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Advancing climate change, tense world markets, and political pressure steadily increase the demand for resource-

optimized production solutions. Herby, the positioning of the raw material in the machine tool is an important 

factor that has received little attention. Traditionally, this is done centrally on the machine table, which leads to 

locally increased wear of the feed axis. Furthermore, positioning directly influences energy consumption during 

machining. Consequently, the longest possible component utilization through optimum wear and energy 

optimization creates a direct conflict of objectives. To solve this conflict, this paper presents an automated 

approach for software-defined workpiece positioning and NC-Code optimization regarding the axis-specific 

energy consumption and the spindle condition of ball screws. An approach for mapping the energy consumption 

and the directly measured spindle condition is presented. Both represent input variables of the cost function. 

Approaches for the optimization of the position as well as for the practical implementation are proposed. 

1. INTRODUCTION 

As a result of ongoing social change, uncertainties in the raw material markets, and 

unstable global supply chains, the resource-optimized production of our goods is becoming 

increasingly important. Hereby, energy consumption plays a central role. For instance, 

companies aim to run their business more cheaply by saving CO2-certificates or to fulfil ESG 

(environmental, social, and corporate governance) criteria. Furthermore, industrial electricity 

prices in Germany, for example, have reached unprecedented highs [1]. Another highly 

topical aspect of resource efficiency is the sustainable use of existing machines and their 

components. This effort is reinforced by unprecedented material scarcity [2]. In addition, 

there is a lack of trained specialists, especially in developed countries, so solutions must be 

as automated as possible [3, 4]. In the context of machine tools, these points motivate  

an individual consideration of each machine tool. Here both, the individual properties and 

their behaviour over time must be mapped.  
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Milling machines are one of the most common manufacturing machines in production. 

Many different processes and machine tool simulation models have been developed for these 

over the past few years and decades. These models can now be thought of as part of the 

machine with which they form a CPS (Cyber-physical system). One of the least optimized 

and automated steps in milling is still the positioning of the workpiece on the machine tool 

table. Traditionally, the positioning is done centrally on the table by the operator resulting in 

local loading of the translatory feed axis components. This increases the risk of wear effects, 

which leads to premature component failure. However, ball screw drives represent one of the 

most important causes of translatory feed axis downtime with 38% [5]. Furthermore, due to 

axis-specific energy consumption, the orientation of the process direction can result in higher 

energy consumption of up to 29% [6]. The worker will not be further affected by an optimized 

clamping of the workpiece, however, additional parameters for orientation on the machine 

table are required. This motivates the search for suitable approaches for optimized positioning 

of the workpiece, taking into account the axis-specific energy consumption and the position-

dependent spindle condition. 

Table 1. List of abbreviations 

Abbreviations Meaning 

𝑋, Y, γ, �̅�, �̅� 
Specified X and Y position, Z orientation as well as the block-dependent spindle 

speed and feed vector 

𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 , 𝑠𝑏, 𝑓𝑏, 𝑡𝑏 x, y and z position, spindle speed, feed rate and execution time for block b 

𝒙, �̅�, �̅�, �̅�, �̅�,�̅� x, y and z position, spindle speed, federate and execution time for all blocks 

𝑏 NC code block number for blocks with kinematic information content 

𝑖 Axis number 

𝑣𝑏,𝑖 , 𝑎𝑏,𝑖  Velocity and acceleration for axis i in block b 

𝑝𝑚𝑜𝑡𝑖𝑜𝑛,𝑏,𝑖 Power prediction based for axis i in block b excluding process forces 

𝑝𝑒𝑛,𝑏,𝑖  Power prediction based for axis i in block b including process forces 

𝛼1,𝑖, 𝛽1,𝑖, 𝑐1,𝑖, 𝛼2,𝑖, 𝑐2,𝑖 Power prediction parameter for axis i 

𝑓𝑒𝑛,𝑏,𝑖(𝑋, 𝑌, 𝛾, 𝑠𝑏 , 𝑓𝑏,𝑖 , 𝑡𝑏,𝑖) Axis-specific energy consumption for block b 

𝑓𝑒𝑛(𝑋, 𝑌, 𝛾, �̅�, �̅�) Term of fitness function based on the combined axis-specific energy consumption 

𝑙𝑠𝑒𝑛𝑠𝑜𝑟 , 𝑙𝑠𝑐𝑟𝑒𝑤 𝑛𝑢𝑡 Length of the sensor system and the screw nut 

𝜀 Damage function of a damage present on a spindle 

𝑓𝑐𝑜𝑛𝑑,𝑏,𝑖(𝑋, 𝑌, 𝛾) Axis-specific condition for block b 

𝑓𝑐𝑜𝑛𝑑(𝑋, 𝑌, 𝛾) Term of fitness function based on the combined feed axis condition 

𝑓𝑔𝑒𝑠(𝑋, 𝑌, 𝛾, �̅�, �̅�) Total fitness function 

𝑝(𝑋, 𝑌, 𝛾) Penalty term of the fitness function for illegal positions and orientations 

𝜖 Manipulatable weight of the fitness function 

𝑛𝑒𝑛𝑔, 𝑛𝑐𝑜𝑛𝑑 Normalization factor of the individual terms of the cost function 

2. STATE OF THE ART 

This chapter lists all relevant work and summarizes the state of the art. In particular,  

the prediction of the axis-specific energy consumption and its optimization based on the 
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positioning are discussed. Furthermore, the state of the art regarding the direct as well as  

the indirect determination of the ball screw condition will be discussed. In particular, the focus 

will be on the position-dependent screw condition. Finally, this section discusses the opti-

mization of the position of the workpiece in machine tools. 

2.1. ENERGY PREDICTION AND OPTIMIZATION 

In order to make existing systems more energy efficient, Asrai [7] developed a mecha-

nistic energy consumption model using a linear regression model and a variation of cutting 

parameters for validation. However, due to strong measurement uncertainties, the validity  

of the prediction model could not be confirmed. Frigerio and Matta [8] developed an approach 

to reduce energy during warm-up and setup by implementing control strategies. The time-

dependent warm-up duration and stochastic arrival times were taken into account to shut 

down the machine during interruptions. Peng and Xu [9] studied the energy consumption  

of machining systems centers and found that machine tool structure, setup conditions and 

machining parameters represent the greatest influence on energy consumption.  

To develop a new energy consumption model, Pavanaskar and McMains [10] investi-

gated the influence of process time and other known parameters on the energy consumption 

of CNC machines. In contrast to previous energy models, the geometric aspects of the toolpath 

parameters were considered. Based on the new model, software was developed that predicts 

energy consumption with maximum deviations of 6%. To make pocket milling more energy 

efficient, Pavanaskar et al. [11] used digital micrography based on streamlines of a vector 

field to determine tool paths. Initial experiments showed that energy savings are possible by 

using this approach, although the results have not yet been validated. Edem and Mativenga 

[12] developed a model to estimate the electrical energy demand of CNC machines, taking 

into account the weights of the feed axes and the weights of the materials positioned on the 

machine table by measuring the energy demand during air cutting as well as during cutting  

of actual masses. Furthermore, the influence of the alignment of components and tool paths 

on energy consumption during milling operations was investigated [6]. The findings of the 

study showed that compared to the optimum, up to 29% more energy is needed and improved 

surface properties can be achieved. In addition, Edem and Mativenga [13] summarized 

previously developed energy prediction models for toolpaths based on CNC codes. These 

findings were used to develop an algorithm for an energy prediction software based on NC-

code. 

Through sensors and data analysis of digital twins in an SMT-PCP assembly line, 

Karanjkar et al. [14] observed that the use of workpiece buffers can save 2.7 times the average 

energy consumed. Rodrigues et al. [15] analysed electricity consumption in manufacturing 

processes using computer-based discrete event modelling and optimization software to 

investigate more energy-efficient and sustainable production, although the model has not yet 

been validated. Denkena et al. [16] analysed the energy requirements of machine tool 

components to enable energy-efficient operation of machine tools. This reduced energy 

consumption between 30% and 52% in the cases studied. In order to create transparency about 

the energy consumption during the production process, Mose [17] developed a characteristic 
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value to subsequently reduce energy consumption. Using various machine learning 

algorithms to accurately predict the energy requirements of CNC machining operations based 

on real production data, Brillinger et al. [18] were able to develop a prediction that deviated 

only 7.16% from the real value. Cao et al. [19] developed a method to efficiently determine 

the total energy consumption of CNC machines using program parsing and parallel neural 

networks. The method has been verified by case studies and can determine the total energy 

consumption with a deviation of 5% for each NC-block. Furthermore, a statement about  

the total energy consumption is made with a prediction error of 0.85%. 

2.2. CONDITION MONITORING OF BALL SCREWS 

Condition monitoring of drive components is a field that has already been extensively 

researched. For instance, Verl, et al. [20] determined information about the feed axis wear 

using sensorless automated condition monitoring (SACM) algorithms based on position-

controlled drive signals, such as position, velocity, and motor current. Schmid et al. [21] used 

a wireless sensor network (MEMS) for continuous condition monitoring of ball screws. Verl 

and Frey [22] have shown that the value of the preload in ball screws changes depending on 

the speed of the feed motion, which influences the load and thus the service life. By 

deliberately provoking damage and using a SACM algorithm, [23] developed an automated 

condition monitoring system for feed axis that is capable of directly inferring the cause  

of damage from the vibrations that cause it. Möhring und Bertram [24] deal with the 

monitoring of the wear progress by an integrated sensory ball screw double nut system with 

preload as wear indicator. For condition monitoring and a wear and life estimation, Helwig 

[25] uses a semi-automated approach for feature extraction, selection, and classification based 

on heterogeneous sensor data, where the basis of all sensor data yields a high explanatory 

contribution for the life estimation. To monitor the ball screw’s preload condition, Benker et 

al. [26] chose a probabilistic classification approach based on the natural frequencies of ball 

screws. With an average accuracy of 96% for each fault found, Riaz et al. [27] were able to 

develop an efficient condition monitoring of ball screws using a deep learning-based 

technique. Using Guard-Plus technology, Veith et al. [28] developed a successful approach 

to finding preload losses in ball screws. Xi et al. [29] developed a new method for detecting 

zero backlash and loss of stiffness in ball screws without preload to simulate the dynamic 

behaviour of the machine axis as a function of wear. For this purpose, a spacer sleeve was 

developed to ensure that the axial stiffness of the feed axes is effectively reduced, allowing  

a rapid change in wear condition of the machine axes. By using deep learning methods, Riaz 

et al. [30] succeeded in developing an approach that is significantly superior to existing 

approaches for detecting and classifying errors in linear motion systems. 

In order to detect damages on the surface of ball screw spindles at an early stage, 

Schlagenhauf et al. [31] developed a monitoring approach using an integrated camera system. 

To enable machines to detect and predict the spindle condition, a method based on machine 

learning was developed in [32] to interpret defects in ball screws automatically and 

autonomously. An intelligent defect quantification module quantifies the defects, which are 

then predicted by a prognosis module in a combined approach. Based on all previous findings 
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Schlagenhauf [33] developed a machine learning approach for monitoring the entire wear 

development on the surface of ball screws based on image data. 

2.3. OPTIMIZATION OF THE WORKPIECE POSITION 

Li and Melkote [34] were able to improve the positional accuracy of the clamped 

workpiece through their fixture layout optimization model. According to Li and Melkote,  

the inaccuracies in workpiece position are due to localized elastic deformation at the fixturing 

points, resulting in rigid-body motion of the workpiece. The improvement in workpiece 

position resulted in more uniform and less intense deformation of the workpiece, and the 

distribution of lateral reaction forces on the positioners has also become more uniform due to 

the improved fixture layout. In order to reduce the deformation of the workpiece during 

machining, Kaya [35] combined finite element method and genetic algorithms (GA) to 

optimize the position of supports, fixtures and clamps, since these are decisive for geometric 

errors on the workpiece. Kaya has shown with his approach that optimization problems  

of this type are multimodal problems and therefore heuristic rules for fixture design in GA 

are best suited to select the best fixture layout. Using data acquisition and analysis software, 

Liu et al. [36] measured the chatter behaviour during robotic milling for different clamping 

positions and milling paths to select a clamping position and milling path with minimal chatter 

behaviour. 

Weber [37] deals with a method for the automated generation of alternative workpiece 

and tool positions in a simulation environment and the associated simulation-based 

verification and NC program adaptation. Hereby, the focus was on time savings through  

a suitable choice of workpiece and tool position and collision-free manufacturing. Based on 

this, Weber et al. [38] developed an optimization process using the validity of workpiece 

positioning parameters and supervised learning algorithms. 

2.4. SUMMARY AND RESEARCH DEFICITS 

The energy consumption of machine tools has already been discussed in a number  

of publications. It was found that the alignment of a movement along the different axes has  

a direct influence on energy consumption during machining. In addition, there have been 

studies on the prediction of energy consumption. However, the prediction of the total energy 

consumption was the primary goal where auxiliary units represent one of the relevant 

influences. Furthermore, the time-dependent characteristics of the machine tool, for example 

as a result of feed axis wear, were not taken into account. Accordingly, for the implementation 

of the presented approach, there is a need for a precise prediction of the axis-specific energy 

consumption. Furthermore, the question arises of how this mapping can be implemented 

taking into account the individual and time-dependent machine characteristics. 

Condition monitoring of ball screws is an extensively researched field. However,  

the focus has always been on the general condition of the component. This is decisive for the 
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further use of the components and whether they need to be replaced. In order to enable  

a component- and thus resource-efficient processing, an extension of existing approaches is 

required. An approach is needed on how to use position depending condition information  

of the feed axis in order to adjust the usage and thus the load appropriately. 

The steadily enhancing digital representations of machine properties are increasingly 

providing a better basis for optimizing the position of the raw material and, consequently,  

the machining process. In particular, reference should be made to [37], where the optimization 

of the raw material position with respect to the machining time has been investigated. There 

is, however, a gap in the optimization with respect to several, possibly contradictory, targets 

enabling software-defined positioning.  

3. OWN APPROACH 

The aim of the presented approach is to find the optimal position of a given workpiece 

on the machine table based on the consumed energy and the current position-dependent 

condition of the translational feed axes. Accordingly, the optimal coordinates in the x and y 

directions (𝑋 and  𝑌) as well as the optimal orientation around the main spindle axis γ are to 

be determined. It should be noted, however, that depending on the type of construction,  

the plane of the machine table and thus the axis names can vary. In the first step, the individual 

machine properties are to be mapped, taking into account their change over time. For this 

purpose, an adaptive approach for the determination of the axis-specific energy consumption 

based on the NC-code and the raw part is developed. For the digital mapping of the position-

dependent feed axis spindle state, a machine learning-based imaging method for the 

determination of the condition is further developed. Both models represent the basis of the 

fitness function.  This is the optimization goal, for which an optimal configuration is to be 

found under variation of 𝑋, 𝑌 and 𝛾 as well as the block-dependent spindle speed �̅� and feed 

rate �̅�. Finally, the presented components are to be merged into a simple-to-use approach, 

which can be executed as automatically as possible.  

4. PREDICTION OF THE AXIS SPECIFIC ENERGY CONSUMPTION 

A precise prediction of the axis-specific energy consumption is necessary to reliably 

determine the optimized raw part position and orientation. The presented approach for energy 

estimation uses the NC-code of the produced workpiece and the raw part characteristics as 

input data. Relevant raw part characteristics are the workpiece position described by the 

coordinates 𝑋  and 𝑌, as well as the workpiece orientation described by the angle around  

the main spindle axis γ. From the NC-code, the blockwise spindle speed 𝑠𝑏 and feed rate 𝑓𝑏 

are required. By geometric decomposition, the feed rate 𝑓𝑏 can be divided into axis-specific 

feed rates 𝑓𝑏,𝑖. Furthermore, the axis-specific time needed for the execution of a block 𝑡𝑏,𝑖 is 

calculated from the NC code. This calculation is based on a machine model, which is 
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described in more detail in the following paragraph. With these input variables, the axis-

specific energy consumption of a block 𝑓𝑒𝑛,𝑏,𝑖 can be estimated. By adding up the values for 

all blocks 𝐵 and all axis 𝐼, an estimation of the total energy consumption for executing the 

whole NC code 𝑓𝑒𝑛 can be made (eq. 1). 

 Hereby, the machine is assumed as a system of rigid bodies. Under consideration of the 

equation of motion, the axis speeds, the axis accelerations and the process forces acting on  

the axis as external forces were identified as the variables primarily influencing the power 

requirements of the axis drives. In this way, the state of wear of the tool can also be taken into 

account, since it results in an increase in friction and thus in process force. These variables 

serve as input parameters for a machine learning model. For each data tuple of the input data, 

a power value is predicted. Hence, at least one power value is calculated per NC-code block 

and axis. Moreover, the process time for each predicted power value is modelled in order to 

get the total axis-specific energy consumption. 

 To calculate the velocity and acceleration components 𝑣𝑏,𝑖  and 𝑎𝑏,𝑖 , a model of the 

machine behavior is needed. For this purpose, it is assumed that the jerk rate represents an 

axis-specific constant. This constant is determined by evaluating data sets, ensuring that 

machine-specific technological constraints are taken into account. Through integration, 

acceleration and velocity curves can be calculated, which in discretized form serve as input 

for the machine learning model. The appearance of statistical errors in the determination  

of the axis-specific acceleration and velocity must be accepted when using the described 

model. Due to the large number of data points generated during the execution of an entire 

NC-code, a balancing effect of the errors should occur, so that the local deviations are 

relativized in the overall prediction. Therefore, the NC-code length might have an important 

influence on the prediction quality.  

The process forces 𝐹𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑏,𝑖   occurring during milling are determined by a process 

force simulation. Chattering influences the energy demand of the machine. Therefore, the 

machine is considered as a system that can vibrate. In contrast to acceleration and velocity, 

the process force for training the model cannot be determined from datasets without additional 

force sensors. Thus, a two-stage training approach will be used for each axis 𝑖 . For the 

determination of the parameters 𝛼1,𝑖, 𝛽1,𝑖 and 𝑐1,𝑖 of the motion power 𝑝𝑚𝑜𝑡𝑖𝑜𝑛,𝑏,𝑖 (eq. 2) a sub 

dataset without process forces will be used. These parameters remain constant in the 

following. In a second step, datasets occurring force components are used to determine 𝛼2,𝑖 

and 𝑐2,𝑖 so that subsequently the power 𝑝𝑒𝑛,𝑏,𝑖 can be determined for a given block (eq. 3). 

Since the consumed electrical energy is represented by the integral of the power over time, it 

is multiplied by the estimated block duration 𝑡𝑏,𝑖, which gives the block- and axis-specific 

part of the fitness 𝑓𝑒𝑛,𝑏,𝑖 as shown in equation 4. In order to achieve the best possible results, 

it is important to provide training datasets with great variation of the spindle speed and the 

axis-specific feed. 

 
𝑓𝑒𝑛(𝑋, 𝑌, 𝛾, �̅�, �̅�) = ∑ ∑ 𝑓𝑒𝑛,𝑏,𝑖(𝑋, 𝑌, 𝛾, 𝑠𝑏 , 𝑓𝑏,𝑖 , 𝑡𝑏,𝑖)

𝐵

𝑏=1

𝐼

𝑖=1

 (1) 
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 To get a first impression of the correlation between axis-specific velocity, acceleration 

and power, existing data sets were analyzed. The recordings were made on the three-axis 

milling machine CMX 600V from DMG Mori using the reference runs described in [39] and 

a sampling rate of 500 Hz. The block change was performed at 80% of the braking ramp. No 

process forces occur in these reference runs. The evaluations show a recognizable correlation 

between axis speed and axis-specific power despite the partly poor resolution of the measured 

values (Fig. 1). For the correlation between speed and power, only data tuples were considered 

which show a very small acceleration. This ensures that the measured power of the data tuple 

is strongly dependent on the velocity component. The z-axis differs from the x- and y-axis by 

its vertical orientation, so that the weight force has a characteristic influence. 

 
Fig. 1. Relation between axis-specific speed/acceleration and power of an example data set 

 For the correlation of acceleration and power, a simultaneous approach was taken. 

Therefore, only data tuples with a velocity close to zero appear in the plot. A weak correlation 

can be recognised for non-zero values. One reason for this may be the poor resolution of the 

measured values for the power signal, which can be clearly seen in the graphs. Another 

relevant reason may be that due to the described selection of the data tuples, relatively few 

and specific data points appear in the plots. For example, data tuples in which acceleration 

and velocity components overlap are not considered at all. Therefore, only data tuples with 

comparatively small accelerations up to 0.1 m/s² were selected. Data tuples with larger 

accelerations, which could potentially show a stronger correlation to the power value, were 

 𝑝𝑚𝑜𝑡𝑖𝑜𝑛,𝑏,𝑖 = 𝛼1,𝑖 ∗ 𝑣𝑏,𝑖 + 𝛽1,𝑖 ∗ 𝑎𝑏,𝑖 + 𝑐1,𝑖 (2) 

 𝑝𝑒𝑛,𝑏,𝑖 = 𝑝𝑚𝑜𝑡𝑖𝑜𝑛,𝑏,𝑖 + 𝛼2,𝑖 ∗ ∫ 𝐹𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑏,𝑖  𝑑𝑣𝑏,𝑖 + 𝑐2,𝑖  (3) 

 
𝑓𝑒𝑛,𝑏,𝑖(𝑋, 𝑌, 𝛾, 𝑠𝑏 , 𝑓𝑏,𝑖 , 𝑡𝑏,𝑖) = 𝑝𝑒𝑛,𝑏,𝑖 ∙ 𝑡𝑏,𝑖 (4) 
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filtered through the velocity condition. As shown in the overall diagram (Fig. 4), the parame-

ters of the energy prediction model are continuously updated during the operation  

of the machine, so that the model database is constantly growing. Hence, it can be assumed 

that the correlations will be much better identifiable than in the plots shown as examples. 

 Based on a reliable model for predicting the axis-specific energy demand, simulations 

for an energy-optimised workpiece position and orientation can be made. Since [6] found that  

the workpiece orientation can increase energy consumption by up to 29%, an optimization 

can be expected to result in a significant reduction. With an iterative procedure, different 

clamping positions and orientations of the raw part can be simulated. By considering  

the vibration behaviour of the machine, it can be assumed that an optimization also leads to 

the minimisation of chattering. In the best case, the simulation can thus improve the workpiece 

quality in addition to minimising the energy requirement. 

5. DIRECT MAPPING OF THE POSITION-DEPENDENT AXIS STATE  

As illustrated in Section 2.2, there are many different approaches to determining  

the condition of a ball screw. Since the aim of the presented approach is to improve 

component lifetime through the orientation of the workpiece, pitting on the spindle is the 

relevant damage pattern which can be influenced. Pitting can cause a loss of preload, 

representing one indicator for the remaining lifetime [26]. Therefore, the aim of the presented 

approach is to shift the component utilization to areas without damage by a specific shift  

of the local movements and thus to extend the useful component lifetime. For this reason, it 

is highly relevant that the local damage of the ball screw can be determined directly and 

precisely. Due to the precise measurement of the size and position of pitting, an optical system 

should be used as presented in [31]. Here, a camera system is attached to the ball screw nut. 

Fig. 2 shows on the right an example of spindle damage. It should be mentioned that damage 

can vary extensively depending on the prior usage. Furthermore, difficult conditions such as 

particles due to abrasion or lubricants (cf. Fig. 2 left) must be expected during machine tool 

operation. 

 

Fig. 2. Ball screw contaminated by lubricant grease (left) and local damage on a ball screw (right) 

Based on features such as the size of the damage, the remaining lifetime of the ball screw 

can be estimated [32] and thus its condition appropriately quantified. If the information of the 

local ball screw condition is fused with the position of the recording, countermeasures for the 

wear progress can be initiated. However, it should be noted that the position at which the 

damage is detected must be shifted by the length 𝑙𝑠𝑒𝑛𝑠𝑜𝑟 (cf. Fig. 3) left). 
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Based on this, a damage function of length 𝑙𝑠𝑐𝑟𝑒𝑤 𝑛𝑢𝑡 can be applied. Accordingly, for 

damage 𝑑 there is a damage function 𝜀𝑑 of length 𝑙𝑠𝑐𝑟𝑒𝑤 𝑛𝑢𝑡 shifted by 𝑙𝑠𝑒𝑛𝑠𝑜𝑟 with a height 

corresponding to the intensity. It should also be noted that the tool path is programmed in NC-

code, so an additional tool length-dependent Z-axis offset must be taken into account. 

According to [33], particles resulting from damage on the spindle increase the probability  

of further damage. According to this, it can be assumed that damages occur more frequently 

in areas where damage is already present on a spindle. Hence, two damage functions 𝜀1 and 

𝜀2 must be combined to a function ε1,2 = 𝜀1 ∩ 𝜀2 as shown in Fig. 3 on the right. The cost 

function 𝑓𝑐𝑜𝑛𝑑,𝑏,𝑖 of an axis results from the fusion of all damage functions of the damages on 

the axis. Based on this cost function, the evaluation of a point given by the coordinates 𝑥𝑏, 𝑦𝑏 

and 𝑧𝑏  can now be carried out with respect to all machine axis. The evaluation  

of a manufacturing process given by configuration X, Y and 𝛾 is done by the cumulation  

of all 𝐵  kinematically relevant blocks of the transformed NC-code. Thus, the evaluation  

of a given configuration within the optimization loop can be formulated by 

 

Fig. 3. Optical measuring system attached to the nut of the ball screw drive with the corresponding dimensions (left) as 

well as the individual and combined damage functions (right) 

6. WORKPIECE POSITION OPTIMIZATION 

The goal of the presented approach is to enable resource-optimized production by 

positioning the raw part based on the axis-specific energy consumption and the position-

dependent condition of the feed axes. The positioning is to be carried out on a clamping 

system with a rotary disk, which is positioned on the table of the machine tool. This results in 

the optimization variables 𝑋 and 𝑌 for the translational positioning and 𝛾 for the rotation on 

the rotary disk. It should be noted that the domain of 𝑋 and 𝑌 represents continuous values 

for machine tables with notches and discrete values when mounted by screws. The rotation 

𝛾 , on the other hand, can be specified continuously by [0°; 360°) . As explained in the 

 

𝑓𝑐𝑜𝑛𝑑(𝑋, 𝑌, 𝛾) = ∑ ∑ 𝑓𝑐𝑜𝑛𝑑,𝑏,𝑖(𝑋, 𝑌, 𝛾)

𝐵

𝑏=1

.

𝐼

𝑖=1

 (5) 
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previous sections, the energy component of the cost function is given by 𝑓𝑒𝑛(𝑋, 𝑌, 𝛾, �̅�, 𝑭 ̅) 

and the condition component by 𝑓𝑐𝑜𝑛𝑑(𝑋, 𝑌, 𝛾) . By the factors 1/𝑛𝑒𝑛  and 1/𝑛𝑐𝑜𝑛𝑑  

a normalization of the terms is made, so that the optimization goal can be manipulated by 𝜖.  

Thus, by 𝜖=1 the focus can be put on an energetic optimization and by 𝜖=0 on a wear 

optimization. Additionally, a penalty term 𝑝(𝑋, 𝑌, 𝛾) is needed. Through this, configurations, 

which lead to movements at the edges of the definition range are to be strongly overweighted. 

The fitness function of the optimization problem is given by 

 
𝑓𝑔𝑒𝑠(𝑋, 𝑌, 𝛾, �̅�, �̅�) = 𝜖 ∙

1

𝑛𝑒𝑛

∙ 𝑓𝑒𝑛(𝑋, 𝑌, 𝛾, �̅�, �̅�)                             

                                    +(1 − 𝜖) ∙
1

𝑛𝑐𝑜𝑛𝑑
∙ 𝑓𝑐𝑜𝑛𝑑(𝑋, 𝑌, 𝛾) + 𝑝(𝑋, 𝑌, 𝛾). 

(6) 

Since the required energy represents the integral of the electrical power over time,  

the minimization of the production time is an indirect optimization goal. Formula 6 represents  

the optimization goal. In [36], particle swarm algorithms are successfully used for optimizing 

the position with regard to processing time. Thus, these and evolutionary algorithms should 

be examined in the present approach. The results of the optimization loop is a configuration 

𝑋, 𝑌 and 𝛾 for the positioning of the raw part and the transformed NC-code using  �̅� and  �̅�. 

7. PRACTICAL IMPLEMENTATION 

The paratactic implementation of the presented cyber-physical approach is shown in 

Fig. 4. Input is the NC-Code as well as information about the raw part. The NC-code is fed 

into the digital optimization loop using an initial configuration 𝑋, 𝑌 and 𝛾. The postprocessor 

evaluates all blocks and determines the required parameter for all kinematically relevant 

blocks. The positions given by �̅�, �̅�  and �̅�  are passed to the condition module, which 

determines 𝑓𝑐𝑜𝑛𝑑. To determine the energy consumption, the values �̅�, �̅� and �̅� as well as �̅� 

and �̅� are inserted in the process force simulation together with the raw part and process 

information. The process force, together with the kinematic information �̇�, �̇�, �̇� and �̅� as well 

as �̈�, �̈� and �̈�, represent the input of the energy prediction module, which determines 𝑓𝑒𝑛 .  

The fitness module calculates the overall fitness 𝑓𝑔𝑒𝑠 using 𝑓𝑐𝑜𝑛𝑑 and 𝑓𝑒𝑛. If 𝑓𝑔𝑒𝑠 meets the 

termination criterion, the optimization loop is exited. If this is not the case, the configuration 

is varied, the NC-code is transformed and the loop repeats itself. If the termination criterion 

is met, the optimized NC-code and the parameters 𝑋 , 𝑌  and 𝛾  for the positioning of the 

workpiece are output. Based on this, positioning and production of the part is performed on 

the real machine.  

During production, data representing the current axis-specific energy consumption and 

the axis condition are recorded. This data forms the basis for the update of the energy 

consumption model and the condition model. The model update loop now closes  

the circle between the digital model and the real production, which fulfils the criteria  

of a digital twin. 
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Fig. 4. Diagram for practical implementation of the presented approach and information flow. The inner optimization 

loop is surrounded by an outer model update loop 

8. SUMMARY AND CONCLUSION 

This paper introduces an approach for resource-optimized production by optimizing  

the workpiece position as well as the NC code. For this purpose, the individual characteristics 

of the machine are at the center of the considerations. Due to the high relevance, the optimi-

zation shall be done with respect to the axis-specific energy consumption as well as the 

condition of the translational drive components. For the mapping of energy consumption,  

an approach for the prediction of consumption based on a given NC-code as well as the raw 

part geometry was presented. Speed, acceleration and process force were chosen as input 

variables of an ML-model. This model is to be trained continuously during operation in order 

to represent the current state at all times with the highest quality possible. The mapping of the 

position-dependent feed axis state must be done on the ball screw spindle. Here, only  

an image-based method can guarantee the requirements of precise quantification of the current 

condition. An approach was presented to convert the local damage into a position-dependent 

damage function. Both estimation functions 𝑓𝑒𝑛(𝑋, 𝑌, 𝛾, �̅�, �̅�)  and 𝑓𝑐𝑜𝑛𝑑(𝑋, 𝑌, 𝛾)  are part  

of the optimization function 𝑓𝑔𝑒𝑠(𝑋, 𝑌, 𝛾) by which a given configuration can be evaluated 

with respect to the resource consumption. The implementation of the approach is structured 

in two loops, the optimization loop and the model update loop. Within the optimization loop  

the search for the optimal configuration takes place. If this was executed within production, 

the update of the models takes place. 
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Future research should focus on the implementation of models for the axis-specific 

energy consumption and the condition of the axis. In particular, the question of a continuous 

representation of the machine tool characteristics has to be addressed. It must be determined 

how and in particular using which optimization algorithms a suitable configuration can be 

found. Furthermore, the question arises of how a practical implementation on a given machine 

tool, in particular with the participation of the machine operator, can be realized. When  

a solution is implemented, it should be investigated how cost and effort for the application  

of the system can be minimized. This includes the implementation costs. Here, for example, 

it can be examined whether pitting can also be determined with sufficient accuracy using 

vibration sensors. Furthermore, it should be investigated how frequent the models have to be 

updated in order to optimize computing effort. An additional reduction can be achieved by 

adapting the model resolution. 
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