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ON DOUBLE ENCODERS OF INDUSTRIAL ROBOTS USING A HYBRID 

GAUSSIAN PROCESS REGRESSION AND JOINT STIFFNESS MODEL 

Industrial robots are increasingly used in industry for contact-based manufacturing processes such as milling and 

forming. In order to meet part tolerances, it is mandatory to compensate tool deflections caused by the external 

force-torque vector. However, using a third-party measuring device for sensing the external force-torque vector 

lowers the cost efficiency. Novel industrial robots are increasingly equipped with double encoders, in order to 

compensate deviations caused by the gearboxes. This paper proposes a method for the usage of such double 

encoders to estimate the external force-torque vector acting at the tool centre point of an industrial robot. Therefore, 

the joint elasticities of a six revolute joint industrial robot are identified in terms of piecewise linear functions 

based on the angular deviations at the double encoders when an external force-torque vector is applied. Further, 

initial deviations between the encoder values caused by gravitational forces and friction are modelled with  

a Gaussian process regression. Combining both methods to a hybrid model enables the estimation of external 

force-torque vectors solely based on measurements of the joint angles of secondary encoders. Based on the 

proposed method, additional measurement equipment can be saved, which reduces investment costs and improves 

robot dynamics. 

1. INTRODUCTION 

Automation and accuracy enhancement methods in robot-based manufacturing often 

rely on force or pose control under consideration of the external force-torque vector W acting 

at the tool centre point (TCP) [1, 2]. On an industrial level the external force-torque vector W 

is in general measured directly with a force-torque sensor mounted between the end-effector 

and the flange of the industrial robot. However, depending on the sensing principle such 

sensors are accompanied by different disadvantages such as sensitivity to noise, temperature 

changes, humidity and electromagnetic interference, high power consumption, drift due to 

static forces or torques, overload vulnerability and loading-unloading hysteresis [3]. 

Independent of the sensing principle they further suffer from high cost, additional mass and 
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the lack of sensing an external force-torque vector W that is not applied to the end-effector. 

In order to overcome these downsides different alternative approaches to access the external 

force-torque vector W have been proposed.  

Phong et al. [4] installed additional torque sensors directly at the output side of each 

joint, which however changes the overall dynamics of the robot and induces compliance. 

Other researchers proposed methods, which do not rely on additional measurement equipment 

[5, 6]. The approaches use a disturbance observer, which estimates the external force-torque 

vector W based on joint angles q, velocities q̇, accelerations q̈ as well as motor currents iM in 

terms of disturbances to the dynamic system of an industrial robot. Simpson et al. [7] as well 

investigated a sensorless force estimation method based on measurements of the motor 

current iM and the joint angles q. The method relies on a dedicated joint model including 

friction and position dependent torque variations, which are caused by electrical and 

mechanical effects in the motors and gearboxes. Centripetal, Coriolis and coupling inertia 

effects have been neglected. The effectiveness of the aforementioned sensorless methods is 

directly related to the correctness of the underlying dynamics model of the robot including 

the identified model parameter. Calomé et al. [8] proposed a state observer to estimate the 

external force-torque vector W in terms of disturbances to the dynamic systems, which does 

not rely on an analytical inverse dynamics model. Instead they used the Locally Weighted 

Projection Regression [9] as a data-driven approach to map the joint angles q and velocities q̇ 

to the joint torque τ. The inertia matrix M is assumed to be known. Smith and Hashtrudi-Zaad 

[10] adopted this method and modelled the inverse dynamics in terms of an artificial neural 

network. They directly used the data-driven model as a force observer. Additionally, the 

influence of joint acceleration q̈ was investigated, which is obtained as the second derivative 

of the joint angles q and therefore prone to noise. Gravity and friction are neglected for the 

experimental validation with a 3-DOF (degrees of freedom) haptic device. Further, the 

acquisition of joint torque τ as the labels for supervised model training is not discussed.  

There is a tendency in industrial robots to equip joint axes with double encoders, which 

means that the primary encoder on the drive side of each axis is accompanied by a secondary 

encoder on the load side. Commercial examples are the industrial robots M-900iB/700 by the 

company Fanuc K.K., Oshino, Japan, the MAX-100 by MABI Robotic AG, Veltheim, 

Switzerland, as well as the industrial robots, which are equipped with double encoders 

posteriori by Electroimpact, Inc., Mukilteo, USA. The main reason for the usage of double 

encoders is the increased absolute positional accuracy and overall stiffness of industrial 

robots [11]. Kaminaga et al. [12] as well as Yamada et al. [13] additionally use self-designed 

double encoders for joint torque τ estimation and control. Han et al. [14] further estimated the 

external force-torque vector W based on double encoders by using an inverse dynamics model 

of a 7-DOF robot. All model terms are assumed to be known. They concluded that external 

force-torque vector W estimation based on double encoders is feasible in static state, but 

suffers from severe deviations in the dynamic state. 

In this paper the idea described by Han et al. [14] is adopted and relaxed by the fact that 

a sophisticated dynamic model of the industrial robot is known. Derived from the well-known 

inverse dynamics equation of industrial robots, the joint effects are separated into two parts. 

Joint stiffness Kθ is experimentally determined and modelled by a piecewise linear function. 

Unknown model terms are captured by a Gaussian Process Regression (GPR).  
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The remaining paper is structured into four sections. Section 2 describes the hybrid 

model. Section 3 is dedicated to the model identification. In section 4 experimental 

validations are performed, before section 5 summarizes the paper. 

2. HYBRID MODEL FOR EXTERNAL FORCE-TORQUE ESTIMATION 

 The proposed hybrid model is derived based on the well- known dynamic model of serial 

kinematic robots in joint space, which captures the drive torque τ according to Eq. 1 [15].  

τ = M(q)q̈⏟  
inertia 
term

+ C(q,q̇)q̇⏟    
Coriolis and 

centripetal term

+ G(q)⏟
gravitation 

term

+ τf(q̇)⏟
friction

term

+ J(q)
T
W⏟    

eternal force-torque
term

 
(1) 

 In Eq. 1 q, q̇ and q̈ are the vector of generalized joint coordinates, velocities and 

accelerations, respectively, M is the joint dependent inertia matrix, C the Coriolis and 

centripetal coupling matrix, G the joint dependent torque due to gravitational loading, τf the 

joint torque due to friction, J the joint jacobian matrix and W the external force-torque vector 

applied to the TCP. The applied drive torque τ to each robot joint causes an elastic 

deformation Δθ between the input and output side of the corresponding gearbox due to its 

limited torsional stiffness Kθ. In conclusion the drive torque τ can be modelled as a function 

of the elastic joint deformations Δθ according to Eq. 2. 

τ = 𝑓(Δθ) = Kθ⋅Δθ (2) 

where Kθ represents the stiffness matrix in joint space.  

 For simplicity in the remaining paper the static or quasi-static case is considered, where 

the inertia as well as the Coriolis and centripetal term in Eq. 1 become zero. Combining Eq. 1 

with Eq. 2 and rearranging for the elastic deformation Δθ yields Eq. 3. 

Δθ = Kθ
-1(G(q) + τf(q̇) + J(q)

T
W) (3) 

 Eq. 3 can be interpreted as a model capturing the relation between elastic joint 

deformations Δθ and the external force-torque vector W. In this context, Eq. 3 has three 

unknown model terms:  

• Gravitational loading G(q): The joint torque due to gravitational loading G is 

dependent on the joint angles q, as the centre of mass shifts when the robot is moved. 

Typically, it is assumed that the centre of mass of each link is located on the 

connection line between two consecutive joints and that the gravitational loading of 

the link is applied partially to the previous and following joint [16]. Based on that, 

the joint torque caused by gravitational loading G can be calculated by using the joint 

jacobian matrix J. This approach assumes, that the masses m as well as the locations 

of the centre of masses are known for the whole structure, including the drives, 

gearboxes, links and auxiliary components. Such information is usually not 

accessible for commercial industrial robots. In addition, the approach neglects 

asymmetries in the structure and becomes complex when closed-chain kinematics 

such as parallelogram-mechanisms and gravity compensators need to be considered. 
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• Friction τf(q̇): Bittencourt et al. [17] presented a dedicated approach to model the 

joint torque due to friction τf in dependence upon the joint velocity q̇, the total joint 

loading L including gravitational and external loading, and the joint temperature T 

according to Eq. 4. 

τf(q̇,L,T)  = τl(L) + τs(q̇) + τv(q̇,T) + τc (4) 

In Eq. 4 𝛕l denotes the stiction, i. e. static friction at zero joint velocity q̇, 𝛕s denotes 

the Stribeck friction, 𝛕v the viscous friction, and 𝝉𝑐 the Coulomb friction. In the static 

case considered here the friction τf reduces to the stiction τs. Due to backlash, wear 

and unknown states of contact in terms of lubrication, contact area, surface roughness, 

etc. all approaches for friction modelling can be considered as simplifications, which 

rely on a dedicated parameter identification. 

• Joint stiffness matrix Kθ: As each robot joint can be modelled as a decoupled single 

input single output system, the stiffness matrix Kθ becomes a diagonal matrix with 

the joint stiffness kθ,i of each gearbox as the diagonal elements. Wu et al. [18] recently 

published a review paper about the modelling and identification of the joint stiffness 

matrix Kθ. The approaches vary in complexity ranging from linear to non-linear joint 

stiffness [19, 20]. In general, the six joint stiffness terms kθ are identified from 

measurements of the pose p and the external force-torque vector W with different 

joint angles θ in terms of a least square method. The convergence of the fitting 

algorithm and the correctness of the identified parameters cannot be guaranteed, 

especially with increasing complexity of the joint stiffness model. 

 For industrial robots with double encoders the elastic joint deformations Δθ are directly 

accessible. Equation 3 can therefore be used to predict the external force-torque vector W, 

provided that the gravitational loading G, friction τf and joint stiffness Kθ are known. The 

additional sensor data of the double encoders can further be used to bypass the difficulties as 

stated above in obtaining the three model terms. The idea is to subdivide the total elastic joint 

deformation Δθ into an amount Δθ1 caused by gravitational loading G and friction τf as well 

as an amount Δθ2 caused by the external force-torque vector W according to Eq. 5 to Eq. 7. 

1.  Δθ = Δθ1 + Δθ2 = θS - θ (5) 

with Δθ1   = Kθ
-1(G(q) + τf(q̇)) = θS,0 - θ   (6) 

 Δθ2 = Kθ
-1J(q)

T
W = θS - θ𝑆,0 (7) 

 GPR is used to model the elastic joint deformation Δθ1. GPR is well suited to model the 

complex non-linear relations of friction τf and gravitational loading G, which could already 

be shown for robot dynamics and robot stiffness modelling [21, 22]. The joint stiffness in 

terms of the elastic joint deformation Δθ2 is modelled by a piecewise linear function in order 

to capture the stiffening behaviour at high loads. At this point it is worth mentioning, that it 

is straight forward to include the inertia as well as the Coriolis and centripetal term in Δθ1. 

By doing so a larger dataset for the training phase of the gaussian process model with known 

and varying joint velocities q̇ and accelerations q̈ becomes mandatory. The method for 

external force-torque vector W estimation based on the hybrid model is summarized in Fig. 1. 

In the remaining section the GPR as well as the joint stiffness model are explained in detail. 
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Fig. 1. Summary of the hybrid model for external force-torque vector W estimation based on double encoders 

2.1. GAUSSIAN PROCESS REGRESSION MODEL 

An arbitrary dataset 𝒟 = {xi, yi | i = 1,…,n} of n observations with xi as the input vector 

and yi as the corresponding output value is assumed. The goal in a regression problem is to 

find a function 𝑓, which maps the input vector xi to the output value yi according to Eq. 8.  

y
i
 = 𝑓(xi) + ϵ (8) 

where ϵ is additive noise and represents the regression error. It is assumed that ϵ ~ 𝒩(0, σn
2) 

follows a Gaussian distribution with zero mean and noise variance σn
2. For a GPR the 

function 𝑓 is completely specified by a mean function m(x) and a kernel k(x,x') as stated by 

Eq. 9 to Eq. 11. 

2.  𝑓 ~ 𝒢𝒫(m(x), k(x,x')) (9) 

with m(x) = E[𝑓(x)] (10) 

 k(x,x') = E[(𝑓(x) - m(x)) (𝑓(x') - m(x'))] (11) 

where the mean function m(x) denotes the expected output of 𝑓(x) and the kernel k(x,x') the 

covariance. Typical examples of the mean function m(x) and the kernel k(x,x') are stated in 

Eq. 12 and Eq. 13, where the latter is called squared exponential or radial basis function 

kernel. 

m(x) = 0 (12) 

k(x,x') = σf
2 ⋅ exp (-

1

2
(x - x')TΛ

-1(x - x'))   (13) 

In Eq. 13 σf
2 is the signal variance and Λ the diagonal matrix with the length-scale of each 

input dimension as the diagonal elements. The signal variance σf
2, the length-scale matrix Λ 

as well as the noise variance σn
2 are the so called hyperparameters of GPR, which are tuned in 

the training phase. One huge advantage of GPR is its non-parametric characteristics, which 

means that it does not rely on any assumptions about the functional form of 𝑓. Due the 

Bayesian nature of GPR, the model is capable of handling noisy data and gives full predictive 

distributions of unknown test data x* in terms of a posterior Gaussian distribution with mean 

and covariance according to Eq. 14 and Eq. 15, respectively. 
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𝑓(x*)̅̅ ̅̅ ̅̅ ̅ = E[𝑓(x*)] = m(x*) + k(x*, x)⋅[k(x, x) + σn
2I]-1(y - m(x)) (14) 

 cov[𝑓(x*)] = k(x*, x*) - k(x*, x)⋅[k(x, x) + σn
2I]-1⋅k(x, x*) (15) 

 Further insights in GPR can be found in great detail in the work of Rasmussen and 

Williams [21]. In this paper the Statistics and Machine Learning Toolbox of the software 

MATLAB R2022a by the company The MathWorks Inc., Massachusetts, USA, is used in 

order to apply GPR to the regression problem stated in Eq. 6. The six nominal joint angles θ 

serve as inputs to the GPR. The output is defined by the elastic joint deformations Δθ1, which 

are given by the difference between the joint angles of the secondary encoders without 

additional external load θS,0 and the nominal joint angles θ. As a GPR is a single-output model, 

six independent models are trained separately for each component of the elastic joint 

deformation Δθ1. MATLAB’s implementation of GPR allows additionally for the optimiza-

tion of the type of mean and kernel function. 

2.2. JOINT STIFFNESS MODEL 

The elastic joint deformation Δθ2 caused by the external force-torque vector W 

according to Eq. 7 is modelled in terms of the piecewise linear function 𝑔 given in Eq. 16. 

𝑔𝑖(τi) = Δθ2,i ={

m1,iτW,i + τWc1,i

m2,iτW,i
m3,iτW,i + τWc3,i

   , for τW,i < τW0,i

   , for -τW0,i ≤ τW,i ≤ τW0,i

   , for τW,i ≥ τW0,i

   , i = {1,…,6} (16) 

 In Eq. 16 m1, m2 and m3 are the slopes as well as τWc1 and τWc3 the additive constants of 

the piecewise linear functions. The linear segments are separated by the symmetric interval 

[-τW0,i, τW0,i], where τW0,i is the near-zero load. The external joint torque τW = (τW,1,…, τW,6)T 

follows from the external force-torque vector W according to Eq. 17. 

𝛕W = J(q)
T
W (17) 

 The implementation of Shape Language Modeling (SLM) in MATLAB by D’Errico 

[23] is used to identify the piecewise linear function 𝑔𝑖 for each joint. In addition, the near-

zero load τW0,i is identified for each joint such that the root mean squared error (RMSE) of 

the fitted piecewise linear function is minimized. The minimization is performed based on  

a bounded particle swarm optimization.  

3. EXPERIMENTAL INVESTIGATION AND MODEL IDENTIFICATION 

The industrial robot M-900iB/700 by the company Fanuc K.K., Oshino, Japan, as shown 

in Fig. 2 serves as a demonstrator throughout the paper. The industrial robot has passive, 

spring-based gravity compensators to reduce the gravitational loading of axis two and three. 

Further, it is equipped with a parallelogram-mechanism to increase the overall stiffness and 

maximal payload. 
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On each axis secondary encoders by the company Renishaw PLC., Wotton-under-Edge, 

UK, are installed at the output side of the gearboxes. The values of the primary and secondary 

encoders as well as the nominal joint values can be accessed as system variables in runtime 

through a TCP/IP (transmission control protocol/internet protocol) connection. The spindle 

POWERmaster BEX35 by the company Otto Suhner AG, Lupfig, Switzerland, with a nomi-

nal power of P = 9.5 kW is mounted at the flange of the robot. 

 

Fig. 2. Industrial Robot M-900Ib/700 

3.1. GPR MODEL IDENTIFICATION 

To identify a GPR model mapping the nominal joint angles θ to the elastic joint 

deformations Δθ1 a dataset 𝒟i = {θj, Δθ1i,j | i = 1,…6; j = 1,…,n} need to be experimentally 

obtained for each output dimension. Therefore, the industrial robot is moved to n = 1,000 

random joint configurations under consideration of the workspace boundaries.  

The accessibility of each joint configuration is checked a priori by an inverse kinematic 

algorithm. Due to the randomness of the joint configurations, it can be guaranteed that 

backlash in each joint is passed several times. By covering the whole workspace, it is further 

guaranteed that extreme poses in terms of gravitational and frictional loading of the individual 

joints are included in the training data, which promotes the learning of these effects.  

The spindle is assumed to be part of the robot system and is the only payload during the 

experiments. At each joint configuration the nominal joint angles θ and the values of the 

secondary encoders θS,0 are recorded. N = 960 datapoints are used to fit the GPR model. With 

the remaining N = 40 datapoints the accuracy of the model is tested as shown in Fig. 3. As 

can be seen from Fig. 3, the GPR model is capable of predicting the joint deformations Δθ1 

accurately. Deviations occur especially for the joints i = 1 and i = 6. For both joints the 

gravitational loading G is (close to) zero. Hence, the effects captured by the GPR model 

reduce to friction τf according to Eq. 6, which is influenced among others by backlash and 

temperature. To increase the GPR model accuracy in future work, additional dependencies in 

terms of input parameters can be incorporated.  Such input parameters might be the joint 

approach direction and the joint temperature, in order to capture backlash and the thermal 

behaviour, respectively. Due to the Bayesian nature of GPR the predictions include not only 
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the expected mean value, but also the covariance, as described in section 2.1. From the 

covariance a confidence interval of the predictions can be calculated as shown in Fig. 3 for  

a 95% confidence interval. For the joints i = 1 and i = 6 the GPR model “knows” about its 

uncertainty by means of a wide confidence interval. Such uncertainty information is useful 

for decision making based on data-driven black box models. 

 

Fig. 3. GPR model performance with unknown test data 

3.2. JOINT STIFFNESS IDENTIFICATION 

The measurement set-up shown in Fig. 4 a) is used to identify the joint stiffness 

matrix Kθ in terms of a piecewise linear function for each joint according to Eq. 16. 

An external force F is applied to a dummy-tool by a screw. The dummy-tool is mounted 

in the spindle. By rotating the screw stepwise in and out, the external force F applied to the 

TCP can be increased and decreased. A loading-unloading-loading-unloading sequence as 

shown exemplary in Fig. 4b for one joint configuration is performed manually. The external 

force F is measured with the dynamometer 9257B by the company Kistler Instrumente AG, 

Winterhur, Switzerland. The axes of the dynamometer are aligned with the cartesian 

coordinate system, i. e. the base frame, of the robot by using a measurement gauge. In 

addition, the yaw and pitch angle of the external force F can be changed by a rotary table. 

The measurements are repeated for different joint configurations so that a dominant external 

joint torque τW is applied to each joint for at least one sequence. The joint configurations and 

force directions are chosen with a trial-and-error approach. For each joint configuration the 

three components of the external force F as well as the joint angles of the secondary encoders 

θS are measured as a timeseries, see Fig. 4b. Discrete values are obtained from the timeseries 

by extracting and averaging of the constant areas.  
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Fig. 4. Experimental investigation of the external force-torque vector W;  

a) measurement set-up; b) exemplary force signal 

Based on Eq. 17 the external joint torque τW follows from the external force-torque 

vector W = (FT, 0T)T. The joint deformations Δθ2 are given as the difference between the joint 

angles of the secondary encoders with and without external loading, θS and θS,0, respectively. 

The joint deformations Δθ2 and the external joint torque τW are used to identify the piecewise 

linear function as well as the near zero load τW0 according to Eq. 16. Figure 5. shows the 

experimental results in comparison to the fitted piecewise linear function for each joint. All 

joints follow a near linear behaviour with a steeper section, i. e. lower joint stiffness kθ, within 

the near zero load τW0 region. The stiffness curves in Fig. 5 do not only show the behaviour 

of the respective gearboxes, but also the behaviour of the total drive train. For axis three, for 

example, this includes the stiffness of the parallelogram mechanism, for which reason 

differences between the axes are reasonable. 

 

Fig. 5. Joint stiffness model in terms of piecewise linear functions with optimized near zero load interval 
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4. EXPERIMENTAL VALIDATION 

In order to validate the method an experimental set-up according to Fig. 6 is used.  

A force-torque vector W is applied to the TCP by an airspring, which is mounted at the one 

end to a dummy tool of the industrial robot and at the other end to a dynamometer. Both ends 

are fixed by a ball joint so that circular trajectories can be realized. The nominal joint angles θ 

as well as the measured ones from the secondary encoders θS are recorded for N = 100 

discrete poses along a circular trajectory with a radius of R = 750 mm in the X-Y-plane of the 

industrial robot. To increase the joint movements especially in the wrist the orientation about 

the global X- and Y-axis of the industrial robot are changed in a sine and cosine manner with 

a magnitude of α = 15°. The experiments are repeated with and without an acting force-torque 

vector W, which allows to validate the GPR model as well as the joint stiffness model in 

terms of the elastic joint deformations Δθ1 and Δθ2, respectively.  

 

Fig. 6. Experimental validation; a) measurement set-up; b) schematic principle 

Figure 7 shows the result of the GPR model for the N = 100 poses along the circular 

trajectory. Even the high frequent changes of joints i = 2 and i = 5 are captured very 

accurately. For the joints i = [1,3,4] the GPR model is capable to predict the trends. The 

highest deviations are observed for joint i = 6, which is only slightly loaded by gravity due to 

the inclination angle of the spindle α. However, trends can still be estimated and the 

confidence prediction is well calibrated. Fig. 8 shows the estimated external force-torque 

vector W in the dominant X- and Y-directions respectively. It can be seen, that the method is 

valid to predict the shape of the external force-torque vector W. In more than 50% of the 

poses the error of the predicted external force-torque vector W is below 25%. However, in 

some configurations there are some major deviations in the predicted external force-torque 

vector W, which could be caused by the simplification of the joint stiffness as a piecewise 

linear function. In reality the joint stiffness follows a hysteretic behaviour with differing 

loading and unloading characteristics. Further, the elastic joint deformation Δθ2 is modelled 

independent of the pose. Especially in joint i = 3 this assumption might be insufficient, as the 

elastic joint deformation Δθ2,3 includes errors of the parallelogram mechanism. In summary, 

the proposed method can be used to estimate the external force-torque vector W, which 
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proves the validity of decomposing the elastic joint deformations Δθ and the corresponding 

hybrid modelling approach.  

 

Fig. 7. GPR model performance at N = 100 poses along the circular trajectory 

 

Fig. 8. Comparison of the measured and simulated external force-torque vector W 

5. SUMMARY 

Within this paper a hybrid model to predict the external force-torque vector W based 

solely on measurements of joint angles θS from secondary encoders is proposed. The idea 

relies on a decomposition of the measured elastic joint deformations Δθ, when an external 

force-torque vector W is applied to the tool centre point. One part of the elastic joint 
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deformations caused by gravity and friction Δθ1 is captured by a Gaussian process regression. 

The other part Δθ2 is directly influenced by the external force-torque vector W and modelled 

in terms of piecewise linear functions, which represent the joint stiffness Kθ. In experimental 

validations it could be proven that the hybrid model is capable to estimate the external 

force-torque vector W. For the majority of robot joint configurations, the accuracy of the 

predictions is above 75%. Hence, the method can be used in applications as e.g. human-robot 

collaborations, force control and model-based compensation of tool deflections. By using the 

proposed hybrid model additional force-torque sensors can be saved, which reduces 

investment costs and improves robot dynamics as no additional mass is applied to the robot. 

However, in some joint configurations the hybrid model shows severe deviations, which 

might be influenced by backlash, hysteretic behaviour and pose dependency of joint stiffness. 

Incorporating more data in the training of Gaussian Process Regression as well as capturing 

loading-unloading effects and angular dependency in joint stiffness Kθ could further improve 

the method in future work.  
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