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MULTI-OBJECTIVE OPTIMIZATION OF THE ROTARY TURNING  

OF HARDENED MOLD STEEL FOR ENERGY SAVING AND SURFACE 

ROUGHNESS IMPROVEMENTS 

In this investigation, the specific cutting energy (SCE) and average surface roughness (Ra) were decreased using 

the hard-rotary turning (HRT) factors, including the inclined angle (I), depth of cut (D), feed rate (f), and spindle 

speed (S). The Bayesian regularized feed-forward neural network was applied to develop the SCE and Ra 

models. The entropy method and vibration and communication particle swarm optimization (VCPSO) algorithm 

were employed to compute the weights and determine optimal factors. The optimizing outcomes presented that 

the optimal I, D, f, and S were 35 deg., 0.45 mm, 0.50 mm/rev., and 1200 rpm, respectively, while the SCE and 

Ra were decreased by 37.4% and 6.6%, respectively. The total turning cost was saved by 7.5% at the selected 

solution. The valuable outcomes could be applied to the practical HRT process to decrease performance 

measures, while the developed HRT operation could be utilized for machining difficult-to-cut materials.  

1. INTRODUCTION  

The rotary turning process is widely applied to cut hardened steels in terms of the 

production rate and quality indicators. This operation offers several benefits, including low 

cutting temperature, even temperature distribution, low machining force, and high tool life. 

Different rotary turning operations have been optimized to enhance technological 

parameters. A simulation model was developed to precisely capture the machining 

temperature in terms of the depth of cut (D), feed rate (f), and turning speed (V) [1]. 

Kishawy and Wilcox emphasized that the rotary turning process provided a high resistance 

and long tool life, while only the flank wear was produced [2]. A new flank wear model  

of the rotary turning operation was developed, while the genetic algorithm was used to find 

the empirical coefficients [3]. The surface roughness of 0.5 μm for the aerospace alloy could 
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be obtained using the rotary turning operation [4]. The predictive models of the turning 

force components of the carbon steel were developed in terms the V, D, f, and A [5]. Li et al. 

Indicated that an increased V could be used to decrease the coefficient and the turning force 

was primarily affected by the f [6]. Ezugwu stated that the machining force components  

of the rotary turning operation were smaller than the fixed process, while a higher f 

decreased the surface quality [7]. Rao et al. stated that the average roughness (Ra) was 

decreased by 14.5% at the same material removal rate for the rotary turning of EN24 steel 

using the genetic algorithm [8]. Amini and Teimouri indicated that the V of 4 m/min, the D 

of 0.3 mm, and the f of 0.08 mm/rev could be applied to minimize the cutting forces and Ra 

for the rotary turning of the AA7075 [9]. The energy consumption in the turning state (Et), 

machining rate, and Ra models of the rotary turning process of the hardened steel were 

enhanced by 50.3%, 33.2%, and 19.8%, respectively using optimal V, A, f, and D [10].  

The energy consumption and cost were saved by 9.2% and 1.37%, respectively using  

the optimal rotary turning variables [11]. The machining force components and temperature 

of the 51200 hardened steel were precisely predicted using a simulation model [12].  

Ahmed et al. pointed out that the Ra of 0.38 μm and the tool wear of 2.42 μm could be 

obtained using optimal parameters for rotary turning AISI 4140 steel [13]. Nieslony et al. 

revealed that a higher V in the rotary turning process caused a decreased Ra and stable 

machining [14]. The minimum quantity lubrication and nano lubricant were applied to 

decrease the cutting temperature of the rotary milling Inconel 625 [15]. The authors stated 

that higher values of the f and V increased the machining temperature. A novel simulation 

model of the rotary turning operation was developed to predict the cutting temperature, 

force components, and chip morphology [16]. A good agreement between the predictive and 

experimental results indicated that the developed model was reliable and useful. Ahmed et 

al. emphasized that the rotary turning process provided lower cutting forces, flank wear, and 

cutting temperature, as compared to the fixed turning, while a better Ra could be obtained 

using the conventional one [17]. Umer et al. revealed that lower values of the D and A could 

be applied to decrease the turning temperature, force, and stress of the tool [18]. However, 

the predictive model of the SCE in the turning stage has not been developed and evaluated. 

The optimal factors for simultaneously decreasing the SCE and Ra of the rotary turning 

process have not been selected. The comprehensive cost for the rotary turning process has 

not been proposed in published works. 

In this paper, we present the optimization approach and experiment setting for the 

rotary turning process of the hardened steel. Next, the obtained results are scientifically 

discussed. Finally, conclusions are drawn and future research is suggested. 

2. OPTIMIZATION APPROACH 

The concept of the hard-rotary turning (HRT) operation is shown in Fig. 1. The round 

insert having high hardness (87–92 HRC) is rotated using the friction between its body and 

the workpiece (Fig. 1a). The designed and fabricated self-propelled rotary tool has seven 

components, including the shank, the base, the round insert, adjusting bolts, adjusting 

screws, and the drive shaft (Fig. 1b). The SKD11 steel is utilized to fabricate the shank,  
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the base, and shaft. The base is tightly clamped on the shank using screws, while the round 

insert is fixed on the drive shaft. The shaft is rotated around its axis with the support  

of the bearing. The inclined angle is adjusted using the milled groves on the base. The 

MITSUBISHI carbide round insert entitled RPMT1204M0E-JS having the rake angle of 11° 

is applied in all tests. The outside diameter, inside diameter, and thickness of the round 

insert are 12 mm, 4.4 mm, and 4.76 mm, respectively (Fig. 1c). 

 

 
a) 

  
b)  

 
c)  

Fig. 1. The concept of the HRT process: a) – the schematic principle, b) – the fabricated rotary tool,  

c) – the round insert 

 

The specific cutting energy (SCE) is defined as a ratio of the energy consumed in the 

HRT process (TE) and material removal volume (MRV) and is computed as: 

TE
SCE

MRV
=         (1) 

The MRV is computed as: 

cMRV V f D t=            (2) 

where the V, f, D, and tc are the turning speed, feed rate, depth of cut, and turning time, 

respectively. 

The TE of the HRT process consists of six parts, including the startup (Es), the standby 

(Est), transition (Ets), air-turning (Ea), turning (EC), and tool change (Etc) stages (Fig. 2). 

Therefore, the TE model can be expressed as:  

1. The shank;  

 2. The base;  

 3. The round insert;  

 4. The adjusting bolt;  

 5. The adjusting screw; 

 6. The drive shaft. 
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s st ts a tcTE E E E E EC E= + + + + +        (3) 

Practically, the Est, Ets, Ea, and Etc are constant values. In this investigation, the energy 

consumption in the turning stage is considered; hence, the SCE is expressed as: 

c c c

c

P t PEC
SCE

MRV MRR t MRR


= = =


       (4) 

where Pc is the power consumed in the turning stage. 

The Ra is computed as: 

1

n
ai

a

i

R
R

n=

=         (5) 

where Rai is the average roughness at the ith measured position. 

In the current work, the properties of the cutting insert and workpiece are considered 

as constants. Four key factors having the ranges, including the inclined angle, depth of cut, 

feed rate, and spindle speed are exhibited in Table 1. The parameter levels are identified 

based on the characteristics of the machine tool and the recommendations of the manufac- 

turer of the round insert. These ranges are confirmed by the suggestions from the aforemen-

tioned works. 

 
Fig. 2. The power profile of the HRT operation 

Table 1. Optimizing process factors 

Symbol Parameters Ranges 

I Inclined angle (deg.) 20-35-50 

D Turning depth (mm) 0.2-0.4-0.6 

f Feed rate (mm/rev.) 0.3-0.5-0.7 

S Spindle speed (RPM) 800-100-1200 

 

The optimization issue is expressed as: 

Find X = [I, D, f, and S]; 

Minimizing SCE and Ra; 

Constraints: 20 ≤ I ≤ 50 (deg.); 0.2 ≤ D ≤ 0.6 (mm); 0.3 ≤ f ≤ 0.7 (mm/rev.);  
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800 ≤ S ≤ 12000 (rpm). 

The optimization procedure is shown in Fig. 3.  

Step 1: Performing turning experiments using the Box-Behnken design [19]. When 

four turning variables and two replications are utilized, 26 experiments are required.  

Step 2: The SCE and Ra models are developed regarding process parameters by means 

of the BRFFNN approach [20]. 

For the BRFFNN, the weights of the network are random variables. The probability 

density function is expressed as:  

( , , ) ( , )

( , , )

P D w M P w M
P

P D M

 

 
=

  (6) 

where D and M present the obtained data and the forward multi-layer perceptron, 

respectively. w and P(w|α,M) are the vector and prior knowledge of network weights, 

respectively. When the Gaussian function is employed, the like hood-P (D|w, β, M) is 

expressed as: 

/ 2

1
( , , ) d

d

n
P D w M e








−
=

 
 
 

  (7) 

where dd is the sum of squared deviations for data.  

The normalized factor P (D|α, β, M) is expressed as: 

/ 2

1
( , , ) w

d

N
P D M e


 





−
=

 
 
 

 
 (8) 

where dw is the sum of squared errors for the weights.  

The probability density function is expressed as: 

( )1

( , )

d w
d d

F

P e
Z

 

 

− +
=  (9) 

The highest value of the probability density function maximizes the regularized 

objective function (f = βdd+αdw). The input variables are considered as probability density 

functions for the hidden layer. The BRFFNN approach eliminates the uncertainty related to 

network weights; hence, the prediction precision increases.  

To observe the optimal architecture of the BRFFNN model, the operating factors, 

including the number of neurons in each layer, performance function, transfer function, 

number of hidden layers, and learning functions are optimized and selected. The numerical 

experiments of each ANN model are executed to calculate the mean square error (MSE), 

which is expressed as:   

21
( )1

N
y ya pi

N
MSE  −==  

(10) 

where ya and yp are the actual and predictive values, respectively. N denotes the number  

of testing points. 
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The best BRFFNN architecture is chosen with the lowest MSE value. 

Step 3: The weight of each response is computed using the Entropy method.  

The normalized value of each response (nij) is calculated as:  

1

ij

ij m

ij

i

r
n

r
=

=


 

 (11) 

where rij presents the response value. 

The entropy outcome of each response (ETj) is calculated as: 

1

ln

ln

m

ij ij

j

j

n n

ET
m

=



= −


 

  (12) 

where m is the number of responses.  

The computed weight of each response (ωi) is calculated as: 

1

1

(1 )

j

i n

jj

E

E


=

−
=

−
   (13) 

Step 4: Determination of the optimal HRT parameters using the VCPSO. 

To obtain global optimization results, the mutation, crossover, and selection operations 

will be added to the VCPSO. Fig. 4 presents the sequential steps of the VCPSO. 

The particle position in the mutation operation is expressed as:  

( )
a b ci c c cx x f x x= + −     (14) 

where ca, cb, and cc are the random integers. The f is the scaling coefficient.  

The diversity of the population is improved in the crossover operation and expressed 

as:  

,

,

,

( )i d C

i d

i d

x if rand R
d

x otherwise

 
= 


    (15) 

where Rc presents the percentage of the crossover. 

The best particle is determined in the selection operation and expressed as: 

,

,

,

( ( ) ( ))i d i i

i d

i d

x if f u f x
p

x otherwise

 
= 


    (16) 

The position (xid) and velocity (vid) of each particle is presented as:  

1 1n n n

id id idx x v+ += +
    (17) 

1

1 1 2 2 3 3( ) ( ) ( )n n n n n n n n

id id id id gd id cd idv v c r P x c r P x c r P x+ = + − + − + −     (18) 

where c3 denotes the accelerated coefficient. The r1, r2, and r3 are random numbers. 

 

The best position of each particle is presented as: 
1

, , , ( 0.5)n n n

gbest d gbest d gbest dx x x rand+ = + −    (19) 
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Fig. 3. Optimizing procedure 

 

Fig. 4. Operating procedure of the VCPSO 

3. EXPERIMENTAL SETTING 

The cylindrical bar SKD61 having a diameter of 44 mm and length of 360 mm is 

chosen as an experimental specimen. The workpiece having a hardness of 56 HRC is 
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selected because of the applications in the fabrication of mould pins. The chemical 

compositions of the SKD61 are presented in Table 2.  

Table 2. Chemical compositions of the SKD61 

Elements C Si Mn P S Cr Mo V 

% 0.40 0.9 0.35 0.03 0.02 4.0 1.2 1.2 

 

 

  

 

Power meter Turning machine Roughness tester 

Fig. 5. Experimental setting for the HRT process 

 

 
(a)  

 
(b)  

Fig. 6. Turning responses at the different process inputs: a) – The power consumed at experimental No. 19,  

b) – The SEM image of the turned surface at experimental No. 19 
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All turning experiments are performed using a CNC lathe entitled GILDEMEISTER 

CTX 400 Serie 2 (Fig. 5). A power meter labeled KEW6305 is employed to capture power 

components during the rotary turning. An interval of 0.1 sec. is used to improve the accu-

racy of the measured data. A roughness tester labeled SJ- 210 is used to measure the rough-

ness in five investigated points. The sampling length of 4 mm is used to ensure the measu-

ring precision. The example results of the turning experiments are shown in Fig. 6. 

4. RESULTS AND DISCUSSIONS 

4.1. DEVELOPMENT OF SCE AND Ra MODELS  

Table 3 presents the experimental outcomes. The operating parameters of the BRFFNN 

model, including the NH, PF, TF, NL, and LF are shown in Table 4. The computational trials of the 

BRFFNN are performed based on the parameter combination entitled Taguchi L18. The obtained 

results of the MSE values are shown in Table 5. As a result, the optimal data of the HN, PM, TF, 

HL, and LF are 24, MSEREG, logsig, 3, and LearnGDM, respectively (Fig. 7). 

 

Fig. 7. The MSE values with different operating parameters 

To confirm the precision of the developed ANN model, the comparisons between the 

experimental and predictive results are conducted. Table 6 indicates the comparative values at 

different points. As a result, the computed deviations of the SC and Ra lie from –0.73% to 0.73% 

and –1.65% to 1.52%, respectively. The small errors revealed that the proposed models ensure the 

prediction accuracy. 

The regression plots of the BRFFNN are depicted in Fig. 8, in which the R values of the 

training, testing, and all stages are 00.98695, 0.96388, and 0.98557, respectively. Consequently, 

the developed BRFFNN models can approximate the function accurately. Figure 9 presents the 

structure of the developed BFRNN models. 
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Fig. 8. Regression plots produced by the BRFFNN models  

 
Fig. 9. The structure of the BFRNN models  

Table 3. Experimental data of the rotary turning operation  

No. I (deg.) D (mm) f (mm/rev.) S (rpm) SCE (J/mm3) Ra (µm) 

Experimental outcomes for developing BRFFNN models  

1 20 0.4 0.5 1200 4.31 2.15 

2 35 0.6 0.5 800 3.76 2.73 

3 50 0.4 0.3 1000 7.54 2.15 

4 20 0.6 0.5 1000 3.27 2.84 
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5 35 0.6 0.5 1200 2.92 2.11 

6 35 0.6 0.7 1000 2.38 2.78 

7 20 0.4 0.3 1000 7.09 2.16 

8 35 0.2 0.5 800 9.58 2.35 

9 35 0.4 0.3 800 7.81 2.03 

10 50 0.6 0.5 1000 3.42 2.83 

11 20 0.2 0.5 1000 8.84 2.23 

12 35 0.4 0.7 800 4.12 2.86 

13 50 0.4 0.5 800 5.71 2.88 

14 35 0.4 0.5 1000 4.52 2.17 

15 35 0.4 0.7 1200 3.12 1.94 

16 20 0.4 0.5 800 5.47 2.92 

17 35 0.2 0.7 1000 6.33 2.21 

18 20 0.4 0.7 1000 3.63 2.87 

19 35 0.6 0.3 1000 4.81 2.08 

20 35 0.4 0.3 1200 6.56 1.36 

21 35 0.2 0.5 1200 7.78 1.46 

22 35 0.4 0.5 1000 4.53 2.15 

23 50 0.2 0.5 1000 9.11 2.31 

24 50 0.4 0.7 1000 3.77 2.91 

25 50 0.4 0.5 1200 4.49 2.16 

26 35 0.2 0.3 1000 12.31 1.52 

Experimental outcomes for testing the accuracy of developed BRFFNN models 

27 25 0.3 0.4 900 8.02 2.21 

28 30 0.5 0.6 1100 2.73 2.31 

29 40 0.3 0.5 1050 6.15 1.97 

30 45 0.6 0.7 1200 2.71 2.53 

31 50 0.3 0.6 950 8.15 1.79 

32 40 0.5 0.4 1200 4.12 1.82 

Table 4. Operating parameters of the BRNN model 

Symbol Operating inputs Ranges 

NH Number of hidden neurons 20; 21; 22; 23; 24; 25 

PF Performance function MSE; MSEREG; SSE 

TF Transfer function Logsig; Purelin; Tansig 

NL Number of hidden layers 1; 2; 3 

LF Learning function LearnGDM; LearnGD 

 

Table 5. Computing the MSE values 

No. NH PF TF NL LF MSE 

1 20 MSE Logsig 1 LearnGDM 0.0009470 

2 20 MSEREG Purelin 2 LearnGD 0.0007530 
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3 20 SSE Tansig 3 LearnGDM 0.0007180 

4 21 MSE Logsig 2 LearnGD 0.0006717 

5 21 MSEREG Purelin 3 LearnGDM 0.0006165 

6 21 SSE Tansig 1 LearnGDM 0.0006261 

7 22 MSE Purelin 1 LearnGDM 0.0005858 

8 22 MSEREG Tansig 2 LearnGDM 0.0006296 

9 22 SSE Logsig 3 LearnGD 0.0006252 

10 23 MSE Tansig 3 LearnGD 0.0006713 

11 23 MSEREG Logsig 1 LearnGDM 0.0005889 

12 23 SSE Purelin 2 LearnGDM 0.0012040 

13 24 MSE Purelin 3 LearnGDM 0.0005842 

14 24 MSEREG Tansig 1 LearnGD 0.0005868 

15 24 SSE Logsig 2 LearnGDM 0.0005896 

16 25 MSE Tansig 2 LearnGDM 0.0012230 

17 25 MSEREG Logsig 3 LearnGDM 0.0006348 

18 25 SSE Purelin 1 LearnGD 0.0012670 

Table 6. Confirmations of the precision of the developed models  

No. 
SCE (J/mm3) Ra (µm) 

Exp. Pred. Err. Exp. Pred. Err. 

27 8.02 8.04 -0.25 2.21 2.23 -0.90 

28 2.73 2.71 0.73 2.31 2.29 0.87 

29 6.15 6.12 0.49 1.97 1.94 1.52 

30 2.71 2.69 0.74 2.53 2.55 -0.79 

31 8.15 8.12 0.37 1.79 1.81 -1.12 

32 4.12 4.15 -0.73 1.82 1.85 -1.65 

4.2. ANOVA RESULTS  

The ANOVA results of the SCE are shown in Table 7. Significant parameters are 

single factors (I, D, f, and S), interactive factors (Df and DS), and quadratic factors (I2, D2, 

f2, and S2) (Fig. 10a). The contributions of the I, D, f, and S are 1.31%, 30.35%, 20.73%, and 

6.63%, respectively. The contributions of the Df and DS are 9.68% and 2.66%, respectively.  

The contributions of the I2, D2, f2, and S2 are 3.39%, 14.13%, 7.26%, and 13.2%, 

respectively. The values of the R2 value (0.9784), the adjusted R2 (0.9684), and the 

predicted R2 (0.9562) indicate that the SCE model is adequate. 
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a)  b)  

Fig. 10. Parametric contributions for turning responses: a) – for SCE model. b) – for Ra model 

The ANOVA results of the Ra are shown in Table 8. Significant parameters are 

single factors (D, f, and S), interactive factors (ID, DS, and fS), and quadratic factors (I2, 

D2, f2, and S2) (Fig. 10b). The contributions of the D, f, and S are 16.2%, 20.82%, and 

22.12%, respectively. The contributions of the ID, DS, and fS are 1.59%, 3.69%, and 

3.62%, respectively. The contributions of the I2, D2, f2, and S2 are 23.04%, 1.28%, 3.06%, 

and 2.12%, respectively. The values of the R2 value (0.9763), the adjusted R2 (0.9652), 

and the predicted R2 (0.9582) indicate that the Ra model is adequate. 
 

Table 7. ANOVA results for the SCE model 

Source 
Sum of 

Squares 

Mean 

Square 
F-value p-value Remark Contribution (%) 

Model 149.4020 10.6716 31.1539 < 0.0001 Significant  

I 20.6606 20.6606 60.3229 0.0286 Significant 1.31 

D 478.6637 478.6637 1397.5583 < 0.0001 Significant 30.35 

f 326.9423 326.9423 954.5761 < 0.0001 Significant 20.73 

S 104.5648 104.5648 305.2986 < 0.0001 Significant 6.63 

ID 4.8892 4.8892 14.2749 0.7597 Insignificant 0.31 

If 13.5635 13.5635 39.6013 0.404 Insignificant 0.86 

IV 1.4194 1.4194 4.1443 0.873 Insignificant 0.09 

Df 152.6677 152.6677 445.7451 < 0.0001 Significant 9.68 

DS 41.9521 41.9521 122.4878 0.0162 Significant 2.66 

fS 9.9360 9.9360 29.0103 0.5076 Insignificant 0.63 

I2 53.4652 53.4652 156.1029 0.0072 Significant 3.39 

D2 222.8507 222.8507 650.6589 < 0.0001 Significant 14.13 

f2 114.5008 114.5008 334.3088 < 0.0001 Significant 7.26 

S2 31.0698 31.0698 90.7147 0.0348 Significant 1.97 

Residual 3.7680 0.3425     

Total 153.17      

R2 = 0.9754; Adj. R2 = 0.9684; Pred. R2 = 0.9562 
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Table 8. ANOVA results for the Ra model 

Source 
Sum of 

Squares 

Mean 

Square 
F-value p-value Remark Contribution (%) 

Model 5.2134 5.2134 453.1350 < 0.0001 Significant  

I 0.1904 0.1904 16.5595 0.5829 Significant 0.43 

D 7.1745 7.1745 623.8701 < 0.0001 Significant 16.20 

f 9.2206 9.2206 801.7886 < 0.0001 Significant 20.82 

S 9.7963 9.7963 851.8523 < 0.0001 Significant 22.12 

ID 0.7042 0.7042 61.2317 0.2338 Insignificant 1.59 

If 0.3233 0.3233 28.1127 0.4985 Insignificant 0.73 

IV 0.3189 0.3189 27.7276 0.4985 Insignificant 0.72 

Df 0.2569 0.2569 22.3361 0.8912 Insignificant 0.58 

DS 1.6342 1.6342 142.1037 0.003 Significant 3.69 

fS 1.6032 1.6032 139.4080 0.005 Significant 3.62 

I2 10.2037 10.2037 887.2819 < 0.0001 Significant 23.04 

D2 0.5669 0.5669 49.2934 0.1783 Insignificant 1.28 

f2 1.3552 1.3552 117.8421 0.0172 Significant 3.06 

S2 0.9389 0.9389 81.6423 0.0486 Significant 2.12 

Residual 0.1266 0.0115     

Total 5.34      

R2 = 0.9763; Adj. R2 = 0.9652; pred. R2 = 0.9582 

4.3. PARAMETRIC INFLUENCES  

As shown in Fig. 11a, the SCE is decreased by 1.4% with an increment in the I (from 

20 to 30 deg). A further I (from 30 deg to 50 deg), the SCE is increased by 4.5%. A higher 

inclined angle decreases the contact area between the insert and the workpiece, leading to  

a low material volume; hence, the SCE decreases. A further angle increases the contact area 

due to the perpendicular direction between the cutting tool and workpiece, leading to a 

higher material volume; hence, the SCE increases.  

As shown in Fig. 11b, the SCE is decreased by 64.5% with an increment in the D 

(from 0.2 to 0.6 mm). A higher D increases the thickness of the chip; hence, higher energy 

is required. Additionally, an increased D causes greater resistance, resulting in higher 

energy consumed. Unfortunately, the SCE is inversely proportional to the increase in the D; 

hence, the SCE decreases. 

As shown in Fig. 11c, the SCE is decreased by 46.8% with an increment in the f (from 

0.3 to 0.7 mm/rev.). A higher f decreases the turning time; hence, the SCE consequently 

decreases with a higher f. 

As shown in Fig. 11d, the SCE is decreased by 13.5% with an increment in the S (from 

800 to 1200 rpm). A higher S decreases the hardness and strength of the workpiece due to 

increasing machining temperature; hence, the SCE reduces. Additionally, a higher S 

decreases the turning time; hence, the SCE decreases. 
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a)  b)  

  
c)  d)  

Fig. 11. The impacts of process parameters on the SCE: a) – I, b) – SCE versus D, c) – SCE versus f,  

d) – SCE versus S 

As shown in Fig. 12a, it can be stated that the Ra is decreased 20.4% with an increment 

in the I (from 20 to 35 deg.). A further I (from 35 deg. to 50 deg.), the Ra is increased by 

around 20.8%. An increment in the inclined angle leads to a reduction in the turning area; 

hence, the material volume decreases. A small amount of the material is removed and the 

surface roughness decreases. A further angle increases the turning area, leading to a higher 

material volume to be cut. The material is hardly turned; hence, the Ra increases.  

As shown in Fig. 12b, it can be stated that the Ra is increased by 24.9% with an 

increment in the D (from 0.2 to 0.6 mm). A higher D increases the material removal volume 

to be cut and a high amount of the material is turned; hence, the surface roughness 

increases. Additionally, a higher pressure leads to greater friction between the turning insert 

and the workpiece. The material is hardly processed and the Ra increases.  

As shown in Fig. 12c, it can be stated that the Ra is increased by 40.9% with an incre-

ment in the f (from 0.3 to 0.7 mm/rev). A higher f increases the distance between two 

successive paths; leading to higher chip thickness. Higher material volume is removed, 

leading to an increment in the feed marks; hence, the roughness increases. Additionally,  

a higher f may cause an increased strain-hardening behaviour because of higher machining 

forces. This leads to unstable machining force; hence, the Ra increases. 
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a)  b)  

  
c)  d)  

Fig. 12. The impacts of process parameters on the Ra: a) – Ra versus I, b) – Ra versus D, – c) Ra versus f,  

d) – Ra versus S 

As shown in Fig. 12d, it can be stated that the Ra is decreased by 41.6% with an incre-

ment in the S (from 800 to 1200 rpm). A higher S causes an increase in the temperature  

of the cutting region, leading to reductions in the strength and hardness of the workpiece. 

The material is softly turned; hence, the Ra decreases. Additionally, a higher S may reduce 

the vibration, resulting in a stable turning; hence, a low Ra is obtained. 

4.4. OPTIMIZING OUTCOMES PRODUCED BY THE VCPSO 

Table 9 presents the normalized values for computing turning responses. Table 10 lists 

the entropy and weight values for the technical responses. As a result, the weight values of 

the SCE and Ra are 0.81 and 0.06, respectively. 

The Pareto graph generated by VCPSO is depicted in Fig. 13. It can be stated that 

machining performances have contradictory trends. The minimization of the average 

roughness leads to an increment in the specific cutting energy.  

As a result, the optimum findings of the I, D, f, and S are 35 deg., 0.45 mm, 

0.50 mm/rev., and 1200 rpm, respectively (Table 11). The reductions in the SCE and Ra are 

37.4% and 6.6%, respectively, as compared to the initial values. 
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Table 9. Normalized values of the turning responses 

 Normalized response
 

lnij ijp p
 

SCE Ra SCE Ra 

0.02928 0.03574 0.10339 0.11906 

0.02555 0.04538 0.09369 0.14034 

0.05123 0.03574 0.15223 0.11906 

0.02222 0.04721 0.08458 0.14413 

0.01984 0.03507 0.07777 0.11751 

0.01617 0.04621 0.06670 0.14208 

0.04817 0.03590 0.14611 0.11945 

0.06509 0.03906 0.17783 0.12666 

0.05306 0.03374 0.15581 0.11436 

0.02324 0.04704 0.08742 0.14379 

0.06006 0.03707 0.16892 0.12214 

0.02799 0.04754 0.10010 0.14482 

0.03880 0.04787 0.12607 0.14549 

0.03071 0.03607 0.10697 0.11984 

0.02120 0.03225 0.08170 0.11075 

0.03717 0.04854 0.12236 0.14685 

0.04301 0.03674 0.13532 0.12137 

0.02466 0.04771 0.09132 0.14516 

0.03268 0.03457 0.11180 0.11633 

0.04457 0.02261 0.13865 0.08567 

0.05286 0.02427 0.15541 0.09024 

0.03078 0.03574 0.10714 0.11906 

0.06190 0.03840 0.17222 0.12517 

0.02561 0.04837 0.09387 0.14651 

0.03051 0.03590 0.10646 0.11945 

Table 10. The Entropy value and weight for responses 

Criteria SCE Ra 

Entropy value 0.97337 0.99390 

Dispersion value 0.02663 0.00610 

Weight 0.81 0.19 

Table 11. The results produced by the VCPSO 

Method I (deg.) D (mm) f (mm/rev.) S (rpm) SCE (J/mm3) Ra (µm) 

Initial values 35 0.40 0.4 1000 5.64 1.97 

Optimal values 35 0.45 0.5 1200 3.53 1.84 

Reductions (%) 37.4 6.6 
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Fig. 13. The Pareto fronts generated by VCPSO 

4.5. EVALUATION OF THE TOTAL TURNING COST 

The comprehensive model for the cost of the HRT process (TC) is expressed as:  

E L C F M NTC C C C C C C= + + + + +   (20) 

where CE, CL, CC, CM, and CN present the cost of energy consumed, the cost of the turning 

tool, the cost of the labor, the cost of the tool change, the cost of the lubricant, the cost of 

the machine degradation and remanufacturing, and the cost of the machining noise, 

respectively.  

The CE is computed as: 

E eC k EC=    (21) 

where ke is the energy cost.  

The CT is computed as: 

c
T c

T

t
C k

T
=    (22) 

where kc and TT are the cost of the turning tool and tool life, respectively. The TT is 

expressed as: 

T

A
T

V f d  
=    (23) 

where A, α, β, and γ are the experimental coefficients. 

The CL is computed as: 

( )L labor o st a ch cC k t t t t t= + + + +    (24) 

where klabor presents the labor cost. 

The CC is computed as: 

c
C labor ch

T

t
C k t

T
=    (25) 
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The CF is computed as: 

( )( )fp fd o st a tc c u

F

L

k k t t t t t V
C

T

+ + + + +
=  (26) 

where Vu, kfp, and kfd are the volume consumed of the lubricant, the cost for the lubricant 

preparation, the cost for the lubricant disposal, respectively. 

The CM is computed as: 

( )( )md mr o st a ch c
M

m

k k t t t t t
C

T

+ + + + +
=  (27) 

where kmd, kmr, and Tm are the cost of the machine degradation, the cost of the machine 

remanufacturing, the service life of the machine, respectively. 

The CN is computed as: 

( )n o st a tc c
N

W

k t t t t t
C

T

+ + + +
=   (28) 

where kn and Tw are the noise tax and the number of working hours per month, respectively. 

Table 12 presents the coefficients of the TC model. As a result, the TC is decreased by 

7.5% at the optimal solution (Table 13). 

Table 12. Coefficients for the rotary turning operation 

ke (USD/kWh) kc (VND/piece) A α β to (s) tst (s) ta (s) tch (s) 

0.15 16.62 16.2×105 2.65 0.27 4 6 8 8 

klabour (USD/h) Vu (l) kfp (USD/l) 
kfd 

(USD/l) 

TL 

(month) 

kmd 

(USD) 

kmr 

(USD) 

TW 

(year) 

kn 

(USD) 

8.4 20 0.14 0.45 1 41244.8 1649.8 14 2.68 

Table 13. Comparative values of the total cost 

Method 
Optimization parameters Response 

I (deg.) D (mm) f (mm/rev.) S (rpm) TC (USD) 

Initial values 35 0.40 0.4 1000 4.52 

Optimal results 35 0.45 0.5 1200 4.18 

Reduction (%) 7.5 

4.6. THE CONTRIBUTION ANALYSIS 

The designed and fabricated self-propelled rotary tool could be used for machining difficult-

to-cut materials. This device is a significant reference for developing other self-propelled rotary 

tools. 

The optimal data could be applied to the practical HRT process to decrease the specific 

cutting energy and surface roughness. 

The SCE and Ra models could be utilized to predict the response outcomes for machining the 

mold steel entitled SKD61. 

The developed HRT process could be employed for machining other hardened steels. 

The proposed technique could be used to solve optimization issues for other machining 

processes. 

The proposed model of the total cost could be applied to estimate the rotary turning expenses. 
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5. CONCLUSIONS 

In the current study, the specific cutting energy (SCE) and average roughness (Ra) of the HRT 

process were reduced using optimal data of the inclined angle (I), depth of cut (D), feed rate (f), and 

spindle speed (S). The BRFFNN-assisted models were applied to propose the SCE and Ra. The 

entropy approach and VCPSO were applied to determine optimizing outcomes. The findings are 

listed below: 

1. To Save the SCE, the middle value of the I could be applied, while low D, f, and S were 

recommended. To reduce the Ra, the low D and f were employed, while the high I and S were 

applied.  

2. For the SCE model, the depth of cut was named as the most effective parameter, followed 

by the feed rate, spindle speed, and inclined angle, respectively. For the Ra model, the spindle speed 

had the highest contribution, followed by the feed rate, depth of cut, and inclined angle, 

respectively.  

3. The optimal outcomes of the I, D, f, and S were 35 deg., 0.45 mm, 0.40 mm/rev., and 

1200 rpm, respectively. The reductions in the SCE and Ra were 37.4% and 6.6%, respectively. 

4. The total cost of the HRT process could be saved around 7.5% at the optimal solution. 

5. The impacts of HRT factors on air pollution and noise emission have been not analysed.  

A holistic optimization will be performed to consider more environmental metrics.  
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