-BERGLUND A., 2016, The Operator 4.0: Human

Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems, IFIP

Advances in Information and Communication Technology, 677–686.

[4] QUIGLEY M., CONLEY K., GERKEY B., FAUST J., FOOTE T., LEIBS J., WHEELER R., NG A.Y., 2009, ROS:

an Open-Source Robot Operating System, ICRA Workshop on Open Source Software, 3, 5.

[5] https://robots.ros.org/.

[6] GUTIERREZ C.S.V., JUAN L.U.S., UGARTE I.Z., GOENAGA I.M., KIRSCHGENS L.A., VILCHES V.M., 2018,

Time Synchronization in Modular Collaborative Robots, rXiv:1809.07295.

[7] MOKARAM S., AITKEN J.M., MARTINEZ-HERNANDEZ U., EIMONTAITE I., CAMERON D., ROLPH J.,

GWILT I., MCAREE O., LAW J., 2017, A ROS-Integrated API for the KUKA LBR iiwa Collaborative Robot, IFAC-

PapersOnLine, 50, 15859–64.

[8] KALLWEIT S., WALENTA R., GOTTSCHALK M., 2016, ROS Based Safety Concept for Collaborative Robots

in Industrial Applications, Advances in Intelligent Systems and Computing, 27–35.

[9] KUTS V., RASSOLKIN A., PARTYSHEV A., JEGOROV S., RJABTSIKOV V., 2021, ROS Middle-Layer

Integration to Unity 3D as an Interface Option for Propulsion Drive Simulations of Autonomous Vehicles IOP

Conference Series: Materials Science and Engineering, 1140 012008.

[10] BAKLOUTI S., GALLOT G., VIAUD J., SUBRIN K., 2021, On the Improvement of Ros-Based Control for

Teleoperated Yaskawa Robots, Applied Sciences (Switzerland), 11.

[11] KREITZ J., LEE M., SUBPARK H., OH P.Y., OH J.H., 2020, Implementing ROS Communications for Sensor

Integration with the RB5 Collaborative Robot, 2020 10th Annual Computing and Communication Workshop and

Conference, 378–383.

[12] SITA E., HORVATH C.M., THOMESSEN T., KORONDI P., PIPE A.G., 2018, ROS-Unity3D Based System for

Monitoring of an Industrial Robotic Process, 2017 IEEE/SICE International Symposium on System Integration,

1047–1052.

[13] MADDIKUNTA P.K.R., PHAM Q-V., PRABADEVI B., DEEPA N., DEV K., GADEKALLU T.R, RUBY R.,

LIYANAGE M., 2021, Industry 5.0: A Survey on Enabling Technologies and Potential Applications, Journal of

Industrial Information Integration, 100257.

[14] KUTS V., CHEREZOVA N., SARKANS M., OTTO T., 2020, Digital Twin: Industrial Robot Kinematic Model

Integration to the Virtual Reality Environment, Journal of Machine Engineering, 20/2, 53–64.

[15] KUTS V., OTTO T., BONDARENKO Y., YU F., 2020, Digital Twin: Collaborative Virtual Reality Environment

for Multi-Purpose Industrial Applications, ASME International Mechanical Engineering Congress and Exposition,

Proceedings, IMECE2020-23390, V02BT02A010.

[16] BILBERG A., MALIK A.A., 2019, Digital Twin Driven Human–Robot Collaborative Assembly, CIRP Annals, 68/1,

499–502.

[17] PEREZ L., RODRIGUEZ-JIMENEZ S., RODRIGUEZ N., USAMENTIAGA R., GARCIA D.F., 2020, Digital

Twin and Virtual Reality Based Methodology for Multi-Robot Manufacturing Cell Commissioning, Applied

Sciences, 10, 3633.

[18] SIEGELE D., STEINER D., GIUSTI A., RIEDL M., MATT D.T., 2021, Optimizing Collaborative Robotic

Workspaces in Industry by Applying Mixed Reality, International Conference on Augmented Reality, Virtual Reality

and Computer Graphics, 544–559.

D. Diachenko et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 57–67 67

[19] MARVEL J.A., BAGCHI S., ZIMMERMAN M., AKSU M., ANTONISHEK B., LI X., WANG Y., MEAD R.,

FONG T., BEN AMOR H., 2021, Novel and Emerging Test Methods and Metrics for Effective HRI, ACM/IEEE

International Conference on Human-Robot Interaction, 730–732.

[20] KOUSI N., GKOURNELOS C., AIVALIOTIS S., LOTSARIS K., BAVELOS A.C., BARIS P., MICHALOS G.,

MAKRIS S., 2021, Digital Twin for Designing and Reconfiguring Human–Robot Collaborative Assembly Lines,

Applied Sciences (Switzerland), 11.

[21] https://www.tm-robot.com/en/techman-x-omron/.

[22] KUTS V., MODONI G.E., OTTO T., SACCO M., TÄHEMAA T., BONDARENKO Y., WANG R., 2019,

Synchronizing Physical Factory and its Digital Twin Throughan iiot Middleware: A case study, Proceedings of the

Estonian Academy of Sciences, 68, 364–370.

[23] https://moveit.ros.org/.

