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AUTOMATED EVALUATION OF CONTINUOUS AND SEGMENTED CHIP
GEOMETRIES BASED ON IMAGE PROCESSING METHODS AND
A CONVOLUTIONAL NEURAL NETWORK

The aim of this work is to present a new methodology for the automated analysis of theectimss

of experimental chip shapes. It enables, based on image processing methods, the determination of average chip
thicknesses, chip curling radii and for sggnted chips the extraction of chip segmentation lengths, as well as
minimum and maximum chip thicknesses. To automatically decide whether a chip at hand should be evaluated
using the proposed methods for continuous or segmented chips, a convolutioalat@ork is proposed, which

is trained using supervised learning with available images from embedded chipantigses. Data from manual
measurements are used for comparison and validation purposes.

1.INTRODUCTION

The numerical prediction of machining processes requires constitutive material model
parameters, which are difficult to determine for the prevailing conditions where high plastic
strain rates are overlaid with high plastic strains and temperatures. Vieraeisal models
for the simulation of machining processes exist, of which the JoHbsok flow stress model
[1] is most often used. It requires five material dependent parameters, which are difficult to
obtain at the aforementioned harsh conditions. Ahot to determine the constitutive
material model coefficients use inverse methods where the orthogonal cutting experiment
itself serves as material test. If only the process forces are used as input for the inverse
identification, it can lead to unambigum constitutive model coefficients, as discussd@]in
[3]. To reduce this unambiguity more information out of the cutting experinhasti® be
considered in the inverse material parameter identificaéanthe shape of the resulting
chips as demonstted in[4].
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During metal cutting processes different chip types (discontinuous, elemental,
continuous, segmented) and chipms occur, depending on the material, the tool geometry
and the process paramet§ss 6]. The chip types and forms can be clasdificcording to
ISO 36851977, see for example the overview provided7in In an attempt to get deeper
process insights, the extraction of geometrical features of such chips is required. Basic
geometrical definitions of the chigxistin literature[81 11], but their evaluation requires
manual analyses, which is a tedious task since it is¢onsuming and the reproducibility is
not ensured. An approach for the automated chip thickness extraction is prodd$edith
a limitation to numerical simulen results. For this reason, in this publication an automated
solution is presented for cresections of chips, which enables fast and accurate chip
geometry evaluations. The presented algorithm automatically evaluates average chip
thicknesses and chiurling radii. In the case of segmented chips, it can be used to extract
segment lengths as well as minimum and maximum segtiieRhessesThe algorithm is
applied to experimental test data, which has been evaluated with regards to average chip
thicknesges by a manual method [ih2] and to manually measured segmented chips3h
Because the selection of the algorithm for the evaluation of continuous or segmented chip
types is manual, an Al algorithm using a convolutional neural network (CNN) is ptbfmose
automatically identify whether the chip type is segmented or continuous. It is trained on
experimental data of Ck45 and Ti6AIl4V chips fr@h2].

2. THEORETICAL BACKGROUND

2.1.IMAGE PROCESSING

Image processing deals with the problem of processingaalysing information out
of images. Usually, in a first step filter operations are used to smooth irffialeshere
a filtered image’O aw is computed by a convolution of an imagedw with a kernel
0 ofw [15]:

Odw 0 @ 2 0w (1)

Similar to the other filters, a morphological filter requires a kernel or structuring element
0 to perform the filtering on the input image The two basic morphological operations are
dilation and erosion, where dilation grows iamage and erosion shrinks it. Based on these
two operations, other morphological operations such as opening or closing can be formed,
where an example of each operation is showfign 1
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Fig. 1. Morphological operations with an input imagend a structuring elemeﬂt adopted fronj16]
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After image preparation by filters, the image hav¢oseparated into foreground and
background. An image segmentation approach with low computational effortrisethed
of Otsu[17] where agreyscale image is converted into a binary image by division of the pixel
intensity distributions into two classegth the help of a threshold value. The threshold value
is determined such that the intkass variance is minimized, which is similar to maximizing
the interclass variance. An example for that approach is givéingn2

— Inter-Class Variance 0;23

® Maximum Inter-Class Variance
------ Otsu Threshold
—— Region 1, below Otsu threshold
— Region 2, above Otsu threshold

Pixel Counts
Inter-Class Variance o

Pixel Intensity

Fig.2. Ot s u6s methodetlsemaximdirh int@lass variance divides the image into two regions

With the thresholding method, objects can be extracted from images, but its edges are
not characterized. Various approaches for edge detection algorithmpL8kish this work
the approach from SuzuKi9] is used, which is a border following algorithm and can detect
outer and inner borders as well as several objects in an image.

Corners of an object can be used to analyse the shape or orientation of an object.
The method ofChetverikov and Szabj@0] uses a variable triangle inside of the curve and

considers its opening angle

\ LL- C

contour “-._

Fig. 3. Corner detection with the Chetverikov and Szabo algorj#th A variable triangle is spanned by the points
F AlFAF on three points on the contour and contain the opening anglee points|} and |} are admissible on
the contoumithin the distance®, .. .and®, +o

The algorithm therefore of two psess, where in a first pass the candidates for a corner
point are determined and in a second pass the useless candidates are eliminated. This mean
that in the first pass the detector tries to create a variable triangiBh)  in each poinD
of the curve under consideration of:
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where0 is the"@h anticlockwise neighbour af, 0 is the"®@h clockwise neighbour af,
‘Q isthe minimum and2 the maximum admissible distancelof and0 to 0, see
alsoFig. 3 The opening angle is:
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2.2.0BJECT DETECTION CONVOLUTIONAL NEURAL NETWORKS

The detection obbjectsis a fundamental problem in computer vision where the aim is
the detection and localization of objects in images. Different approaches exist for the object
detection, where according {@1] large progresses in computational perfance allow
the application of deep learning methods to various fields. CNN is a computational processing
system inspired by nature like the biological nervous system. The CNN consists of many
computational nodes which are connected to each other atabarate and weight
the information of the input in such a way that a learning process is established leading to
an improved output. There are many different approaches to the architecture of a CNN, see
also[22]. Different algorithms have been develoded object detection and classification
of which the single shot detector (SSD) is introduced here. ThgZ3Bnables to perform
the object detection during one stage. Therefore, the algorithm consists of two parts that are
the backbone model and tB&D-head. The backbone model consists of a standard network
for image classification where in the original version the VYG6 networks[24] is used.

The usage of the backbone model is to only extract features from the input image and therefore
the clasdication layers of the base network are not considered. The network architecture
of SSD with a VGG16 backbone model is shownkig. 4.

Extra Feature Layers
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Fig. 4. SSD architecture witlGG-16 backbone model, frofi23]
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3. EXPERIMENTAL BASIS

In this section thexperimental basis, which has been used for the development of the
evaluation methods, is introduced together with the manual measurement of chip geometry
features.

3.1.CUTTING EXPERIMENTS

Quastorthogonalcutting experiments on Ck45 and Ti6Al4V fropp2, 13] serve as
database for the development of an automated methodology of the chip geometry evaluation.
Chips from Ti6Al4V exhibited chip segmentatidsehaviour while Ck45 showed chip
segmentation only at higher feed rates and cuttings speeds, otheowisai@us chips.

The cutting experiments were performed for various combinations of feed t@tes (

Mt B m@ i | FOA @Gnd cutting speedsh( p B v min/ E)l Images of the cross
sections of embedded chips as well as measured average chip thicknessasnaeatddan

[12] and a small selection of segmented chips is documen(8d]ifThe images of embedded

chips from these experiments are used as data basis for this work. An example of available
chip images is shown iRig. 5 showing the chip in raw con@n, before embedding, after
embedding and grinding, and after etching.

a)
Scm' =

Fig. 5. A Ti6Al4V chip from experiment V0010 frorfi2] in raw condition (a), before embedding (b), after embedd
into Bakelite and grinding (c) and a clegp revealing thenicrostructureafter etching with Kroll (d)
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3.2.MANUAL MEASUREMENTS OF CHIP GEOMETRY FEATURES

Chip geometry features are measured from embedded chip-se@isms using
a Keyence VHX5000 microscope. In a manual procedure average chip thicknesses and chip
curling radii are extracted for continuous and segmented chips. For segmented chips,
minimum and maximum chip thicknesses as well chip segment distances are measured at
a few locations of the chip. These geometric features are shown exempl&idy @
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Fig. 6. Basic geometry features of a chip crgsstion, fronm12]

The average chip thickne$® is determined from the crosgctional area of the chip
0 and the unrolled chip length by an approximation with a polygonal chain:
0

(o

(5)

Example measurements for a continuous and a segmented chip are skayyvii.in

Fig. 7. (2) Measurement of the average chip thickness using thesaotisnal area and unrolled chip length
of a Ti6AI4V chip (V0010) fron{12], b) measurement of minimum and maximum chip thickness
and chip segment distance of a Ti6Al4V chip (V0350) fijaB]
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4. RESULTS

In this section the image preparation process is described followed by the results of the
average chip thickness measurements, the chip curling radii determination and the segmented
chip evaluation. Whether the algorithms for continuous gm&sted chips are applied is up
to here a user decision. To automate this decision, an automated detection of continuous and
segmented chips, based on a CNN, is proposed.

4.1.IMAGE PREPARATION

The automated image processing is developed in Python (\s31@) QpenCV (v4.5.3),

SciPy and NumPy. In the following the main steps of the image preparation and segmentation,
the chip separation and corner detection is outlined.

Before chip features can be automatically extracted, a preparation of the chip images is
required. The colour space of the images is converted from RGB into greyscale and
a Gaussian filter r educ[¥sthresholdirgyenethod ieseditch e n-
binarize the image and separate the chip from the background, an example is dhigw@ in

Fig. 8. Raw (a) and binarized chip (b), where the morphological operator is not yet applied

After binarization, morphologicalperators are applied to separate entities, which are
falsely connected to the chip. An example where two chip fragments are interconnected after
binarization is displayed iRig. 9 There, the application of morphological filters lead to the
separation oboth chip fragments.

a) b)' l |
w‘_...._ W“‘

Fig. 9. Chip after binarization (a) and after applicationrafrphologicafilters (b)
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S u z u [L9] Border following method is applied to obtain the borders of the objects
contained in the image. The border following methods returns a list with all objects, of which
the largest object (largest chip fragment) in the image is considered in the following
evaluation steps, sd€g. 10

Fig. 10. Raw chip (a) and s el[&tbordedfollovong method ( b)

The tool contact side of the chip is determined iteratively. In a first step, the centre
of gravity (COG) of the chip is computed. From this COG the largest distance to the chip
contour is determined in vertical and horizontal direction. The larger destah both
determines the alignment of the chip in the image. Next, the image is split along the shorter
distance and the procedure is repeated with iteratively halving the contour through
the respective COG until left and right ends of the chip are folimel procedure is depicted
in Fig. 11, where both end points are connected by the black and green contour. The shorter
contour of both determines the tool contact side, which is the green contour in the figure.
Since this method returns only approximatartsand end points of the chip, the corner
detection with the method from Chetverikov and SzEj is applied to find the exact
positions.
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Fig. 11. Determination of the tool contact side of the chip by iteratively halving the contour (6&pkrbugh the
respective centres of gravities until left and right ends of the chip are found. Both end points are connected by the black
and green contour, where the shorter of both determines the tool contact side, which is here the green contour (step 7)

] ®

W o Tool contact side
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So far, the image processing is based on a pixel level of the images. For the evaluation
of the chip geometry, the ratio of pix@-micrometre ratio is required. Unfortunately, this
value is not accessible from the raw data of the images. Instead,dtiedeale of the picture
is automatically detected and the length value is identified using optical character recognition
(OCR) implemented in Tesserdeb].
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4.2. AVERAGE CHIP THICKNESSES AND COMPARISON TO MANUAL ANALYSIS

The chip thicknesses are deterednfor each contour point of the tool contact side
of the chip. For this purpose, local edggmalare computed on the tool contact side of the
chip and their respective intersections with the free surface of the chip yield the local chip
thickness. Sine the tool contact side of the chip is usually not smooth, a SaMBtgy
filter [26] is first applied for smoothing the contour on the tool contact side of the chip.
The approach for the local chip thickness determination is shotig.ii2

Local normal of the contour

Local chip thickness

Chip contour

Fig. 12. Local chip thickness determination with a surface normal on the smoothed contour of the chip contact

Polynomial for
smoothing the
contour

The local chip thicknesses along a single chip are shoWwigiri3(a & b). The average
of all local thicknesses determines the average tticgness in the automatic method. It is
determined as) o &tl with a standard deviation qf x8ti and

compares well with a manually measured chip thicknes2 of o®tl in[12].

The rather high standard deviation is because the displayed chip is not continuous but
segmented, which hints that a more elaborated method is required to extract further chip
features like minimum and maximum chip thickness as well as the chip segment length and
Is introduced later.

The automated chip geometry evaluation algorithm is usembmpare average chip
thicknesses versus manual measurements conduc{d@]inThe results are displayed in
Fig. 1& and show a very good agreement with only a few outliers. Potential reasons are due
to inaccuracies in the manual measurement as wdlffasent sections of the chips are used
for the manual and automatic evaluation.

Alternatively, the chip compression ratio (CCR) can be computed from the manual and
automated average chip thickness with:

p n o, O 5
66Y =5 (6)

The CCRs computed frommanual and automated chip thickness measurements are
displayed inFig. 14 Similar to the comparison Fig. 13the agreement between manual and
automated method is very good with only a few outliers. It has to be noted that towards very
low feed rates th€CR tends to show very high values which indicates that for thin chips
the measurement uncertainty of the microscope image negatively impacts the accuracy for
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both, the manual and automated measurement. Since images of both continuous and
segmented chipare evaluated, the CCR may become meaningless for segmented chips, since
0 0 1 may occur in some cases.
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Fig. 13. Chip image (a) and its chip thickness variation along the chip length (b) and comparison of manual and
automated analysis of the average chip thicknedsf@r)140 different chips showing a good agreement
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Fig. 14. Comparison of CCHRletermined from manual and automatic chip thickness measurement (a) and display
CCR versus feed rate

4.3. CHIP CURLING RADIUS DETERMINATION

The chip curling radii are determined from the coordinates of the tool contact side
contour point®) olw of the chip by usingR7]:
o w 7

i e (7)
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In Fig. 15 an embedded chip is shown together with a histogram of the corresponding
chip curling radii.
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Fig. 15. Example evaluation of the curvature radius from test V0O012. Chip in embedded condition (a) ¢
histogram of the corresponding claprling radii (b)

The average chip curling rad]) are given for a selection of chips irable 1
together with minimum and maximum values as well as the standard devjatiohgan be
seen that thetandard deviation is very high. The reason for this is that the local chip curvature
for a chip can change very strongly, and since the chip curvature radius is determined for
the individual contour points, the radius can vary greatly. The resulte @utivature radii
are only of limited significance, as the curvature pictured does not necessarily correspond to
the true curvature of the chip. The reason for this is that the chips, especially thinner ones,
have a low stiffness and can bend easily, whéads to deformations in the embedding
process under high pressure. On the other hand, embedding required sometimes fixations with
clamps or rolling of thin chips into plastic foils for stabilization, which in turn could lead to
a change in the curvature

Tablel. Chip curling radii determination with the automated method on a selectiodf&ym

Test |0 (7 ET [@i i70Adt 10 i 0 v ii |, Qi
V0002 12.6 0.01 9.9 0.6 3213.3 82.5

V0012 10.5 0.2 55 2.3 9 1.9

V0024 74.3 0.01 7 0.01 5415.2 105.3
V0035 190.5 0.1 248.2 21 721731.3 7456.2
V0042 190.5 0.4 927.7 36.1 1311014.6 17712.5
V0068 254.1 0.2 40 55 5037.2 108.1
V0198 199.9 0.04 97.1 4.7 137590 1242.3
V0261 250 0.01 26.8 0.1 64580.7 624.9
V0302 10 0.02 14.5 1.9 7081.8 144.8
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4.4. SEGMENTED CHIP GEOMETR¥VALUATION

While the extraction of features from continuous chips is rather straightforward,
the analysis of segmented chips proves more difficult. An average thickness can be
determined as well, but additionally each segment has a minimum thié®nesa maximum
thicknessQ and a distance between two segments see alsd-ig. 16

S
Fig. 16. Geometric features of segmented chips, here an etched Ti6AI4V chip from test VOB in

Since these segments repeat periodically, an Afigatutomatic feature extraction is
to first perform a fast Fourier transform (FFT) of the chip thickness profile and determine the
frequency with the largest amplitude déig. 17. The frequency at the largest amplitude
corresponds to the segment distaaice. A chip contour and its FFT spectrum are displayed

in Fig. 17.

a) b)

Fig. 17. Chip thickness profile (a) and FFT of the chip thickness profile (b) from test V0062 in [7]

Using the frequency at the largest amplitude the chip contour can be reconstructed with
an inverse FFT, sddg. 18

Fig. 18. Original chip shape (red) and reconstructed shape (blue) with the maximum peak from the FFT



