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A HYBRIDIZATION OF MACHINE LEARNING AND NSGA-II FOR MULTI-

OBJECTIVE OPTIMIZATION OF SURFACE ROUGHNESS AND CUTTING 

FORCE IN AISI 4340 ALLOY STEEL TURNING 

This work focuses on optimizing process parameters in turning AISI 4340 alloy steel. A hybridization of Machine 

Learning (ML) algorithms and a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is applied to find  

the Pareto solution. The objective functions are a simultaneous minimum of average surface roughness (Ra) and 

cutting force under the cutting parameter constraints of cutting speed, feed rate, depth of cut, and tool nose radius 

in a range of 50–375 m/min, 0.02–0.25 mm/rev, 0.1–1.5 mm, and 0.4–0.8 mm, respectively. The present study 

uses five ML models – namely SVR, CAT, RFR, GBR, and ANN – to predict Ra and cutting force. Results indicate 

that ANN offers the best predictive performance in respect of all accuracy metrics: root-mean-squared-error 

(RMSE), mean-absolute-error (MAE), and coefficient of determination (R2). In addition, a hybridization of NSGA-

II and ANN is implemented to find the optimal solutions for machining parameters, which lie on the Pareto front. 

The results of this multi-objective optimization indicate that Ra lies in a range between 1.032 and 1.048 µm, and 

cutting force was found to range between 7.981 and 8.277 kgf for the five selected Pareto solutions. In the set  

of non-dominated keys, none of the individual solutions is superior to any of the others, so it is the manufacturer's 

decision which dataset to select. Results summarize the value range in the Pareto solutions generated by NSGA-

II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 

0.79 mm, and a tool nose radius of 0.4 mm, are recommended. Following that, experimental validations were 

finally conducted to verify the optimization procedure. 

1. INTRODUCTION  

AISI 4340 alloy steel has low-to-medium carbon content, high strength, and high 

toughness. Its advantageous properties are a good balance of strength, wear resistance, and 

toughness. AISI 4340 is categorized among hard-to-cut materials. However, this alloy tends 

to be used for machining [1]. AISI 4340 alloy steel is widely used in aircraft and automobiles, 
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among other applications. It is also used to manufacture structural parts like gears, shafts, 

bearings, cams, axles, spindles, couplings, and more, which require a long service life, high 

tolerance, and high surface quality [2]. Turning is an essential process in the manufacture  

of such products. In the turning process, the judicious selection of process parameters affects 

the indexes of cutting efficiency, cost, productivity, and product quality and is closely related 

to the levels of energy consumption and CO2 emissions. Therefore, awareness of the 

relationship of machining parameters is essential in improving overall system performance, 

such as efficiency, cost, and environmental impact [3]. Consequently, optimization of the 

process parameters in the machining process is the scientific problem to be solved in  

the context of green and sustainable production.   

In general, the quality of the turning operation is determined by machining tolerance 

and surface roughness, which customers demand for machined parts [4]. In the turning 

operation, factors that significantly influence surface roughness are the material and geometry 

of the tool, nose radius, cutting speed, feed rate, and depth of cut [5]. To achieve a good 

surface finish for turned components, manufacturers can often use a higher cutting speed, 

good insert geometry, a suitable nose radius, and a low feed rate. However, the characteristic 

performance of turning involves not only improving surface quality but also reducing energy 

consumption in the industrial production process [6]. Cutting power, and cutting forces, are 

directly impacted by material removal rate and basic cutting parameters (i.e., cutting speed, 

feed rate, and depth of cut). One of the goals of optimizing the machining process is to reduce 

machining time. One way to do this is to increase the material removal rate, i.e., increase  

the cutting parameters [7]. However, this leads to increased cutting force and poorer surface 

quality. Thus, there is uncertainty in selecting cutting parameters to achieve criteria such as 

good surface quality, fast machining time, and low energy consumption [8]. In order to solve 

this problem, it is necessary to determine the optimum combination of parameters to improve 

machining performance. Therefore, optimizing cutting force and surface roughness is 

essential for sustainable production, covering energy consumption, machining cost, product 

quality, and eco-friendly manufacturing [9].  

Optimization algorithms – especially evolutionary computing or meta-heuristic 

techniques – have been applied to determine the optimal cutting conditions to achieve the best 

machining performance. In cutting parameter optimization, multi-objective techniques have 

been proposed, which take a number of competing goals into account [10]. Examples include 

PSO [11], GA [12], artificial bee colony (ABC) [13], non-dominated sorting genetic 

algorithm (NSGA-II) [14–15], etc. These approaches have been shown to be more robust and 

accurate in solving complicated engineering problems than traditional optimization methods 

[16]. Of particular importance is that these approaches can optimize several objectives 

simultaneously [17–20].  

Many recent studies use a hybridization of machine-learning models and optimization 

algorithms to find the optimal process parameters for performance characteristics. For 

instance, Bouacha et al. [14] investigated two hybrid models – namely PSO-ANN and NSGA-

II-RSM – in the hard turning of AISI 52100 steel. The results showed that the ANN model 

yielded a more accurate predictive performance than the RMS model, and NSGA-II exhibited 

better performance than PSO. Furthermore, Yang et al. [21] used NSGA-II and multi-

objective differential evolution (MODE) to achieve the optimal process parameters with tool 
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wear and maximum material removal rate (MRR) in the EN24 steel turning process. Results 

indicated that NSGA-II performs better than MODE. In order to model and optimize MRR 

and Ra in grinding operations, Unune et al. [22] integrated NSGA-II with ANN. Judging by 

the results, NSGA-II is a multi-objective optimization technique that works with a population 

of points and is quite effective. 

Recently, the study on the turning of AISI 4340 steel in terms of optimization of the 

process parameters focuses on the mathematical model and single-objective optimization 

[23–27]. There are few studies on multi-objective optimization in AISI 4340 alloy steel 

turning. In order to bridge the gap in the literature, the present work aims to find the optimum 

turning parameters that simultaneously deliver minimum surface roughness and minimum 

cutting force. In this work, the five ML models – namely SVR, CAT, RFR GBR, and ANN – 

are used to develop the predictive model for surface roughness and cutting force in the AISI 

4340 turning process. Then, five ML models are compared for accuracy using the RMSE, 

MAE, and R2 metrics to determine which model has the best prediction performance. In order 

to determine the optimum process parameters that concurrently satisfy the two requirements 

of minimum Ra and minimum cutting force, the best ML model and NSGA-II algorithm are 

combined.  

2. EXPERIMENTAL SETUP AND DESIGN OF EXPERIMENTS 

2.1. EXPERIMENTAL DESIGN   

This study used the data reported in the literature [25]. The experiments were performed 

on a MTAB MAXTURN CNC lathe, whose spindle speed and feed rate can reach 6,000 rpm 

and 30 m/min. The workpiece was a cylindrical bar of AISI 4340 alloy steel with a Brinell 

hardness number of 217, a length of 100 mm, and a diameter of 24 mm. The chemical 

composition of the workpiece is Fe 95.80%, Ni 1.3%, Cr 1.15%, Mn 0.59%, C 0.421%, Mo 

0.228%, Si 0.216%, S 0.0278%, according to the manufacturer. The tungsten-coated carbide 

CCMT-090308 was mounted on the right-hand side of the cutting holder of grade K-10. In 

the machining process, a mixture of 0.2% multiwalled carbon nanotubes and ethylene glycol 

was employed as minimum quantity lubrication (MQL), with a pressure of 5 bars and flow 

rate of 140 ml/hr. In order to perform the experiments, the following process parameters were 

selected: cutting speed (75 and 90 m/min), feed rate (0.04, 0.06, 0.08, 0.1, and 0.12 mm/rev), 

depth of cut (0.4 and 0.8 mm), and tool nose radius (0.4 and 0.8 mm). Therefore, sixty 

experimental runs were conducted throughout the process. The resulting performance 

characteristics were collected by measurement devices. The cutting conditions are shown  

in Table 1.  

After each experimental run, the machined part was measured three times by the 

MITUTOYO-Surftest SJ-210P Portable-Surface-Roughness-Tester (Japan). The average 

value of the three measurements is taken as an experimental result. Cutting forces were 

measured by the Kistler Dynamometer system. The output signals were amplified and then 

displayed through laptop and DynoWare software. Table 2 shows the process parameters 

versus measured results for Ra and cutting force on the 60 experimental runs.  
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Table 1. Cutting parameters  

Cutting factor Unit Data levels 

Cutting speed, (Vc) mm/min 75, 90 

Feed rate, (f) mm/rev 0.04, 0.06, 0.08, 0.10, 0.12 

Depth of cut, (a) mm 0.5, 1.0, 1.5 

Tool radius nose, (r) mm 0.4, 0.8 

Cutting tool, (T)  CCMT-090308/K-10 

Coolant, (H)  
MQL 0.2% multiwalled carbon nanotube and 

ethylene glycol 

 

Table 2. Machining settings used in the experiment [25] 

No. 
Cutting 
Speed  
(m/min) 

Nose 
Radius  
(mm) 

Feed Rate  
(mm/rev.) 

Depth 
of 
Cut  
(mm) 

Ra 
(µm) 

 
Force  
(kgf) 

No. 
Cutting 
Speed  
(m/min) 

Nose 
Radius  
(mm) 

Feed Rate  
(mm/rev.) 

Depth 
of 
Cut  
(mm) 

Ra 
(µm) 

Force 
(kgf) 

1 75 0.8 0.04 1.5 1.01 22.45 31 75 0.4 0.04 1.5 1.09 22.56 

2 75 0.8 0.04 1 1.06 15.52 32 75 0.4 0.04 1 1.21 15.16 

3 75 0.8 0.04 0.5 1.26 7.67 33 75 0.4 0.04 0.5 1.5 6.62 

4 75 0.8 0.06 1.5 1.24 33.21 34 75 0.4 0.06 1.5 1.12 31.44 

5 75 0.8 0.06 1 1.32 23.15 35 75 0.4 0.06 1 1.32 21.19 

6 75 0.8 0.06 0.5 1.35 11.7 36 75 0.4 0.06 0.5 1.64 9.71 

7 75 0.8 0.08 1.5 1.42 39.85 37 75 0.4 0.08 1.5 1.15 38.82 

8 75 0.8 0.08 1 1.5 28.07 38 75 0.4 0.08 1 1.4 27.5 

9 75 0.8 0.08 0.5 1.61 13.58 39 75 0.4 0.08 0.5 1.93 12.64 

10 75 0.8 0.1 1.5 1.6 45.42 40 75 0.4 0.1 1.5 1.28 45.55 

11 75 0.8 0.1 1 1.64 32.82 41 75 0.4 0.1 1 1.56 31.73 

12 75 0.8 0.1 0.5 1.75 16.94 42 75 0.4 0.1 0.5 2.08 15.48 

13 75 0.8 0.12 1.5 1.7 52.26 43 75 0.4 0.12 1.5 1.47 52.8 

14 75 0.8 0.12 1 1.78 37.25 44 75 0.4 0.12 1 1.82 37.14 

15 75 0.8 0.12 0.5 1.88 19.15 45 75 0.4 0.12 0.5 2.32 17.57 

16 90 0.8 0.04 1.5 1.29 20.72 46 90 0.4 0.04 1.5 2.07 22.78 

17 90 0.8 0.04 1 1.37 14.14 47 90 0.4 0.04 1 1.42 14.56 

18 90 0.8 0.04 0.5 1.4 7.81 48 90 0.4 0.04 0.5 1.75 6.87 

19 90 0.8 0.06 1.5 1.41 31.38 49 90 0.4 0.06 1.5 2.22 30.81 

20 90 0.8 0.06 1 1.5 21.45 50 90 0.4 0.06 1 1.5 20.5 

21 90 0.8 0.06 0.5 1.56 10.66 51 90 0.4 0.06 0.5 1.88 10.2 

22 90 0.8 0.08 1.5 1.67 39.14 52 90 0.4 0.08 1.5 2.31 39.8 

23 90 0.8 0.08 1 1.72 28.21 53 90 0.4 0.08 1 1.67 27.48 

24 90 0.8 0.08 0.5 1.8 14.74 54 90 0.4 0.08 0.5 2.15 13.44 

25 90 0.8 0.1 1.5 1.78 44.22 55 90 0.4 0.1 1.5 2.52 46.15 

26 90 0.8 0.1 1 1.82 31.56 56 90 0.4 0.1 1 1.82 31.88 

27 90 0.8 0.1 0.5 1.93 16.52 57 90 0.4 0.1 0.5 2.28 16.25 

28 90 0.8 0.12 1.5 1.93 50.61 58 90 0.4 0.12 1.5 2.9 51.12 

29 90 0.8 0.12 1 2.02 36.72 59 90 0.4 0.12 1 2.07 36.57 

30 90 0.8 0.12 0.5 2.16 19.46 60 90 0.4 0.12 0.5 2.52 18.7 

2.1.1. METHODOLOGY 

This study uses a multi-objective optimization approach for ML models. The optimal 
machining parameters of the NSGA-II algorithm are determined by integrating it with five 
predictive modeling approaches (SVR, CAT, RFR, GRB, and ANN), and the best model is 
then selected. It may concurrently reduce tool wear and Ra in the occupied space. Wet 
machining processing factors such as table feed, cutting speed, depth of cut, and cutting length 
were taken into consideration as input parameters. 
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Predictive modelling and NSGA-II are combined in the flowchart in Fig. 1. This flowchart 

describes the five predictive modelling methods – SVR, CAT, RFR, GRB, and ANN – used 
to estimate Ra and cutting force: experimental data gathering, dataset extraction, feature 
selection, and data normalization. The figure also demonstrates how to use GridSearchCV 
fine-tune to discover the ideal hyperparameter. The best model is then used to forecast Ra and 
cutting force based on an estimate of the RMSE for the testing dataset. Then, using constraints 
and the lowest Ra and cutting force, the optimal solutions are discovered in the Pareto front. 
The final conclusions and observations are presented in Section 4. 

 

Fig. 1. Combination of ML model and NSGA-II for modelling and optimization in AISI 4340 turning flowchart 

Feature extraction, a crucial step in machine learning, involves turning raw data gathered 

from numerous signal channels into a set of statistical features in a manner that is compatible 

with machine-learning algorithms. A machine-learning algorithm is then given the statistical 

information as input. The experiment utilized four input parameters, which included cutting 

speed, nose radius, feed rate, and depth of cut. Besides, surface roughness and cutting force 

were selected as the output parameters and measured from the experiment. These two output 

parameters characterize the machining process's quality and energy cost. 

LIN, SVR, GBR, and ANN were each used to create one of four predictive models. For 

the purpose of developing the model, two-thirds (2/3) of the input data were randomly chosen 

(training). The remaining 1/3 of the input data was used to validate the model (testing). 

3. MACHINE LEARNING TECHNIQUES AND OPTIMIZATION PROCEDURES 

3.1. MACHINE LEARNING TECHNIQUES 

1. SVM regression 

Support Vector Machine (SVM) is a classic machine-learning algorithm that can be used 

for classification and regression problems. The principle of SVM was first introduced by 

Vapnik et al. [28]. SVM can be used to solve linear and nonlinear problems by separating  
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the database into classes using an ideal hyperplane (see Fig. 2). The hyperplane is considered 

ideal when the distance between 2 data classes is maximized.  

 

Fig. 2. Illustration of Support Vector Machine algorithm 

In terms of advantages, SVM can be very effective in high dimensional spaces, which 

suits the problems when the input data is composed of several variables. SVM is also efficient 

in terms of memory, as it only uses a subset of training data in the decision function. Finally, 

SVM is quite versatile, as several functions can be used for the decision function.  

In terms of limitations, overfitting can be a major problem when the number of features 

in the input data is much higher than the number of considered samples. In this case, serious 

regulation processes are needed to avoid overfitting.  

2. Categorical Gradient Boosting (CAT) 

Decision trees are used as the primary predictors in the majority of gradient-boosting 

implementations. Decision trees are useful for numerical features, but in reality, many 

datasets contain categorical features that are essential for prediction. Yandex created the 

unique gradient-boosting technology known as CAT. Within the gradient-boosting tree 

algorithmic framework, it is a better implementation. A symmetrical decision tree algorithmic 

method with few parameters, support for categorical variables, and excellent accuracy is the 

foundation of this system [29]. The algorithm's accuracy and generalizability are enhanced 

by CAT [30]. It has been successfully used in a variety of fields, including biomass, 

evapotranspiration, media popularity prediction, and weather forecasting [31–32]. This is  

the reason the model is used here to forecast how well ultra-precision machining will work. 

3. Decision-Tree Regression (DTR) 

Traditional ML techniques include decision trees (for classification and regression). 

Overall, their learning capabilities are not excellent, but they are renowned for their 

generalizability and feature filtering. They are known as regression trees when applied to 

regression tasks [33]. The model continues to pick up new information as the number  

of iterations rises. Hyperparameters like the number of features that are selected,  

the maximum depth of the tree, and the minimum sample size of branches can truncate  

the training process. 

4. Gradient-Boosted Trees 

Gradient-Boosted Trees (GBT) is a machine-learning technique based on an ensemble 

of weak prediction models [34]. The main principle of Gradient-Boosted Trees is that each 
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model in the ensemble tries to predict the error left over by the previous model. GBT can be 

used for both regression and classification problems.  

 

Fig. 3. Flowchart of Gradient Boosted Trees algorithm 

As described in Fig. 3, the weak predictive models are fitted into the model so each new 

leaner fit into the residuals of the previous step so that the model improves. The final 

improved model aggregates the results of each step and becomes a strong predictive model. 

5. ANN regression 

Artificial Neural Network (ANN) machine-learning models are inspired by the functions 

of human brains [35]. The main component of ANN is artificial neurons or nodes. Each ANN 

structure is composed of several layers, and each layer is a group of neurons acting at the 

same level. These neurons are interconnected between each layer but the neurons in the same 

layer are not connected. The minimum number of layers in an ANN structure is 3: 

• Input layer that contains input variables and passes them to the next layer.  

• Hidden layer that contains node functions for training the model. 

• Output layer that receives the results from the previous hidden layer and exports the 

output.  

One ANN structure can contain one or several hidden layers, depending on the objective 

of the problem. When the number of hidden layers is greater than one, the model is called  

a deep neural network. A typical architecture of ANN is shown in Fig. 4.  

 

Fig. 4. Architecture of ANN model 
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One of the main advantages of ANN is its ability to work with any type of input data 

[36–37] Another advantage of ANN is the capability of parallel computing, which can be 

highly beneficial when dealing with large datasets. On the other hand, ANN's limitations need 

to be considered, such as the high memory cost, as the information is stored on the entire 

network. In addition, several trials need to be carried out to find the optimal number of layers, 

as the behaviour of ANN is hard to control. 

6. Performance evaluation 

Building an effective machine-learning model requires evaluation. Only a few 

assessment metrics can be utilized for regression, out of the many evaluation metrics 

available. RMSE, MAE, and R2 are the assessment metrics most often used in the regression. 

These metrics' formulas are as follows: 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑁

𝑖=1

𝑁
 

𝑀𝐴𝐸 =
1

𝑁
∑|�̂�𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 

𝑅2 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)2𝑁

𝑖=1

∑ (�̂�𝑖 − 𝑦)2𝑁
𝑖=1

 

 

 

 

                                       

(1) 

 

where the actual and forecast values are denoted by yi and �̂�𝑖, respectively. The overall 

number of observations is N. Higher R2 values and lower RMSE and MAE values indicate  

a more accurate model. RMSE has an advantage over MAE in that it does not use absolute 

value, which is a highly undesirable method in many mathematical calculations [38]. Because 

RMSE is easier to compute and distinguish between, it is a superior choice when evaluating 

the predicted accuracy of various regression models. It is preferable for R2 to be higher [39]. 

3.2. MULTI-OBJECTIVE OPTIMIZATION 

NSGA-II is a multi-objective algorithm used widely to solve engineering problems [14], 

[21–22] Launched by Deb [40], NSGA-II still has a great value. The genetic algorithm's 

mating and survival selection were modified to create the algorithm. Generally speaking, 

NSGA-II picks out, hybridizes, mutates, and ranks non-dominant solutions to guarantee 

strong Pareto front convergence and do away with local optimization. The mathematical-style 

pseudocode of NSGA-II is shown in Fig. 5. 

It is necessary, during the manufacturing process, to find the best way to decrease 

material, labor, energy, time, cutting tool, and financial waste, in order to minimize 

fabrication costs. Therefore, it is necessary to improve the cutting parameters. The two criteria 

minimum Ra and minimal cutting force must be satisfied at the same time. NSGA-II is used 

to find Pareto-optimal methods to solve this problem. 

Material removal rate and basic cutting parameters have a direct impact on cutting power 

and cutting forces (i.e., cutting speed, feed rate, and depth of cut). Reduced machining time 
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is one of the goals of optimizing the machining process. One method is to increase the material 

removal rate, i.e., the cutting parameters. 

 

Fig. 5. Pseudocode of NSGA-II [41] 

This, however, results in increased cutting force and lower surface quality. As a result, 

selecting cutting parameters to achieve criteria such as good surface quality, quick machining 

time, and low energy consumption is fraught with uncertainty. To solve this problem, the best 

combination of parameters for improving machining performance must be determined. As a 

result, optimizing cutting force and surface roughness is critical for long-term production, 

which includes energy consumption, machining costs, product quality, and environmentally 

friendly manufacturing. 

4. RESULTS AND DISCUSSION 

4.1. HYPERPARAMETER TUNING WITH GRIDSEARCHCV 

This work uses the GridSearchCV [42] package to determine the hyperparameter for the 

ML model. The predefined values for hyperparameter in the GridSearchCV function are 

shown in Table 2. The LIN model has no hyperparameters. Meanwhile, SVR, GBR, and ANN 

models have many hyperparameters, which control the overfitting and underfitting of the 

model. Therefore, an apt hyperparameter choice can lessen overfitting and improve  

the predictive precision. A large number of initial hyperparameters for SVR, GRB, and ANN 

are shown in Table 3, which have to be examined in order to identify the most suitable 

optimum values. In order to save computing time, hyperparameters are chosen in this work 

by a computer, concentrating on important and valuable parameter effects on the performance  

of the ML model. 

For SVR, GRB, and ANN, the hyperparameter values utilized are kernel, C, degree, and 

gamma; for CAT, RFR, GBR, and RFR, the variables are depth, interaction, bootstrap, n 
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estimators, learning rate, max depth, and subsample; and for ANN, the values are batch size, 

epochs, optimizer, and hidden layers. In addition, the accuracy metrics of RMSE are 

employed as criteria to determine optimal parameter values.  

Table 3. Hyperparameters for machine learning models 

Algorithm 
Hyperparameters 

Tuned 

Predictive Ra (Ra) 
 

Cutting force 

Grid space  Results 
Grid space  

Results 

SVR 

kernel [‘rbf’, ‘sigmoid’] 'rbf' ['rbf', 'sigmoid', 'poly'] 'rbf' 

C [450, 500, 550, 600] 550 [12, 15, 18, 20] 15 

degree [0, 1e-6, 2e-6, 1e-5, 1e-4] 0 [0, 1e-6, 2e-6, 1e-5, 1e-4] 0 

gamma 
 [5e-3, 8e-3, .01, .02, .05, 

.1] 
8e-3 

[0.04, .045, 0.05, .055, 

0.6] 
0.055 

CAT 

depth [3, 4, 6] 4 [3, 4, 6] 3 

learning_rate [0.01, 0.05, 0.1, .12, .15, .2] 0.1 
[0.01, 0.05, 0.1, .12, .15, 

.2] 
0.05 

iterations [50, 100, 200, 300] 300 [50, 100, 200, 300] 300 

RFR 

n_estimators [400, 500, 600] 500 [400, 500, 600] 600 

max_features ['auto', 'sqrt', 'log2'] Auto ['auto', 'sqrt', 'log2'] sqrt 

min_samples_split [1,2,4] 2 [1,2,4] 2 

bootstrap [True, False] True [True, False] False 

GBR 

n_estimators [100, 500, 1000, 1500] 500 [100, 500, 1000, 1500] 500 

learning_rate [0.01, 0.02, 0.02, 0.04] 0.02 [0.01, 0.02, 0.02, 0.04] 0.04 

max_depth [4, 6, 8, 10] 6 [6, 8, 10, 12] 10 

subsample [0.1, 0.2, 0.5, 0.9] 0.2 [0.1, 0.2, 0.5, 0.9] 0.2 

ANN 

batch_size [140, 200, 250] 200 [10, 12, 15, 20] 15 

epochs [200, 300, 350] 350 [250, 300] 300 

optimizer ['adam', 'rmsprop'] 'adam' ['adam', 'rmsprop'] 'adam' 

units1 [ 100, 80] 100 [80, 64] 64 

units2 [36, 28] 36 [50, 45] 48 

units3 [ 16, 10] 16 [10, 8] 10 

4.2. HYPERPARAMETER TUNING WITH GRIDSEARCHCV 

4.2.1. PREDICTION CAPABILITY FOR Ra 

In the present study, five ML models – namely SVR, CAT, RFR, GBR, and ANN – 

have been used to predict surface roughness. To assess the predictive performance of these 

ML models, three accuracy errors, MAE, RMSE, and R2, have been employed on the statistics 

in Table 4 on the training and testing datasets. With the training dataset, CAT achieves  

the best accuracy in predicting the Ra values with RMSE of 0.0626, MAE of 0.0482, and  

the highest R2 of 0.9791. However, CAT seems to have poorer predictive performance on the 
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testing dataset with an R2 of 0.7332. Meanwhile, ANN was the best-performing of the five 

ML models on both the training and testing datasets. Indeed, while the RMSE value of the 

ANN model tested is 0.1095, the corresponding RMSE values for the SVR, CAT, RFR, and 

GBR are 0.2038, 0.1808, 0.2011, and 0.1959, respectively. In addition, the predictive 

performance of the ANN exhibits the lowest MAE = 0.0947 and the highest R2 = 0.8996. 

Besides, ANN also demonstrates good predictive ability on the training dataset with an R2  

of 0.9557. Moreover, the high value of R2 indicated that the predicted values closely match 

the measured experimental values. Therefore, ANN outperforms the rest of the models. 

Figures 6 and 7 offer a graphical comparison between the measured experimental values 

and the values predicted by SVR, CAT, RFR, GBR, and ANN on the training and testing 

datasets. The different colors of the line and scatter reflect the values predicted by other ML 

models and measured values. In these figures, the superior prediction performance of ANN 

can be noted by the close match of each data point on the graph with the measured values  

of Ra. Indeed, the proximity of the values predicted by ANN and the measured value is 

confirmed by the lowest values of RMSE and MAE and the highest value of the coefficient 

of determination. Besides, some values of results predicted by SVR, RFR, and GBR do not 

conform closely to the Ra value found experimentally. In summary, ANN is the most reliable 

model in predicting Ra, and for that reason, it is selected for the following procedure. 

Table 4. Statistical accuracy metrics of ML models for Ra prediction on the training and testing datasets 

Accuracy metric SVR CAT RFR GBR ANN Data 

MAE 0.1402 0.0482 0.0644 0.0614 0.0717 
Training 

dataset RMSE 0.1726 0.0626 0.0919 0.0878 0.0974 

R2 0.8378 0.9791 0.9635 0.9595 0.9577 

MAE 0.1732 0.1454 0.1625 0.1482 0.0947 
Testing 

dataset RMSE 0.2308 0.1808 0.2011 0.1959 0.1095 

R2 0.6642 0.7332 0.6603 0.6581 0.8996 
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Fig. 6. Ra experimental measurement and predicted values on the training dataset 
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Fig. 7. Ra experimental measurement and prediction values on the testing dataset 

4.2.2. PREDICTION CAPABILITY FOR CUTTING FORCE 

Similarly, five ML models – SVR, CAT, RFR, GBR, and ANN – also predict cutting 

force. The statistical accuracy metrics of various models for predicting V.B. based on the 

training and testing datasets are summarized in Table 5. RFR exhibits the best predictive 

performance on the training dataset, with RMSE and MAE of zero and R2 of 1. However, 

RFR performs terribly in predicting the cutting force values on the testing dataset, with RMSE 

of 2.0976 and MAE of 1.6812; these values are poorer than the RMSE and MAE values 

delivered by CAT, GBR, and ANN, as shown in Table 5. ANN exhibits the best predictive 

performance on the testing dataset out of the five models. Indeed, while the RMSE value  

of the ANN model is 0.7477, the corresponding RMSE values for SVR, CAT, RFR, and GBR 

are 2.5896, 0.7832, 2.0976, and 0.8024, respectively. 

Moreover, ANN exhibits the lowest MAE = 0.6442 and a high R2 value. Besides,  

the high value of R2 of 0.9988 (training) and 0.9950 (testing) indicated that the predicted 

values closely match the measured experimental values. Therefore, the ANN outperforms  

the rest of the models in terms of all accuracy metrics. The predicted and measured results in 

terms of cutting force are presented by the line and scatter plot for the training and testing 

datasets, in Fig. 8 and Fig. 9, respectively. The colors in these figures reflect the values 

predicted by different ML models. 

Table 5. Statistical accuracy metrics of ML models for cutting force prediction on the training and testing datasets 

Accuracy metric SVR CAT RFR GBR ANN Data 

MAE 2.3517 0.1733 0.0000 0.2389 0.3830 
Training 

dataset RMSE 2.7639 0.2067 0.0000 0.3082 0.4808 

R2 0.9640 0.9998 1.0000 0.9995 0.9988 

MAE 2.2300 0.6691 1.6812 0.6443 0.6442 
Testing 

dataset RMSE 2.5896 0.7832 2.0976 0.8024 0.7477 

R2 0.9547 0.9958 0.9958 0.9950 0.9950 
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Fig. 8. Experimental measurement values and cutting force predictions on the training dataset 

In terms of the training dataset (in Fig. 8), the values predicted by CAT, RFR, GBR, and 

ANN are close to the cutting force measured experimentally. In terms of the testing dataset, 

ANN's predicted values are nearest to the measured cutting force. Indeed, the proximity  

of the values predicted by these models and the measured value are confirmed by the lowest 

RMSE and MAE values and the highest value of R2. In summary, ANN is the most reliable 

model in predicting cutting force and is selected for the following procedure. 
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Fig. 9. Experimental measurement values and cutting force predictions on the testing dataset 

4.3. MULTI-OBJECTIVE OPTIMIZATION BY NSGA-II 

This work aims to find reasonable turning parameters that minimize the surface 

roughness and cutting force. However, these objective functions conflict with one another, so 

multi-objective optimization is the best choice to solve this problem. As discussed in Section 
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4.2, the ANN model exhibits the best predictive performance with respect to Ra and cutting 

force. Therefore, the formulation that defines the multi-objective problem can be written as 

Equation 2, where ANN_reg_Ra and ANN_reg_force are models predicting Ra and cutting 

force, respectively. These models take different hyperparameters, as selected in Table 6, into 

account.  

For the constraint boundary, ranges of values of machining parameters have been used 

to define the lower and upper variable bounds of cutting speed, feed rate, depth of cut, and 

tool nose radius. Recent literature [23], [25–27], [43–44] suggests the range of process 

parameters in the turning AISI 4340 steel, presented in Table 1. Therefore, this study chooses 

a range of cutting speed, feed rate, depth of cut, and tool nose radius of, respectively, 50–

375 m/min, 0.02–0.25 mm/rev, 0.1–1.5 mm, and 0.4–0.8 mm. All constraint boundaries have 

been normalized corresponding to each ML model. Analytically, the Pareto front solutions 

are given by: 𝑃𝑆 =  {(𝑉𝑐 , 𝑓, 𝑎, 𝑟)|(50 ≤ 𝑉𝑐 ≤ 375) ∧ (0.02 ≤ 𝑓 ≤ 0.25) ∧ (0.1 ≤ 𝑎 ≤
1.5) ∧ (0.4 ≤ 𝑟 ≤ 0.8)}. These constraint boundaries are written in Equation 3. 

Table 6. Statistics of process parameters in turning AISI 4340 steel 

No. Literature Cutting speed 

(m/min) 

Feed rate (mm/rev) Depth of cut 

(mm) 

Nose radius 

(mm) 

1 Çydaş et al [23] 60–90 0.08–0.24 0.1–0.3 0.8 

2 Das et al. [27] 100–220 0.05–0.13 0.2–0.6 0.8 

3 Gupta et al. [26] 51–141 0.197–0.248 1.0 0.4 

4 Rashid et al. [43] 90–250 0.02–0.15 0.1–0.4 0.8 

5 Dennison et al. [44] 325–375 0.1–0.2 0.3–0.9 0.4 

6 Patole et al. [25] 75–90 0.04–0.12 0.05–0.15 0.4–0.8 

Objectives  

Minimize Ra = ANN_𝑟eg_Ra(𝑉𝑐 , 𝑓, 𝑎, 𝑟) 

Minimize cutting force = ANN_reg_force(𝑉𝑐 , 𝑓, 𝑎, 𝑟) 

Subject to constraints 

50 ≤ 𝑉𝑐 ≤ 375 

0.02 ≤ 𝑓 ≤ 0.25 

0.1 ≤ 𝑎 ≤ 1.5 

0.4 ≤ 𝑟 ≤ 0.8 

Surface roughness and cutting force must be as low as possible in machining. Hence, 

the NSGA-II algorithm implemented in the Python environment has been used to find  

the optimal machining parameters for manufacturing. In the operating of the algorithm,  

the initial parameter settings were: population size of 50, maximum generation of 100, 

crossover rate of 0.85, mutation rate of 0.2, and selection rate of 0.25, as shown in Table 7.  

Table 7. Parameters for NSGA-II 

Input parameter 
Population 

size 

Maximum 

generations 
Crossover rate 

Mutation 

Rate 
Selection rate 

Value 50 100 0.85 0.2 0.25 

(2) 

(3) 
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The NSGA-II algorithm appears to converge successfully after 2500 simulation runs. 

Fifty optimal solutions lie on the Pareto front, evenly distributed and representative, as shown 

in Fig. 10. Pareto solutions are marked in red. The first performance objective – i.e., Ra – was 

found to lie between 1.014 and 1.057 µm. The second performance objective – i.e., cutting 

force – was found to range between 7.793 and 19.007 kgf for the fifty Pareto solutions. 

However, according to ISO 883:2013, the tool nose radius is standardized with values of 0.2, 

0.4, 0.8, 1.2 mm, and so on. Therefore, five solutions were selected and highlighted as black 

rectangles in Fig 10 (with a nose radius of 0.4 mm). On the other hand, the surface roughness 

lies between 1.032 and 1.048 µm, and cutting force was found to range between 7.981 and 

8.277 kgf.  

 

Fig. 10. Performance statistics obtained for 50 Pareto solutions 

Table 8. Result of Pareto solutions generated by multi-objective NSGA-II 

Solutions Vc Feed rate Depth of cut Tool nose radius Surface 

roughness 

Cutting force 

1 78.34 0.02 1.50 0.75 1.015 19.007 

2 71.23 0.02 0.53 0.42 1.057 7.793 

3 72.92 0.02 0.62 0.40 1.048 7.891 

4 74.64 0.02 0.76 0.41 1.035 8.189 

5 72.58 0.02 0.60 0.42 1.051 7.852 

6 74.47 0.02 0.86 0.51 1.026 8.949 

7 76.77 0.02 1.25 0.67 1.018 14.601 

8 72.91 0.02 0.65 0.41 1.045 7.973 

9 78.23 0.02 1.35 0.62 1.017 15.900 

10 74.67 0.02 1.01 0.52 1.023 10.394 

11 76.07 0.02 1.06 0.53 1.021 11.072 

12 72.92 0.02 0.65 0.45 1.044 7.987 

13 76.10 0.02 1.13 0.61 1.020 12.440 

14 76.07 0.02 1.06 0.57 1.021 11.380 

15 71.05 0.02 0.55 0.44 1.055 7.804 

16 75.85 0.02 1.00 0.55 1.022 10.507 

17 74.64 0.02 0.84 0.50 1.027 8.763 

18 74.46 0.02 0.93 0.57 1.023 9.759 

19 74.46 0.02 0.91 0.51 1.025 9.315 

20 78.58 0.02 1.46 0.66 1.016 17.924 

21 76.60 0.02 1.29 0.67 1.018 15.245 

22 74.67 0.02 0.81 0.43 1.031 8.430 

23 78.15 0.02 1.36 0.64 1.017 16.157 
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24 75.11 0.02 0.79 0.40 1.032 8.277 

25 74.28 0.02 0.72 0.42 1.037 8.122 

26 78.64 0.02 1.48 0.69 1.015 18.365 

27 74.67 0.02 0.84 0.45 1.029 8.619 

28 78.64 0.02 1.50 0.69 1.015 18.827 

29 74.07 0.02 0.71 0.40 1.039 8.082 

30 78.14 0.02 1.41 0.69 1.016 17.268 

31 76.60 0.02 1.29 0.67 1.018 15.182 

32 76.38 0.02 1.10 0.59 1.020 11.904 

33 76.83 0.02 1.19 0.57 1.019 13.257 

34 73.21 0.02 0.71 0.40 1.041 8.072 

35 74.64 0.02 0.84 0.44 1.030 8.569 

36 71.20 0.02 0.53 0.42 1.057 7.796 

37 76.81 0.02 1.16 0.57 1.019 12.818 

38 76.31 0.02 1.10 0.58 1.020 11.857 

39 78.14 0.02 1.38 0.71 1.016 16.839 

40 73.21 0.02 0.71 0.40 1.041 8.074 

41 76.60 0.02 1.23 0.63 1.019 13.994 

42 78.14 0.02 1.40 0.69 1.016 17.117 

43 76.60 0.02 1.23 0.66 1.018 14.140 

44 75.11 0.02 0.79 0.42 1.032 8.293 

45 72.58 0.02 0.59 0.42 1.053 7.838 

46 78.64 0.02 1.46 0.69 1.015 18.076 

47 72.58 0.02 0.59 0.41 1.053 7.839 

48 78.00 0.02 1.37 0.70 1.016 16.628 

49 76.60 0.02 1.20 0.63 1.019 13.529 

50 76.60 0.02 1.20 0.66 1.019 13.657 

Table 8 lists the 50 solutions that make up the Pareto-optimal solution set, along with 

the tuning parameter that goes with each one, which consists of five suitable solutions in 

reality that are bold-highlighted. Table 9 summarizes the selected Pareto solution's range  

of values generated by NSGA-II. As a result, cutting speeds between 72.92 and 75.11 m/min, 

a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius 

of 0.4 mm, are recommended. Whereby, selected Pareto solutions indicated that surface 

roughness lies between 1.032 and 1.048 µm, and cutting force was found to range between 

7.891 and 8.277 kgf. 

Table 9. Selected Pareto solutions produced by the multi-objective NSGA-II have a wide range of values 

Range 
Cutting speed Feed rate Depth of cut Tool nose radius Ra Cutting force 

(m/min) (mm/rev) (mm) (mm) (µm) (kgf) 

Minimum 72.92 0.02 0.62 0.4 1.032 7.891 

Maximum 75.11 0.02 0.79 0.4 1.048 8.277 

5. VALIDATION OF THE OPTIMAL RESULTS 

In this section, experiments were performed to confirm the five selected Pareto solution 

results. According to Table 8, cutting parameters were taken from solutions 3, 24, 29, 34, and 

40 (Bold highlighted). In addition, turning tests were carried out on the FEL-1440GMW 

MAGNUM-CUT lathe based on these configurations. All experiments were conducted under 
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the MQL with a flow rate of Ethylene Glycol coolant of 140 ml/hr. The tungsten carbide 

indexable inserts CCMT-090304 had a 0.4 mm nose radius—the tool holder of grade K10.  

Cylindrical AISI 4340 specimens, 24 mm diameter and 100 mm length, were used as 

workpieces. Specialized jig clamped a dynamometer Kistler Type 9139AA, which was 

mounted in a tool holder. The detail of the experiment is illustrated in Fig. 11. 

 

Fig. 11. Experimental system: a) Workpiece, b) Cutting insert, c) Dynamometer, d) DynoWare software,  

e) Data processing box, f) Cutting force results 

The studies measured cutting force elements in all three directions (X direction: Fx, Y 

direction: Fy, and Z direction: Fz) were measured in the experiments as shown in the schematic 

arrangement in Fig. 12. A three-components turning dynamometer was employed for 

recording the force values. The resultant cutting force was calculated using the following 

formula: 

𝐹 = √𝐹𝑥
2 + 𝐹𝑦

2 + 𝐹𝑧
2 (4) 

 

Besides, the surface roughness was measured three times along the machined part axis 

by a Mitutoyo-Surftest SJ-210 Portable, and the average of them was taken as the final value. 

All measurement results are presented in Table 10. 

As shown in Table 10, the test results are close to the predicted values obtained from 

NSGA-II optimization. Regarding the absolute percentage errors (APE), Ra and cutting force 

exhibit the largest values of APE (12.67% and 6.33%, respectively). Meanwhile, the values 

of mean absolute percentage errors (MAPE) are 9.41% and 3.55% for Ra and cutting force, 

respectively. From these results, it can be seen that the MAPE metrics of surface roughness 

are quite large. It might be due to the following reasons: experimental procedures, machining 

machines, and measuring equipment installations. However, the test results also partly proved 

that NSGA-II and ML might be combined together in turning operations to optimize the Ra 

and cutting force. 
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Fig. 12. Schematic layout of cutting force measurement setup 

Table 10. Validation of predicted results 

No. 

Cutting 

speed 

(m/min) 

Feed rate 

(mm/rev.) 

Depth 

of cut 

(mm) 

Tool 

nose 

radius 

(mm) 

Optimal results Experimental results Absolute 

percentage error 

Ra 

(µm) 

Cutting 

force 

(kgf) 

Ra 

(µm) 

Cutting 

force 

(kgf) 

Ra 

(µm) 

Cutting 

force 

(kgf) 

1 72.92 0.02 0.62 0.4 1.048 7.891 1.112 8.135 5.76% 4.18% 

2 75.11 0.02 0.79 0.4 1.032 8.277 0.954 8.436 8.18% 6.33% 

3 74.07 0.02 0.71 0.4 1.039 8.082 1.139 8.562 8.78% 5.61% 

4 73.21 0.02 0.71 0.4 1.041 8.072 0.932 7.987 1.70% 1.06% 

5 73.21 0.02 0.71 0.4 1.041 8.074 1.214 8.026 12.67% 0.60% 

Mean Absolute Percentage Errors 9.41% 3.55% 

6. CONCLUSION 

This study discusses the hybridization of machine learning and NSGA-II in multi-

objective optimization. The objective functions are a simultaneous minimum of surface 

roughness and cutting force for turning AISI 4340 steel. The turning parameters, such as 

surface roughness and cutting force, are compared with predictive results by five ML models: 

SVR, CAT, RFR, GBR, and ANN. By all accuracy metrics, ANN is the best-performing 

model in predicting surface roughness and cutting force on the training and testing datasets.  

Surface roughness and cutting force must be as low as possible in machining. Hence, 

the NSGA-II algorithm implemented in Python has been used to find the optimal machining 

parameters for manufacturing. Pareto solutions indicated that surface roughness lies between 

1.032 and 1.048 µm, and cutting force is found between 7.981 and 8.277 kgf for the five 

selected Pareto solutions. Results summarize the range of values in the Pareto solution 



A.-T. Nguyen et al./Journal of Machine Engineering, 2023, Vol. 23, No. 1, 133-153 151 

 

generated by NSGA-II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 

mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius of 0.4 mm, are 

recommended. The values of MAPE of Ra and cutting force were 9.41% and 3.55%, 

respectively, according to the experimental verification results.  

Thus, this study proved that the multi-objective optimization strategy performed well 

within an accepted range of errors for Ra and cutting force. The raw/processed data required 

to reproduce these findings will be made available on request. Nonetheless, further research 

is required to create an intelligent system that uses NSGA-II as a decision-making tool to 

incorporate user preferences. In addition, future research should focus on cutting forces to 

understand the mechanical process better. 

Moreover, general problems of manufacturing costs such as labor, energy, time, cutting 

tools (geometry, materials, tool wears), waste of materials, and product quality should be 

performed in the next works. Besides, cutting tool micro characteristics such as edge radius, 

rake angle, nose radius, vary with tool wear and direction of cutting, thermal conditions, build-

up edge, chip type and shape and process stability (vibration) should also be considered. 
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