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COMPLIANT JOINTS WITH REMOTE CENTRE OF COMPLIANCE FOR  

THE IMPROVEMENT OF THE MOTION ACCURACY OF A GANTRY STAGE 

Gantry stages, which consist of two parallel acting servo drives, are commonly used in machine tools. One 

drawback of this concept is the crosstalk between both drives, when a stiff mechanical coupling is present. This 

can lead to a limited bandwidth of the position control or to high reaction forces. One way to overcome these issues 

is the usage of joints to create an additional degree of freedom, which allows the drives to move independently. 

The design of these joints as compliant elements offers advantages compared to common rolling bearings, such as 

low friction and the absence of backlash. Another benefit is the variability in the design of the compliant joints 

allowing for adjustments to the position of each joint’s centre of compliance. Thus, the position of the resulting 

pivot, and the transfer matrix between the motion of the drives and the motion at the gantry stage’s tool centre 

point, change as well. This paper addresses the placement of the joint’s centre of compliance in order to improve 

motion accuracy. For this purpose, joints with modular arranged compliant links have been designed. The charac-

teristics of the joints and their effect on the behaviour of the gantry stage are compared using analytical 

investigations as well as experimental results. 

1. INTRODUCTION 

High productivity and high accuracy are essential goals in the development of machine 

tools and production systems in general. The enhancement of a motion system’s feed drive 

dynamics is one strategy to increase its productivity. Thus, higher drive forces are required 

and can lead to a reduction in accuracy if the machine structure is dynamically excited.  

A gantry-type motion system, which consists of two parallel acting drives, has the ability to 

reduce structural disturbances if drive forces are applied to the centre of gravity of the moved 

assembly [1]. However, using two drives for one degree of freedom (DOF) can lead to 

stability issues in the control loops of the drives due to their mechanical coupling [2]. In this 

case, the bandwidth of the motion control and thus the motion dynamics of the entire system 
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are reduced. One way to overcome this issue is the implementation of control systems, which  

consider the physical interaction between the different drives. For example, in [3] a control 

strategy for a gantry stage, based on modal decoupling is presented. However, such systems 

require central data processing and are mostly not used in industry. 

An alternative way to reduce bandwidth limitations is the integration of joints to create 

an additional DOF and to decrease the drives’ mechanical coupling. For this purpose, 

compliant joints, which consist of a single deformable part, are preferable because of the low 

friction and backlash [4]. The previous work [5] shows that this strategy improves the band-

width of the axis. Design of high precision motion systems with compliant elements is often 

addressed in literature. For example, in [6] a planar positioning system based on piezoelectric 

actuators is developed to provide a precise and frictionless motion. [7] describes the concept 

of a highly dynamic and lightweight machine structure, which is equipped with multiple feed 

drives and compliant mechanisms to decouple the drives and the guiding systems of each axis. 

In [8] KIM presents the design of joints for a gantry stage, which consist of a rotationally 

symmetrical arrangement of flexible links. The additional DOFs obtained by the concepts  

of [7] and [8] can be used to correct angular deviations of the machine. 

This paper presents the design concept of compliant joints for a gantry type motion 

stage, to improve its positioning accuracy. First, a planar model of a gantry system is 

described in Section 2. This model is used to analyse the effect of remote pivot positions on 

the system’s kinematic characteristics. Section 3 presents the design concept of compliant 

elements to optimise the stiffness characteristics of the complete joint. It is shown that using 

flexible links which consist of multiple layers of thin steel sheets is beneficial compared to 

one monolithic block. The experimental set-up, which is a two axis motion system driven by 

three linear motors, is introduced in Section 4. Four different configurations with varying 

pivot positions are examined in this investigation. Finally, Section 5 presents experimental 

findings on the rotational accuracy of the motion system. 

2. KINEMATIC MODEL OF THE GANTRY STAGE 

Figure 1 depicts a schematic model of the two-axis motion system consisting of rigid 

bodies for the drive units, the bridge plate and the X-slide as well as ideal rotational joints and 

linear guiding rails. The location of the pivots is defined by the distance between the joints 

𝑑G and the distance to the centre of the stage in Y-direction 𝑙G. The position values 𝑥1, 𝑥2 and 

𝑥3 of the drives are used as inputs of the system. Applying a relative position to the drives  

of the Y-axis 𝑥rel = 𝑥1 − 𝑥2 results in a rotation of the stage about the Z-axis by the angle 𝜑. 

The approximations sin(𝜑) ≈ 0 and cos(𝜑) ≈ 1 are used since only small angles 𝜑 are 

considered. The point C is located on the bridge plate in the centre between the two joint 

pivots and is calculated by: 

𝒓C = (

𝑥C
𝑦C
𝜑C
) = (

0 0
1 2⁄ 1 2⁄

1 𝑑G⁄ −1 𝑑G⁄
) (
𝑥1
𝑥2
) =  (

0 0
0 1

1 𝑑G⁄ 0
) (
𝑥rel
𝑥lin

), (1) 
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where 𝑥lin = 𝑥1/2 + 𝑥2/2 is the mean position of the two drives and 𝑥rel = 𝑥1 − 𝑥2 is their 

difference in position. T, which is defined as the tool centre point (TCP), is located at the front 

of the X-slide with a distance 𝑙T to the centre of the plate (Fig. 1). The position and orientation 

of T is given by: 

𝒓T = (

𝑥T
𝑦T
𝜑T
) = (

𝑥C
𝑦C
𝜑C
) + (

𝑥3 − 𝜑C(𝑙T − 𝑙G)

𝑙T + 𝜑C𝑥3
0

). (2) 

Inserting Eq. (1) into (2) and using 𝑦C = (𝑥1 − 𝑥2) 𝑑G⁄  results in: 

𝒓T = (

𝑥T
𝑦T
𝜑T
) = (

(𝑙G − 𝑙T) 𝑑G⁄ − (𝑙G − 𝑙T) 𝑑G⁄

1 2⁄ + 𝑥3 𝑑G⁄ 1 2⁄ − 𝑥3 𝑑G⁄

1 𝑑G⁄ −1 𝑑G⁄
)(
𝑥1
𝑥2
) + (

𝑥3
𝑙T
0
). (3) 

 

Fig. 1. Parametric model of the gantry stage with ideal joints 

For further analysis, the system of equations (3) is linearised, considering an operating 

point, where the inputs are set to 𝑥1 = 𝑥2 = 𝑥1,0 and 𝑥3 = 𝑥3,0. 

𝒓T ≈ 𝒓T,0 + ∆𝒓T = 𝒓T,0 + 𝑱∆𝒙, (4) 

where 𝒓T,0 = (𝑥3,0 𝑥1,0 + 𝑙T 0)T. ∆𝒓T represents the vector of small displacements of T 

resulting from minor changes ∆𝒙 of the input vector 𝒙 = (𝑥1 𝑥2 𝑥3)T, considering the 

transformation matrix 𝑱: 

∆𝒓T = (

∆𝑥T
∆𝑦T
∆𝜑T

) = (

(𝑙G − 𝑙T) 𝑑G⁄ − (𝑙G − 𝑙T) 𝑑G⁄ 1

1 2⁄ + 𝑥3,0 𝑑G⁄ 1 2⁄ − 𝑥3,0 𝑑G⁄ 0

1 𝑑G⁄ −1 𝑑G⁄ 0

)

⏟                        
𝑱

(
∆𝑥1
∆𝑥2
∆𝑥3

). (5) 

This equation is important for the accuracy at the TCP (T), because it describes  

the relationship between the vector of the smallest achievable displacements ∆𝒓T and  

the vector of the smallest position increments of the drives ∆𝒙. To increase the accuracy at 

the TCP, the entries of the matrix 𝑱, which are mainly influenced by the position of the joints, 
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need to be minimised. This is realised by maximising the distance of the joints 𝑑G. By 

choosing 𝑙G equal to 𝑙T, two entries of 𝑱 become equal to zero. This is preferable because in 

this case ∆𝑥T depends only on the displacement of the third drive ∆𝑥3. Thus, the motion in 

X-direction is decoupled from the remaining system. The relation between the force-torque 

vector 𝒇T = (𝑓x 𝑓𝑦 𝑀)T at the point T and the corresponding drive forces is given by: 

(

𝑓1
𝑓2
𝑓3

) = (

(𝑙G − 𝑙T) 𝑑G⁄ 1 2⁄ + 𝑥3,0 𝑑G⁄ 1 𝑑G⁄

− (𝑙G − 𝑙T) 𝑑G⁄ 1 2⁄ − 𝑥3,0 𝑑G⁄ −1 𝑑G⁄

1 0 0

)

⏟                            
𝑱T

(
𝑓x
𝑓𝑦
𝑀

). (6) 

Maximising 𝑑G and choosing 𝑙G = 𝑙T has a positive effect too, because it minimises  

the reaction forces on the drives. From this point of view, the system gets less sensitive to 

process loads 𝒇T. 

3. DESIGN OF THE COMPLIANT JOINTS 

3.1. CONCEPT 

The design of the compliant joints is based on the method of freedom and constraint 

topologies, described in [9]. The purpose is to link two bodies constraining their relative 

motion to a limited number of specific DOFs. All other DOFs are locked using a specific set 

of constraints. In the context of flexible links, one constraint can be seen as a straight line, 

which is characterised by a high reaction force on a coaxial deformation vector. Deformation 

vectors that are perpendicular to this axis result in a relatively small force value. Figure. 2a 

depicts an example of a simple joint with sheet elements, which are used as basic link 

elements in this investigation. Using at least two of these links leads to a single rotational 

DOF, if the angle α between the planes has a sufficient value. 

 

Fig. 2. Model of the compliant joint concept  
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The simplified two dimensional (2D) model of this arrangement is depicted in Fig. 2b. 

This representation considers only translation and rotation in the XY-plane, while other DOFs 

are neglected. The point G, where the extended axis of the links intersect, is called the 

geometric centre and can approximately be assumed as the pivot of the joint. The reaction 

force 𝒇 
G  at the point G to its displacement 𝒖 

G  is given by: 

 (

𝑓 
G
𝑥

𝑓 
G
𝑦

𝑀 
G

)

⏟  
𝒇 
G

= (

𝑘 
G

x
 𝑘 

G
xy
 

𝑘 
G

yx
 𝑘 

G
y
 

𝑘 
G

γx
 𝑘 

G
γy
 

|

𝑘 
G

xγ
 

𝑘 
G

yγ
 

𝑘 
G

γ
 

)

⏟            
𝑲 
G

(

𝑢 
G

x

𝑢 
G

y

γ 
G

)

⏟    
𝒖 
G

, (7) 

where 𝑲 
G  is the stiffness matrix of the joint, which can be divided into four blocks. An ideal 

joint is obtained, if the linear deformations 𝑢 
G

x and 𝑢 
G

y are blocked and only a rotation γ 
G  is 

possible for any load 𝒇 
G . This is not completely given, since the reaction force to a displa-

cement is limited due to the compliance of the material. To maximise reaction forces to linear 

deformations 𝑢 
G

x and 𝑢 
G

y, the upper left 2 × 2-matrix block is needed to have full rank and 

high values. Furthermore, the rotational stiffness 𝑘 
G

γ
  is desired to be small. To minimise  

the cross coupling between rotational and linear deformation, the off-diagonal blocks need to 

be small as well. Ciblak [10] gives a good overview according to the problem of the elastic 

centre, which is a point where the off diagonal blocks vanish. 

An essential concept used for the design of the joints is the division of the flexible links 

into multiple thin layers to adapt its stiffness properties. The following section analyses  

the effect of this method on the planar stiffness matrix of the link. 

3.2. STIFFNESS OF PACKAGED LINK ELEMENTS 

In the XY-plane, each flexible link is considered as a beam element with the modulus 

of elasticity 𝐸, the length 𝐿, the cross-section area 𝐴 and the second moment of area 𝐼 (see 

Fig. 3a). In this model, the beam connects the fixed ground on the left side to a rigid body on 

the right side. Applying a load vector 𝒇 
S  to the point S of the rigid body leads to its 

displacement and rotation by the vector 𝒖 
S  and to the deformation of the beam as illustrated 

in Fig. 3b. If the point S is located at the centre of the undeformed beam, the relationship 

between 𝒇 
S  and small displacements 𝒖 

S  is given by 

𝒇 
S = (

𝑓 
S
𝑥

𝑓 
S
𝑦

𝑀 
S

) = (

𝑘x 0 0
0 𝑘y 0

0 0 𝑘γ

)

⏟          
𝑲 
S

(

𝑢 
S
x

𝑢 
S
y

γ 
S

)

⏟  
𝒖 
S

, (8) 

where 𝑲 
S  is the stiffness matrix of the beam at the point S. In this configuration, 𝑲 

S  consists 

of the three main diagonal entries 𝑘x, 𝑘y and 𝑘γ. Shear deformation is considered using  

the value 𝛷 and the shear modulus 𝐺. 
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Fig. 3. Analytic model of a single beam element 

In a package of 𝑁 layers of beam elements (e), as depicted in Fig. 4a, each beam has  

a different distance ∆𝑦𝑖 to the centre axis of the package. The transformation of the displa-

cement vector 𝒖𝑖 
S  and the force vector 𝒇𝑖 

S  to an arbitrary point G (see Fig. 4b) on the axis  

of the package is calculated with the transformation 𝑿 
GS

𝑖: 

𝒖 
G = 𝑿 

GS
𝑖 ∙ 𝒖𝑖 

S , 𝒇𝑖 
S = 𝑿 

GS
𝑖
T ∙ 𝒇𝑖 

G , with 𝑿 
GS

𝑖 = (
1 0 −∆𝑦𝑖
0 1 ∆𝑥

−∆𝑦𝑖 ∆𝑥 1
). (9) 

Using 𝑿 
GS

𝑖, the stiffness matrix 𝑲 
G

 
𝑖 of the 𝑖-th beam element corresponding to the point 

G is obtained: 

𝑲 
G

 
𝑖 = 𝑿 

GS
𝑖
T ∙ 𝑲 

S e ∙ 𝑿 
GS

𝑖 = (

𝑘x
e 0 −∆𝑦𝑘x

e

0 𝑘y
e ∆𝑥𝑘y

e

−∆𝑦𝑘x
e ∆𝑥𝑘y

e ∆𝑦𝑖
2𝑘x

e + ∆𝑥𝑖
2𝑘y

e + 𝑘γ
e

)  (10) 

The full stiffness matrix of the package 𝑲 
G Σ is calculated from the sum of all 𝑁 

elements: 

𝑲 
G Σ = ∑ 𝑲 

G
 
𝑖𝑁

𝑖=1 = (

𝑁𝑘x
e 0 0

0 𝑁𝑘y
e 𝑁∆𝑥𝑘y

e

0 𝑁∆𝑥𝑘y
e 𝑁∆𝑥2𝑘y

e + 𝑁3𝑘γ
e

). (11) 

If the full package from Fig. 4 is substituted by one monolithic (M) beam, the stiffness 

matrix corresponding to the point G is given by: 

𝑲 
G M = (

𝑘x
M 0 0

0 𝑘y
M 𝑘y

M

0 ∆𝑥𝑘y
M ∆𝑥2𝑘y

M + 𝑘γ
M

) = (

𝑘 
G

x
M 0 0

0 𝑘 
G

y
M 𝑘 

G
yγ
M

0 𝑘 
G

yγ
M 𝑘 

G
γ
M

). (12) 

According to the relation between the cross-section of a single element e and the 

monolithic block M (𝐴M = 𝑁𝐴e and 𝐼M = 𝑁3𝐼e), 𝑲 
G Σ can be represented by the stiffness 

components 𝑘x
M, 𝑘y

M and 𝑘γ
M of the monolithic link: 

𝑲 
G Σ = (

𝑘x
M 0 0

0 𝑘y
M/𝑁2 ∆𝑥𝑘y

M/𝑁2

0 ∆𝑥𝑘y
M/𝑁2 ∆𝑥2𝑘y

M/𝑁2 + 𝑘γ
M

) = (

𝑘 
G

x
 0 0

0 𝑘 
G

y
Σ 𝑘 

G
yγ
Σ

0 𝑘 
G

yγ
Σ 𝑘 

G
γ
Σ

). (13) 
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Comparing 𝑲 
G Σ and 𝑲 

G M one finds that the number of the elements 𝑁 significantly 

reduces the stiffness values of the lower right 2 × 2-block in Eq. (13). In particular, it is 

advantageous to keep the value of the rotational stiffness 𝑘 
G

γ
Σ  small when G is assumed to be 

the desired rotational centre of the joint. 

 

Fig. 4. Model of single beam in a packaged link 

To obtain the configuration depicted in Fig. 2 the flexible link needs to be rotated to its 

final orientation. Considering the transformation matrix of the 𝑖-th link the full stiffness 

matrix of the joint 𝑲 
G  is given by the sum of the stiffness matrices 𝑲 

G 𝑖 of all links: 

𝑹𝑖 = (
𝑐𝑖 −𝑠𝑖 0
𝑠𝑖 𝑐𝑖 0
0 0 1

) ,where  𝑐𝑖 = cos(𝛼𝑖) and 𝑠𝑖 = sin(𝛼𝑖), (14) 

 

𝑲 
G 𝑖 = 𝑹𝑖

T ∙ 𝑲 
G L𝑖 ∙ 𝑹𝑖 = (

𝑐𝑖
2 𝑘 
G

x
 L + 𝑠𝑖

2 𝑘 
G

y
 L 𝑠𝑖

 𝑐𝑖
 ( 𝑘 
G

x
 − 𝑘 

G
y
 L) −𝑠𝑖

 𝑘 
G

yγ
 L

𝑠𝑖
 𝑐𝑖
 ( 𝑘 
G

x
 L − 𝑘 

G
y
L ) 𝑠𝑖

2 𝑘 
G

x
L + 𝑐𝑖

2 𝑘 
G

y
 L 𝑐𝑖

 𝑘 
G

yγ
L 

−𝑠𝑖
 𝑘 
G

yγ
L 𝑐𝑖

 𝑘 
G

yγ
 L 𝑘 

G
γ
L 

), (15) 

where the link L can either be a package (Σ) or a monolithic block (M). Considering the requi-

rements from Section 3.1, the minimising of 𝑘 
G

yγ
L  and 𝑘 

G
γ
L  is important to diminish the off-

diagonal blocks of 𝑲 
G  in Eq. (7) as well as the reaction torque 𝑀 

G  caused by a rotational 

displacement γ 
G . 𝑘 

G
y
L  has a small value compared to 𝑘 

G
x
L , particularly if the packaged link is 

used. High stiffness components to linear displacements (upper left block) are achieved by 

combining at least two links with different angles 𝛼𝑖, where each link ensures a high stiffness 

in its longitudinal axis. 

4. EXPERIMENTAL CONFIGURATION 

4.1. GANTRY STAGE 

The investigation focuses a gantry-type motion stage equipped with two linear motors 

𝑓1 and 𝑓2 (Tecnotion UXX6N) and optical measurement systems (Heidenhain LIC4117) with 

an accuracy of ±5 µm and a resolution of 1 nm (see Fig. 5a). Two linear rails with a distance 
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of 770 mm guide the two drive units (two carriages each). The second axis 𝑥3 consists  

of a linear motor (Tecnotion UM6N) and an optical measurement system (Numeric Jena 

LAK11, accuracy: ±3 µm, resolution: 10 nm). With a load mass of about 12.3 kg (X-slide), 

the complete gantry stage has a weight of about 45 kg. A PC-based real-time control system 

(TwinCAT3 by Beckhoff) is used to generate motion trajectories, while each drive’s cascaded 

position-velocity-current-control (P-PI-PI) is implemented within the servodrive (Beckhoff 

AX5206 for the Y-axis and AX5103 for the X-axis). 

 

Fig. 5. Full configuration of the experimental set-up 

Exchangeable coupling elements connect the aluminium bridge plate to the drive units 

on each side (Fig. 5b). These elements are designed to work as rotational joints using flexible 

links (see Section 3). 

4.2. JOINT CONFIGURATIONS 

Figure 6 illustrates the arrangement of the two compliant joints, that are the subject  

of this investigation. Each of them consists of two flexible links as well as two connection 

plates to mount the joints between the bridge plate and the drive unit of the gantry stage.  

The links are composed of spring steel sheets and act as beam elements in the X-Y-plane with 

a high stiffness corresponding to their longitudinal direction. Depending on the arrangement 

of the links, the pivot G can be placed outside of the joint (remote centre). [5] presents a joint 

configuration, where the pivot is located in its centre. However, the exact centre of the rotation 

depends on the arrangement of the links, their stiffness matrices as well as the load conditions 

(see e.g. [10]). Each flexible link itself consists of multiple layers of thin sheets to decrease 

its stiffness to deformations in the normal direction of its plane. As shown in Section 3.2, this 

method reduces the rotational stiffness of the joints. In [5], the reduction of the full system’s 

rotational stiffness is shown using measured frequency response functions. 

Figure 7 depicts the four configurations of the gantry stage, which were realised with 

the two joint arrangements shown in Fig. 6. The most significant difference between them is 

the position of the geometric centres of the joints in the XY-plane. The design properties  

of the flexible links are listed in Table 1. 



76 P. Pöhlmann et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 68–79  

 

 

Fig. 6. Layout of the joint elements 

 

Fig. 7. Gantry stage configurations with compliant joints 

Table 1. Design parameters of the joint configurations 

Configuration Flexible link 
Number of 

steel sheets 

Thickness per 

sheet (mm) 

Free length 

(mm) 

Geometric joint position 

𝑑G (mm) 𝑙G (mm) 

1a 
A 8 0.2 11.7 

709.6 0.0 
A 8 0.2 11.7 

1b 
A 8 0.2 11.7 

600.4 0.0 
A 8 0.2 11.7 

2a 
B 8 0.2 25.0 

753.2 60.0 
A 8 0.2 11.7 

2b 
B 8 0.2 25.0 

556.8 60.0 
A 8 0.2 11.7 

5. EXPERIMENTAL INVESTIGATIONS 

In this section, the capability to correct the angular deviation of the motion system 

equipped with the compliant joints is analysed. For this purpose, the effective value of the 

distance of the pivot 𝑑G is determined for each configuration. All measurements, which are 

described in the following sections, are accomplished using the API XD Laser measuring 

system with an angular accuracy of about ±15 µrad in the experiments. 
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5.1. JOINT DISTANCE 

In order to identify the effective distance between the two pivots 𝑑G of the experimental 

arrangement, the relationship between the difference of the Y-axis 𝑥rel (see Eq. (1)) and the 

actual angle 𝜑 of the X-slide (derived from the laser-measurement) is determined. Figure 8a 

shows the reference trajectories of the two drives with a maximum difference of 𝑥rel =
0.8 mm. The trajectories are divided in small steps of Δ𝑥rel = 0.05 mm. After reaching the 

reference position of each step, the position is held for four seconds and multiple 

measurements are taken with an interval of 0.1 s. The full motion profile is repeated three 

times. Considering the equation: 

𝜑𝑖 = 𝑝1 ∙ 𝑥rel,𝑖 + 𝑝0 + 𝑒𝑖, (16) 

of the 𝑖th measurement, the parameters 𝑝0 and 𝑝1 are determined by minimising the error 𝑒𝑖 
with least squares regression. The error of the regression is depicted in Fig. 8b for all 

configurations. With the gradient 𝑝1 = Δ𝜑/Δ𝑥rel the distance 𝑑G is estimated: 

𝑑𝐺̅̅̅̅ = 1/𝑝1.  (17) 

The offset value 𝑝0 results from the mounting conditions of the laser measuring system 

and is not considered in further investigations. Table 2 lists the resulting values of 𝑝1̅̅̅ and 𝑑𝐺̅̅̅̅ . 

The identified values 𝑑𝐺̅̅̅̅  differ from the geometric design parameters 𝑑G within a range of up 

to 1 %. Reasons for this are the compliance of other components of the motion stage and, in 

particular, the mounting conditions of the joints themselves. However, all configurations 

show linear behaviour and small angular errors to the regression line (Fig. 8b). The conclusion 

is that if the exact distance 𝑑𝐺̅̅̅̅  is identified, the angle of the stage can be set precisely. 

Comparing the resulting mean errors of the regression, configurations with a smaller 𝑑𝐺̅̅̅̅  show 

greater errors. Furthermore, the configurations 1a and 1b are more accurate than the confi-

gurations 2a and 2b. 

 
a) Y-axis position 𝑥1 and 𝑥2 b) regression error 

Fig. 8. Linear regression 
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Table 2. Parameters of the linear regression 

Configuration 
Gradient 𝑝1 

(rad/m) 

𝜑max 
(10−3 rad) 

Mean error 

(10−6 rad) 
𝑑𝐺̅̅̅̅  (mm) 

𝑑𝐺̅̅̅̅ − 𝑑𝐺
𝑑𝐺

 (%) 

1a 1.397 1.12 0.477 715.8 0.87 

1b 1.673 1.34 0.646 597.6 –0.47 

2a 1.316 1.05 0.643 760.1 0.92 

2b 1.807 1.45 0.816 553.5 –0.59 

5.2. ANGULAR CORRECTION 

Geometric inaccuracies of the individual components, as well as mounting conditions, 

lead to positioning errors of the motion stage. In the first step of this experiment, the angle 𝜑 

is measured as a function of the Y-axis position with 𝑥rel = 0. The measured angular 

deviations 𝜑meas are inherent to the axis configuration due to the limited parallelism of the 

linear guiding rails and their straightness errors. To show the effectiveness of the compliant 

joints in a practical application, a table of correction values 𝑥1 and 𝑥2 for the angle 𝜑meas is 

generated and applied to the two drives of the Y-axis in the second step. The measurement is 

conducted with the laser system in a position range of 640 mm with an interval of 20 mm and 

is repeated three times in both directions. Figure 9a depicts the resulting angle 𝜑 (free of 

average values).  

The table of correction values is calculated using the mean values of the measured angle 

at each position (both directions), considering the identified gradient 𝑝1. The list of displace-

ment values is divided by two and applied to both Y-axes drives in opposite directions. This 

procedure is carried out for each of the joint configurations 1b), 2a) and 2b) independently. 

The results of the measurement after the corrections are shown in Fig. 9b. Compared to 

the measurement without correction, the angular variance is reduced significantly for all 

configurations. The remaining error is characterised by the difference between the positive 

and negative direction of the motion, in particular for configuration 2a and 2b. A conceivable 

reason for this is the arrangement of the links in these configurations. The links on the left 

and right joint are on the same axis. This leads to a bistable behaviour due to inaccuracies  

of the distance between the guiding rails. 

 
a) Without angular correction b) With angular correction 

Fig. 9. Angular error of the Y-axis 
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6. CONCLUSION 

This contribution presents a design concept of compliant joints to improve the accurracy 

of a gantry-type motion system. The flexible links consist of a package of multiple thin steel 

sheets, instead of a monolithic component, to adjust its stiffness characteristics and to reduce 

the rotational stiffness of the complete joint. The position of the joint’s pivot can even be 

placed outside the joint by the arrangement of the links. If equipped with these joints,  

the kinematic characteristics of the gantry stage can be adapted. It is possible to decouple the 

X- and Y-axis’ motion of the TCP and to increase the angular accuracy. Another benefit  

of the joints is the reduction of the reaction forces on the drives and also on the guidings when 

correcting angular errors. Modular designed joint elements are developed to analyse different 

configurations of the flexible joint. Experiments demonstrate a high angular accuracy if the 

effective distance of the pivots is known. The measurement of reaction forces for the gantry 

stage with and without flexible joints is the subject of future work. 
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