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HANDLING AMBIENT TEMPERATURE CHANGES IN CORRELATIVE 

THERMAL ERROR COMPENSATION 

Thermal errors are one of the leading causes for positioning inaccuracies in modern machine tools. These errors 

are caused by various internal and external heat sources and sinks, which shape the machine tool’s temperature 

field and thus its deformation. Model based thermal error prediction and compensation is one way to reduce these 

inaccuracies. A new composite correlative model for the compensation of both internal and external thermal effects 

is presented. The composite model comprises a submodel for slow long- and medium-term ambient changes, one 

for short-term ambient changes and one for all internal thermal influences. A number of model assumptions are 

made to allow for this separation of thermal effects. The model was trained using a large number of FE simulations 

and validated online in a five-axis machine tool with measurements in a climate chamber. Despite the limitations, 

the compensation model achieved good predictions of the thermal error for both normal ambient conditions (21°C) 

and extreme ambient conditions (35°C). 

1. INTRODUCTION 

Thermal effects are one of the main causes of positioning errors in machine tools. They 

are caused by shifting temperature distributions in the machine tool, which lead to thermo-

elastic deformations. These temperature fields are shaped by heat sources and sinks, such as 

waste heat from the cutting process, friction from guides and bearings, power loss from 

motors, coolants and the environment. Other relevant factors, which influence the time-

dependent temperature distribution inside a machine tool, are the heat transfer coefficients 

and the thermal capacity, which influence the rate at which heat is transferred and stored. It 

is this multitude of influences that makes thermal issues so difficult to handle. 

Categorizing thermal effects can be done by dividing them into internal and external 

effects. Internal effects are mainly friction, electrical losses, heat from hydraulic and 

pneumatic units and the cooling system. External effects are mainly conduction with the 

foundation, convection with the surrounding air, which can be both free or forced convection, 
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and radiation, e.g. from the sun or from other machines or heat sources. Finally, there are 

some effects such as process heat, the workpiece, chips and external cooling or lubricating 

fluids, which may be considered either internal or external.  

The distinction between internal and external effects is important because it determines 

how they may be treated. Internal effects are usually unavoidable consequences of machine 

tool operation. This is both good, as it makes them somewhat predictable, and bad, as any 

thermal error compensation strategy inevitably has to deal with them. External influences are 

usually situational. On the one hand, this means that they are less predictable, but on the other 

hand, it also means that they can be controlled externally. Examples of this are that using air 

conditioning can keep the ambient temperature constant, direct exposure to sunlight can be 

prevented and the workpiece can be tempered to match the machine tool table.  

Another important distinction is that internal heat sources usually induce rather large 

amounts of heat locally with a small delay between cause (e.g. waste heat from a motion) and 

effect (thermo-elastic deformation). External heat sources or sinks, on the other hand, mostly 

affect large sections of the machine tool with a small but steady heat exchange over longer 

periods of time and with a large delay. 

Since internal influences are usually local, their effects are often also local and do not 

necessarily have a large impact on the positioning accuracy. This is however not generally 

the case, since even a very localized deformation in the wrong part of the machine tool can 

have a leverage effect on the tool centre point (TCP) and thus become significant. External 

influences, while seemingly weaker, affect large parts of the machine tool and thus, over time, 

often cause massive thermal errors. 

An important exception to these rules are the cooling systems. They are present in most 

modern machine tools and are often guided by the ambient temperature. Their purpose is to 

remove the internal waste heat via fluidic channels and thus to keep the machine tool as close 

to the ambient temperature as possible. Therefore, they are an internal influence with all  

the properties of an external influence (unpredictable, large-scale, slow, etc.). While they 

could thus simply be treated as an external influence, the problem remains that the internal 

influences cannot be considered without also taking the cooling system into account. 

Why this distinction between internal and external influences matters and how it can be 

used to create a comprehensive thermal error compensation will be explained in Chapter 3. 

Before that, a brief overview of the state of the art in thermal error compensation strategies 

will be given. According to Bryan, there are two main strategies for dealing with thermal 

effects [1]. The first is to reduce the thermal effects directly and the second is to predict or 

measure the thermal error and to compensate it in the machine tool control with an offset.  

Important measures for reducing the thermal effects are thermo-symmetric machine tool 

design, using cooling systems, reducing the waste heat by reducing electrical losses or 

friction, diverting the heat through latent heat storage devices, optimizing material 

parameters, using air conditioning, removing chips, etc.  

Measuring the thermal error with great accuracy is rarely possible during the cutting 

operation. This is mainly because the chips, dirt and coolant are detrimental to most measuring 

devices and the vibrations caused by the cutting operation create additional errors. 

Alternatively, it is possible to stop the cutting operation regularly and perform a kind  

of thermal recalibration. This is however very time consuming and depending on the size and 
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shape of the workpiece often practically impossible. An implementation of this compensation 

strategy using eddy current sensors was developed by Schäfer in his PhD thesis [2]. 

Predicting the thermal error can be done with a variety of different models and sensor 

inputs. Jungnickel has divided them into [3]: 

• Correlative compensation strategies, 

• Characteristic model based compensation, 

• Structure model based compensation. 

Correlative compensation refers to finding and using correlations between state 

variables, e.g. temperature, axis position, local deformation, motor current and the deforma-

tion of an assembly or the TCP. The correlations are found using measurements or simulations 

and are used to formulate a predictive model. Then the current values of the state variables 

are obtained from sensors or the machine tool control and the model uses them as inputs to 

estimate the thermal error, which can then be added as an offset to the commanded TCP 

position. An example of such a model is the feed-forward artificial neural network (ANN) 

used by Chen et al. [4] or the multiple regression analysis used by Tseng [5], which both 

mainly use temperature sensors as input variables. 

Characteristic models try to reproduce the relationship between cause and effect of 

thermo-elastic deformations through the use of transfer functions. Essentially, by knowing 

the rate at which energy enters the system (e.g. waste heat), the rate at which the energy leaves 

the system (e.g. convection) and the inner properties of the system (e.g. thermal capacity, 

conductivity), the transient thermal expansion can be predicted for changing inputs (e.g. 

motor current, ambient temperature). This only requires knowledge of the system behaviour 

rather than its exact physical structure. An application of this method was described by 

Brecher et al. [6], where first and second order time delay functions were used to map the 

rotation speed and the torque of a main spindle and the ambient temperature onto the TCP 

displacement. A good demonstration of the effectiveness of using transfer functions for 

modelling both controlled internal heat sources [7] and cooling systems [8] of machine tools 

was shown by Mares et al.. 

Structure models use a relatively exact structural representation of the machine tool as 

a basis. This usually refers to a finite element mesh of the machine tool’s CAD model. Using 

the FEM, FDM or similar methods, the temperature distribution across the entire machine 

tool along with the resulting local deformations can be computed by numerically solving the 

corresponding partial differential equations. Examples of this strategy are the lumped 

capacitance method (LCM) [9] or the Finite Difference Element Method (FDEM) [10]. 

The thermal stability of a machine tool is ultimately determined by measurements. These 

have been standardized in the ISO 230-3, which describes the test code for machine tools 

under thermal effects. It comprises three parts:  

• Environmental temperature variation error (ETVE). 

• Thermal distortion due to spindle rotation. 

• Thermal distortion due to moving linear axes. 

For these tests, any installed compensation needs to be active. The tests are performed 

and evaluated separately to determine the thermal behaviour of the machine tool. Therefore, 

in order to significantly improve the thermal behaviour of the machine tool, a compensation 

method has to deal with all of the aforementioned effects. 
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Compensation strategies, which are designed to handle ambient effects, are especially 

the characteristic model based compensation (see e.g. [6]) and the structure model based 

compensation (see e.g. Delbressine [9] or the PhD thesis of Ess [11]). All they need is  

an ambient temperature sensor and measurements for model parametrization. Particularly the 

structure model based compensation can theoretically even handle complex ambient 

conditions like forced convection. This requires the adaptation of the heat transfer coefficients 

(HTCs), which are boundary conditions of the FE models. Naumann et al. have shown how 

these HTCs can be obtained through fluid (CFD) simulations for natural and varying forced 

convection scenarios [12]. 

A thermo-elastic simulation can therefore theoretically compute any given thermal load 

case including changing ambient influences. However, that does not mean, that compensation 

methods based on these simulations can also do that. The first problem is accurate 

parametrization. HTCs, e.g., can be different for every machine surface and in the case  

of forced convection even for every part of every surface. Since they cannot be measured 

directly, determining them, even with CFD simulations is difficult and imprecise. The second 

problem is that in order to respond to forced convection in a compensation model, the strength 

and direction of the airflow needs to be known and that is assuming it is even laminar. Since 

this is impractical, forced convection is usually prevented or ignored, except for the more 

predictable air flow resulting from moving assemblies. The third and largest problem is  

the typically unknown initial state. Assuming the ambient temperature has changed, e.g., in 

the course of a day-night-cycle. If the machine tool is turned off and then on again, then the 

simulation has no way of knowing what thermal state to start from, which can lead to large 

approximation errors. An improvement, here, was reached by Ihlenfeldt et al. through online 

parameter updates with the help of temperature sensors [13]. An online-capable simulation 

based compensation model constantly observes relevant temperature sensor readings to gage 

the validity of its model parameters. The parameters are updated as soon as deviations, e.g. 

due to wear or ambient effects, are detected. 

Correlative methods, on the other hand, are generally poorly suited to deal with ambient 

temperature changes, since most of them do not consider time as variable. There are, however, 

some notable exceptions. Yang and Ni [14] used a feed-backward ANN to model a time delay. 

Naumann and Priber [15] included ambient effects in a high-dimensional characteristic 

diagram. The idea behind this is that if the environment affects the machine tool, then sensors 

inside the structure can detect the change. Therefore, given enough, well-distributed 

temperature sensors and a large enough set of training data, all thermal machine tool states 

can be approximated, whether they are influenced by internal or external sources. While this 

solves the problem in theory, in practice, especially for complex machine tools, the number 

of sensors necessary can become impractical and creating the required training data too costly. 

A new method called thermal adaptive learning control (TALC), which uses an auto-

regressive model with exogeneous inputs (ARX), was developed by the teams of Blaser [16] 

and Mayr [17]. The ARX model uses both current and past data and can thus handle time-

delayed correlations. This ability makes it suitable for handling both ambient and internal 

effects, which has been demonstrated by Lang et al. [18], who achieved a volumetric error 

reduction of around 72%. The TALC model uses intermittent displacement measurements to 

recalibrate itself, as soon as larger accuracy losses are detected. 
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Beside TALC, recurrent neural networks (RNN) such as the popular long short-term 

memory (LSTM) neural networks also allow for computing correlations on different time 

scales. Ngoc et al. used stacked LSTM models and, for comparison, also gated recurrent unit 

(GRU) models with power consumptions as input variables [19]. Tests of both model types 

on the rotary axes of a five-axis machine tool yielded high accuracies of over 70%, though at 

controlled ambient temperatures between 22°C and 23.5°C. Liu et al. used a different LSTM 

variant, which includes variational mode decomposition (VMD) to remove the coupling effect 

of high- and low-frequency data and grey wolf algorithms for hyper-parameter optimization 

[20]. In their tests on spindle systems, over 75% of the thermal error was compensated, which 

exceeded the results for VMD-LSTM and basic RNN models. 

One additional branch of thermal error compensation is through the measurement  

of local thermal deformations, e.g. through integrated deformation sensors (IDS). Using 

geometric kinematic models, these local deformations can be used to calculate the thermal 

displacement of the TCP. Brecher et al. used this method to reduce the thermal error of  

a 3-axis machine tool by between 50% and 75% [21]. This method is inherently capable  

of dealing with all heat sources, including all ambient effects, but it requires a suitable 

placement of IDS. 

To summarize, with the present state of the art, the only way to truly ensure thermal 

stability under variable ambient conditions is to make sure there are no changes in the ambient 

conditions, i.e. by using strict air conditioning and preventing any radiation or other 

situational effects. Otherwise, if an ambient temperature sensor is available and forced 

external convection is prevented, an FEM simulation based prediction presents a good 

possibility, provided it is kept running continuously. However, even there, ambient effects 

from moving machine components, cooling systems and, e.g., air evacuation units for housed 

machines present great difficulties for both modelling and parametrization. New models, like 

TALC are very promising, the need for additional measurements as well as the fact that 

complex load scenarios with large internal and external heat sources have yet to be tested 

leaves room for further improvements and additional research. 

Chapter 2 describes a new correlative method of predicting ambient temperature 

variations. Chapter 3 validates this new method using a case study of the DMU 80 evo five 

axis machining centre. Finally, a conclusion and outlook on future research will be given. 

2. MODELLING AMBIENT EFFECTS 

2.1. MODEL ASSUMPTIONS AND SIMPLIFICATIONS 

The problem of dealing with a multitude of both internal and external thermal influences 

in a united, comprehensive compensation model has been outlined in Chapter one. Using  

a standard correlative model is therefore only effective in simple applications. Consequently, 

a new approach is needed for more complex machines or thermal conditions.  

The main idea is to simplify the thermal interactions in a way that allows the separation 

of internal and external thermal effects. They can then be modelled separately and be 
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superimposed. This will introduce additional modelling errors and thus reduce the prediction 

accuracy but Chapter 3 shows that this simplified model can still create good approximations. 

The necessary assumptions (simplifications) for the suggested model are as follows: 

1. The cooling system is an external influence and thus a part of the way that the 

environment affects the machine tool. This is particularly necessary, if the cooling 

system is guided by the ambient temperature and it affects large parts of the machine 

tool structure. 

2. Any local temperature increase due to waste heat from internal sources produces the 

same relative deformation, no matter the current overall thermal state of the machine 

tool. Thus, a deformation from combined internal and external influences is the sum 

of its constituents. 

3. There is a baseline ambient temperature where in the absence of any heat sources or 

sinks, the relative deformation (thermal error) of the machine tool is zero across the 

entire workspace. I.e., the machine tool has been properly calibrated at this baseline 

temperature. 

4. The machine has a temporarily constant base temperature. This base temperature 

can change slowly from one week or month to next but does not change rapidly. 

Daily cycles are permitted but they always return to the base temperature after less 

than one day, except for small long-term changes. 

The first is merely a matter of definition. This classification may be different if the 

cooling system is localized or highly effective at cooling the local heat sources. 

The second one is necessary to separate fast, local effects (internal) from slow, global 

effects (external). It is about superposition and also not strictly true. If, e.g., a strong external 

influence causes the machine tool to twist or tilt due to constrained thermal stresses, then local 

deformations may also act in slightly shifted directions and vice versa. 

The third one sounds simple but it is usually difficult in practice. During a thermal 

calibration, the machine tool is necessarily in standby, with occasional machine axis 

movements. This heat is enough to prevent such a constant baseline temperature. Instead, the 

thermal calibration is usually performed in a thermo-stable equilibrium. This is why many 

machine tools have a warm-up phase before they start high-precision cutting operations. 

Using this thermo-stable equilibrium as a baseline is not a problem for the new model. 

However, if the model training is to be done with simulations, then that simulation needs to 

be able to reproduce this thermal state quite accurately in order to avoid significant modelling 

errors in all subsequent steps. 

The fourth is perhaps the most restrictive assumption. In order to estimate the deforma-

tion caused by ambient temperature changes, these changes can be continuously tracked using 

an ambient temperature sensor and e.g. a structure model or a transfer function. A correlative 

method, however, needs machine-internal temperature sensors for such a prediction. These 

sensors need to be far enough away from internal heat sources to not be affected by them, 

because the suggested separation would otherwise not be possible. Unless there is a very large 

number of these sensors, the only way to ensure a reliable prediction is to limit the possible 

thermal states of the machine tool to a manageable set of ambient thermal load cases. This 

restriction is necessary to cope with limited resources, both in terms of sensor coverage and 

training data. Many applications (machines) will not require this simplification. 
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2.2. COMPENSATION MODEL STRUCTURE 

The proposed thermal compensation model consists of three parts: 

1. Baseline ambient temperature model, 

2. Short-term ambient temperature model, 

3. Internal temperature model. 

The first one computes the current baseline ambient temperature using (low pass) 

filtered historical data. For this temperature, the corresponding deformation is computed.  

All three models compute the thermal error for the current thermal state at fixed 

locations (support points) in the workspace. These support points permit the interpolation  

of the thermal error to any other location in the workspace for online error compensation.  

To achieve this spatial coverage, a large number of discrete machine poses are investigated 

(measured / simulated). In the case of the DMU 80 evo, 3³ = 27 machine poses were simulated 

to cover three support points per machine axis, as shown in Fig. 2. Alternatively, the standard 

Cartesian axis error parameters can be used to describe the error across the workspace, as is 

done, e.g. in the ISO 230-3. 

Model one accounts for seasonal changes or for regional changes if the machine tool is 

employed in a different part of the world. This model is very simple, since it uses only a single 

temperature input and it can be trained using stationary FEM simulations (or measurements). 

In the case study (see Chapter 3), FEM simulations were used. These simulations were done 

without any internal thermal influences, not even standby power or any form of cooling. This 

is important for the correct separation of the error components. 

The second model computes the deformations resulting from ambient temperature 

changes that occur in the span of several hours or the course of a day. This model is trained 

using a number of heating and cool-down cycles with different ambient loads. The models 

used are hybrid models combining pure regression models (e.g. polynomials or piecewise 

multilinear models) with transfer functions. Since the inputs are temperature sensors, the 

transfer functions are applied directly to the input values to create time delays and thereby 

obtain stronger correlations with the elastic deformations for the subsequent regression 

models. The optimal combination of input variables, time delays and regression model type 

varies with each machine tool and often even with different workspace support points. 

In Section 2.1, it was mentioned that assumption four is not always needed. In that case, 

models one and two are combined into a single model for all ambient loads, no matter whether 

they occur slowly over weeks or more quickly in the span of hours. While this would generally 

reduce the modelling error, the approximation would also be more complex because more 

thermal load cases would have to be mapped by a single model. Perhaps even more 

importantly, without the separation, these heating and cool-down cycles would need to be 

repeated for many different initial ambient temperatures. The simulations for this second 

model were transient FEM simulations with active cooling systems but again without any 

other internal influences like waste heat from motors and guides. See Chapter 3 and [22] for 

details on the simulation model and its parametrization and validation measurements. 

Model three computes the deformations resulting from internal sources only. The model 

training is done with different axis loads at a constant ambient temperature. In measurements, 

this is done by periodically moving from one end of an axis to the other and back at different 
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speeds and repeating this procedure for both individual axes and combinations of axes. 

Correspondingly, FEM simulations need to reproduce these heat sources in both power and 

location as closely as possible. Here too, the separation of thermal effects saves vast amounts 

of training data, since these internal loads only have to be examined for a single (neutral) 

ambient state. 

This type of composite model requires one set of temperature sensors, which keep track 

of the internal heat sources and one set of sensors (or at least one) which keep track of ambient 

changes and are not affected by any internal influences. For the DMU 80 evo, two sensors on 

the machine bed in the back of the machine tool were used to capture the ambient effects.  

The remaining seven sensors, which are near the drives or bearings are used for the internal 

model. 

Figure 1 shows the structure and interaction of the three models (modules) as 

implemented for the DMU 80 evo and how they are used to compute the total relative TCP 

displacement. 

 

 

Fig. 1. Composite thermal error compensation model of the DMU 80 evo  

In Fig. 1, T0 is the vector of the current readings of all temperature sensors. Module 1 

calculates the thermal error of the machine tool in its current (average) mid-to-long-term 

ambient state. This disregards internal sources, day-night-cycles and all similar short-term 

effects. Module 1 receives all temperature readings, but only uses the baseline ambient 

temperature to compute its portion of the TCP error. On the DMU 80 evo, this baseline 

temperature is the moving average of sensor T9 (bed 2) over a period of at least three days. 

Since module 1 only uses a single input, a B-spline can be used to map the displacement on 

the temperature value. For the DMU 80 evo, the thermal error is computed for the table and 

tool side separately. This aspect is sensible because not all internal thermal effects affect both 

error components. Therefore, by separating the error in table and tool side, less process related 

load cases need to be computed for module 3 and the prediction models have fewer input 

variables and are thus smaller, simpler and less susceptible to overfitting. Otherwise, this 

separation is not relevant to the above thermal model structure. 
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What is also calculated within module 1, is how the mid-to-long term ambient state 

affects the (internal) temperature sensor readings. In this case, it is sufficient to simply 

subtract the baseline ambient temperature from all sensor readings. This produces modified 

temperature sensors readings into a vector T1, which holds the inputs for the next layer of the 

model, see Fig. 1. Module 2 calculates the short-term ambient thermal error and another 

temperature offset for the internal sensors (here T1-T7, see Fig. 5). This includes effects from 

machine tool warm-up, the cooling system and opening the enclosure to exchange 

workpieces. This offset is represented by the vector dT2. The input T2 needed for the error 

component corresponding only to internal effects (dx3) is thus the sensor values T1 minus this 

ambient offset dT2. 

The internal thermal error dx3 is finally computed in module 3, considering only  

the internal sources such as motors, guides, bearings and the cutting process. In the end, the 

different error components, as calculated by the individual models, are added up to produce 

the total relative error. This model structure requires knowledge of the mid-to-long-term 

ambient temperature variations. These must therefore be logged in the machine tool control 

and updated at least periodically. This may be a problem if the machine tool is not in use for 

longer periods of time. However, in modern production facilities keeping track of the ambient 

temperature is either already standard practice or else easy to implement. 

As mentioned earlier in this chapter, module one uses simple B-splines and modules two 

and three use combinations of regression models and transfer functions. Alternatively, neural 

networks could be suitable for this error prediction task. Particularly, time delay neural 

networks (TDNN) or long short-term memory neural networks (LSTM) could be suitable 

alternatives for modules two and three. However, if there is little training data to work with, 

analytical regression models tend to be more reliable. 

3. CASE STUDY: THERMAL ERROR COMPENSATION OF THE DMU 80 EVO 

The DMU 80 evo is a five-axis vertical machining centre made by DMG Mori. It has  

a workspace of 800×650×550 mm and a table that can rotate in two axes from a horizontal to 

a vertical position. In order for the thermal compensation to cover the entire workspace, it 

was discretized into 27 positions, as shown in Fig. 2. Experience has shown that for the DMU 

80 evo, 27 is the minimum number of poses needed to achieve a good interpolation across the 

workspace. The DMU 80 evo has many cooling channels for removing waste heat from 

internal sources such as the drives, the spindle or the guides, see Fig. 3. Not shown in Figs. 2 

and 3 is the housing, which insulates the machine from external influences while at the same 

time protecting the operator and the environment from chips and coolant.  

Model training was done using FEM simulations, which were parametrized and 

validated using measurements in a climate chamber [22]. Using such a chamber is not 

absolutely necessary but it significantly improves the quality of the measurements and thereby 

the resulting model parametrization. The most important reason for this is that a constant 

initial temperature of the machine tool can be obtained using the temperature control inside 

the chamber and FEM simulations generally start from such a constant temperature. 
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Figure 4 shows the FE mesh used for the simulations. It has around half a million nodes 

so that transient thermo-elastic simulations can take up to several hours for each load case 

and machine pose. Therefore, there is an economic limit to how much training data can 

reasonably be gathered and this affects the complexity limit of any correlative compensation 

model. 

              

Fig. 2. Workspace of the DMU 80 evo         Fig. 3. Cooling systems of the DMU 80 evo [23] 

                   
Fig. 4. FE mesh of the DMU 80 evo                       Fig. 5 Temperature sensors of the DMU 80 evo 
 

One of the validation measurements for a load case where all axes were running at rapid 

feed under constant ambient temperature can be seen in Fig. 6, where dashed lines represent 

simulated temperatures and solid lines measured temperatures. The dotted red line is the mea-

sured room temperature. The locations of the nine temperature sensors used for the compensa-

tion are shown in Fig. 5, where sensors T8 and T9 are used for the ambient models and sensors 

T1–T7 for the internal compensation model. The gray line in Fig. 6, which is at an almost 

constant 23.8°C is from sensor T8 in the rear part of the machine. It represents the temperature 

of the machine structure away from internal heat sources. It is also the sensor, which guides 

the cooling system. Fig. 6 also shows the importance of considering the interactions of the 

cooling system with the thermal state of the machine tool.  
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Theoretically, sensor T8 should be at roughly 20.7°C, which is the room temperature. 

Instead, because the guiding sensor is located near the control cabinet, it is affected by some 

of its waste heat and therefore almost two degrees higher. The cooling system thus warms  

the machine tool up even though the ambient temperature is at a constant lower level. 

 

Fig. 6. Simulated vs. measured temperatures 

3.1. THERMAL ERROR COMPENSATION MODEL 

The general structure of the model was described in Chapter 2.2. In order to cover the 

entire workspace of the machine tool, the error was separated into a tool component and  

a table component. The tool component depends on the position of the x-, y- and z-axis. 

Therefore, the 27 positions shown in Fig. 2 were chosen to cover the workspace. Between 

these poses, quadratic interpolation ensures a smooth transition. With the interpolation as  

a separate step, the 27 poses can each be given their own compensation model, which then 

only depends on temperatures and is independent of the position. While handling such a large 

number of models is more cumbersome, it reduces the input dimension of the models and thus 

reduces the chance of overfitting. 

The second error component is the table error which is subdivided by the tilt angle into 

a horizontal (B=0°) and a vertical (B=90°) position with linear interpolation in between. For 

more accuracy, further intermediate steps could be added. Finally, the relative TCP error can 

be calculated by subtracting the tool error from the table error. The table rotation (C-angle) is 

ignored for three reasons. Firstly, the table deformation is likely similar for all points that are 

an equal distance from the table center. Secondly, there is only one temperature sensor near 

the table surface and it is located in the table center. Complex or asymmetrical thermal loads 

can therefore not be differentiated with this sensor. Thirdly, there is no easy and reliable way 

to create training data from simulations with different C-angles. 

As mentioned in Chapter 2.2, the first model describing the current baseline deformation 

of the entire machine tool is computed from stationary simulations using a piecewise linear 

characteristic curve (B-spline). This curve, both the simulated values and the ones predicted 
by the model, are shown for the TCP error at the central machine pose in Fig. 7. The chart shows, 

that the stationary deformation of the machine tool with all systems off is linear. It also shows 

that if all thermal influences were included in a single model, then model errors, e.g. from 

overfitting due to insufficient training data, could be more than a tenth of a millimetre. 

Therefore, having a composite model that first takes care of the mid-to-long-term ambient 
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effects, which are both easier to calculate and overall much larger, significantly enhances  

the reliability of these regression based models. 

Model two, which describes deformations from short-term ambient temperature 

changes, uses two temperature sensors in the rear of the machine tool which are not affected 

by internal heat sources. One of these is the previously mentioned sensor T8. The other one, 

sensor T9, was additionally installed for this purpose. 

 

Fig. 7. Deformation prediction ambient model one 

The approximation of the internal temperature sensor values, which form the offset 

vector 𝑑𝑇2, was done with analytical functions, see equations (1)–(7). The training data was 

obtained by simulating nine different heating/cooling cycles with ambient temperature 

differences between –10K and +15K relative to a reference temperature. For these 

simulations, the reference temperature was the initial value and had zero deformation. Later, 

the reference temperature will be the current baseline temperature according to model one. 

For the nine simulations, the initial state was the constant baseline temperature of 21°C. From 

this temperature, the ambient temperature was changed for each simulation, first raised to 

21.2°C (+0.2K), 22°C (+1K), 23°C (+2K), 26°C (+5K), 36°C (+15K) and then lowered to 

20°C (–1K), 19°C (–2K), 16°C (–5K) and finally 11°C (–10K). The ambient temperature 

change was linear for 2 hours, then kept constant for about a week, followed by a return to 

the baseline ambient temperature within 2 hours and then again kept constant for another day 

and a half. Fig. 8 shows the temperatures for the 36°C simulation, which corresponds to 

simulation 9 (roughly steps 415 to 470 in Fig. 9 and following). 

 

Fig. 8: Simulated temperatures for ambient temperature change 21°C to 36°C 
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The analytical functions for the temperature offsets 𝑑𝑇2 were obtained by comparing  

the input and output data, guessing a general function shape and then optimizing the function 

parameters to obtain the best fit.  

The functions are as follows: 

𝑑𝑇2,1 = 𝑇1,8 − 0.4𝐾 +
0.4𝐾2

|2∙𝑇1,8|+1𝐾
)   (1) 𝑑𝑇2,5 = 𝑇1,8 − 0.5𝐾 +

0.5𝐾2

|2∙𝑇1,8|+1𝐾
 (5) 

𝑑𝑇2,2 = 𝑇1,9 − 1𝐾 +
1𝐾2

(|𝑇9|−𝑇1,9)/3+1𝐾
  (2) 𝑑𝑇2,6 = 𝑇1,8 − 0.35𝐾 +

0.35𝐾2

|2∙𝑇8|+1𝐾
) (6) 

𝑑𝑇2,3 = 𝑇1,9 ∙ 1.05      (3) 𝑑𝑇2,7 = 𝑇1,8 − 0.55𝐾 +
0.55𝐾2

|2∙𝑇1,8|+1𝐾
 (7) 

𝑑𝑇2,4 = 𝑇1,8 − 0.4𝐾 +
1𝐾2

|2∙𝑇1,8|+1𝐾
)    (4)  

The inputs are the ambient sensors 𝑇8 and 𝑇9, which have already been processed by 

module one (depending on the baseline ambient temperature) to become 𝑇1,8 and 𝑇1,9. Both 

are in degrees Kelvin and in accordance with the load case specifications will generally run 

between –10K and +15K. What this means, is that in a production hall with, e.g. 20°C,  

the simulation data would cover potential day-night-cycles in the range of 10°C (night) up to 

35°C (day). Guessing the function types used above, was mainly done by testing 𝑇1,8 and  𝑇1,9, 
choosing the better of the two as dominant input variable and testing different combinations 

of polynomials and fractions to reduce the residual error. If this is too complicated or not 

successful, a 1D or 2D characteristic diagram or a neural network should work just as well. 

The functions only have to look like the simulated displacement within the limited 

temperature range. They do not have to make sense thermo-dynamically. However, simple 

analytical functions with as few input variables as possible are generally more reliable. Large 

gradients should also be avoided, since the use of the ambient baseline temperature in module 

1 means that, in practice, 𝑇1,8 and 𝑇1,9 will usually be a bit off. 

 

Fig. 9. Temperature offset prediction in ambient model two 

Figure 9 shows the simulated temperatures in gray vs. the estimated temperatures in blue 

for two of the sensors. The graphs contain nine concatenated simulations, where each 

simulation has changing time steps spanning a total of 220 hours. With the analytical 

functions (1)–(7), the estimation error is less than one Kelvin for large temperature changes 

and less than half that for small variations. Though this is both training and test data,  

the nature of these simple, univariate equations makes overfitting unlikely. 

The deformations for model two are likewise mostly approximated using analytical 

functions. Here, however, the complex interaction between the machine tool, the surrounding 
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air and the cooling system make the prediction more difficult. For small temperature changes, 

the ambient temperature has a weak effect compared to the cooling system, which acts as  

a heat source. For large ambient temperature changes, the cooling system has some effect at 

the start of the simulations and then less and less. To account for these differences, the model 

was split into three modes (i.e. temperature ranges). The first one is for small ambient changes 

(‘stable’), the second for large positive changes (‘warm’) and the third for large negative 

changes (‘cold’), see Fig. 10. While this makes the overall compensation much more 

cumbersome, it is unavoidable, if simple approximation models are to be used (in the case  

of the DMU 80 evo). Here, sensor “bed 2” was used to differentiate the submodels. Values  

of 𝑇1,9 between –1.6K and +1.6K count as small changes and all values below or above this 

interval are modelled separately.  

 

Fig. 10. Temperature ranges for the three displacement submodels of ambient model two 

The change from one mode to another was done using equations (8) and (9):  

𝑠 = max⁡(1 − (𝑇1,9/1.6𝐾)
6; 0) (8) 

𝑑𝑥 = ⁡ {
𝑠 ∙ 𝑑𝑥𝑠𝑡𝑎𝑏𝑙𝑒 + (1 − 𝑠) ∙ 𝑑𝑥𝑐𝑜𝑙𝑑 , ⁡⁡⁡𝑇1,9 < 0

𝑠 ∙ 𝑑𝑥𝑠𝑡𝑎𝑏𝑙𝑒 + (1 − 𝑠) ∙ 𝑑𝑥𝑤𝑎𝑟𝑚, ⁡𝑇1,9 ≥ 0
  (9) 

The scalar s in (8) allows for a smooth transition from one mode to the next and ensures 

that this transition only occurs near the border of the stable interval. dx in (9) denotes  

a deformation, such as the tool x displacement.  

The actual models can differ for each error component or each position in the workspace. 

The stable mode, which was the most difficult to approximate, was done using 2D 

characteristic diagrams with 𝑇8 and 𝑇9 as input variables. Here, some additional 

improvements were achieved by adding a time delay for the x component of the tool error. 

Such a delay can be implemented by using temperature inputs from e.g. one hour earlier 

instead of the current values. A better alternative is, however, to use a very wide (large sigma) 

one-sided Gaussian filter. 

The submodels for the warm and cold temperature ranges were done using analytical 

functions. An example of this is shown in (10) for the y error of the tool at the second machine 

pose:  

𝑑𝑦𝑡𝑜𝑜𝑙,𝑝𝑜𝑠𝑒_2 =

{
 

 9.5
µ𝑚

𝐾
∙ |𝑇1,9|

1.22
,⁡⁡⁡⁡⁡⁡𝑐𝑜𝑙𝑑

𝑐ℎ𝑎𝑟. 𝑑𝑖𝑎𝑔𝑟𝑎𝑚,⁡⁡⁡⁡⁡𝑠𝑡𝑎𝑏𝑙𝑒⁡⁡

−22
µ𝑚

𝐾
∙ |𝑇1,9|

0.82
,⁡⁡⁡⁡⁡⁡𝑤𝑎𝑟𝑚

  (10) 



 

Ch. Naumann et al./Journal of Machine Engineering, 2023, Vol. 23, No. 4, 43–63 57 

 

Most of the other equations (x, y and z error for all 27 poses) have a similar structure 

with merely different factors and exponents. The exception is the x displacement of the tool 

for positions on the right end of the workspace (x  400 mm). There, the deformation has  

a non-monotonous behaviour. As the ambient temperature increases, the x displacement 

initially becomes negative and then reverses and becomes positive. This behaviour was 

modelled as the sum of two opposing PT1 transfer functions. The corresponding gains and 

delays were found by testing all possible combinations within a manually defined interval. 

Figure 12 shows the approximated tool y displacement for pose 2 using equation (10) 

and Fig. 11 the x displacement for machine pose 25, which uses PT1 transfer functions. 

 

 
 

   
Fig. 11. Deformation prediction x tool pose 25   Fig. 12. Deformation prediction y tool pose 2 
 

The graphs in Figs. 11 and 12 show that the approximations are good for the most part 

but not perfect. In Fig. 11, between steps 100 and 400, the approximations do not follow the 

deformations very well. This is in part a side effect of the overlapping modes (see eq. (9)). 

Since the approximation error is still well below 5 µm, this is, however, acceptable. There are 

also larger errors in simulations 1 (steps 0 - 55) and 9 (steps 415 - 470), where large ambient 

temperature changes occur. The corresponding simulations were merely added to improve the 

extrapolation of the models. Their approximations are worse, because they were given very 

little consideration during the parameter optimization for the cold and warm submodels. 

Absolute deformation values in Figs. 11 and following were redacted due to client 

confidentiality. 

In general, the approximations of the tool error’s x, y and z components, are nearly 

perfect, except for slightly larger x errors for the right side of the workspace and larger errors 

for ambient temperature changes > ±5K. Due to the simplicity of these models, the 

extrapolation to other load cases within this temperature range will likely be similarly good. 

For the table component of the thermal error, similar approximation models were used. 

Model three for the inner heat sources (motors, guides, bearings, etc.) uses  

a combination of PT1 elements and characteristic diagrams (i.e. multivariate, piecewise 

multilinear models) with temperature variables 𝑇2,1 - 𝑇2,7 as inputs. Both single axis 

movements and various combinations of two or more axes at different axis speeds (with and 

without the use of coolant) were used to train the third compensation model, see [22]. 

Finally, the deformations from all three models are added to compute the current 

estimation for all 27 workspace support points. They are then interpolated for the current TCP 

location using 3D quadratic interpolation to obtain the current value of the TCP error. While 

the explanations above have focused on the tool error components, the table error uses  
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the same techniques and model types. In the investigation here, the table error was described 

by only 10 parameters, specifically a translation (dx, dy, dz) and a tilting (rx, ry) for both  

the vertical (B=0°) and the horizontal table position (B=90°). Between these two sets of five 

parameters each, linear interpolation is used. A more exact method of describing the table 

error using a characteristic diagram (2D piecewise multilinear surface) of the table surface 

was developed and tested in [24]. However, this compensation model here can equally be 

applied to the improved table model, where each support point of the characteristic diagram 

is considered as one table parameter and receives its own thermal compensation model. 

3.2. VALIDATION MEASUREMENTS 

To validate the compensation models, two measurements were performed. The first one, 

at a constant 21°C ambient temperature, lasted around one day and was structured as follows: 

− 1 h production program with external cutting fluid (ECF), axis movements at 

cutting speed, spindle at 50% of max. speed, 

− 1 h production program without ECF; followed by 1 h cool-down with all axes in 

stand-by,  

− 1 h mold making program with ECF, axis movements at 50% of rapid feed, spindle 

at max. speed, 

− 1 h mold making program without ECF; followed by 1 h cool-down with all axes in 

stand-by,  

− 1 h spindle program with spindle running at max. speed with ECF, without axis 

movements, 

− 1 h spindle run without ECF ; followed by 1 h cool-down with spindle in stand-by,  

− 2 h x-axis movement with 75% of rapid feed without ECF; followed by 1 h cool-

down in stand-by,  

− 2 h y-axis movement with 75% of rapid feed without ECF; 1 h cool-down, 

− 2 h z-axis movement with 75% of rapid feed without ECF; 1 h cool-down, 

− 2 h b-axis movement (table swivel) with 75% of rapid feed without ECF; 1 h cool-

down, 

− 2 h c-axis movement (table rotation) with 75% of rapid feed without ECF; 1 h cool-

down. 

 

Fig. 13. Temperatures of measurement 1 
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Fig. 14. TCP displacement of probe 2V in measurement 1 

The second test load case was performed at 35°C ambient temperature and lasted for 

about three days and was structured as follows: 

− 3.5 h air cutting with all five axes at 75% of rapid feed (each axis performs one full 

move across its axis range in sequence, i.e. only one axis moves at any time), spindle in 

stand-by, without ECF, 

− 3.5 h of the same but with ECF; followed by 3.5 h cool-down with all axes in stand-by,  

− 3.5 h air cutting with the x-axis at 75% of rapid feed; all other axes/spindle in stand-by, 

without ECF, 

− 3.5 h of the same but with ECF; followed by 3.5 h cool-down with all axes in stand-by,  

− 3.5 h air cutting with the y-axis at 75% of rapid feed; all other axes/spindle in stand-by, 

without ECF, 

− 3.5 h of the same but with ECF; followed by 3.5 h cool-down with all axes in stand-by,  

− 3.5 h air cutting with the z-axis at 75% of rapid feed; all other axes/spindle in stand-by, 

without ECF, 

− 3.5 h of the same but with ECF; followed by 3.5 h cool-down with all axes in stand-by  

− 3.5 h air cutting with the b-axis at 75% of rapid feed; all other axes/spindle in stand-by, 

without ECF, 

− 3.5 h of the same but with ECF; followed by 3.5 h cool-down with all axes in stand-by,  

− 3.5 h air cutting with the c-axis at 75% of rapid feed; all other axes/spindle in stand-by, 

without ECF 

− 3.5 h of the same but with ECF; followed by 3.5 h cool-down with all axes in stand-by.  

 

Fig. 15. temperatures of measurement 2 
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Fig. 16. TCP displacement of probe 3H in measurement 2 

The experiments comprised repeated measurements of three locations within the 

workspace for both the vertical and horizontal table configurations. The validation 

measurements were done with a touch probe mounted as a tool and three cuboids fixed on the 

table (see Fig. 4). None of these measurement locations (top corners of the cuboids in Fig. 4) 

correspond with any of the workspace support points (vertices in Fig. 2) so that the spatial 

interpolation could also be tested. Figs. 13 and 15 show the temperatures for the two 

measurements.  

Figures. 14 and 16 show the corresponding displacements, both measurements and 

model predictions. Fig. 14 shows the error of probe 2 in the vertical table position, see Fig. 17. 

Figure 16 shows the error for probe 3 in the horizontal table position. The root mean square 

deviation of the relative error for measurement 1 was reduced by 56–72% across the six 

measurement locations. For measurement 2, the reduction was 42–52%. 

While this composite three-part compensation model was created and optimized for the 

DMU 80 evo and it has some limiting model assumptions, it has proven to be a functioning 

compensation strategy for thermal errors, despite the complexity of both the machine tool and 

the investigated internal and external thermal loads. 

 

 

Fig. 17. measurement locations for validation experiments 
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3.3. MODEL APPLICATION 

The presented correlative compensation method has been discussed in terms of motiva-

tion, methodology and validation. It remains to examine when such a model can be used and 

when it should be used. 

The main requirement is for the thermal error to be separated into an ambient and an 

internal component. These components must have significantly different thermal time scales 

so that they can be superimposed independently with little error. Ideally, the machine tool 

should have a large thermal capacity and low conductivity. This may, e.g. be problematic for 

light-weight structures. The best way to test this, is by running three experiments: first  

an internal load profile at a constant/neutral ambient state, second an ambient load profile 

without internal loads and thirdly the same ambient load profile with the internal loads from 

experiment one. This should reveal if there is any chance of superposition. 

A secondary requirement is the ability to gather large amounts of data, which means 

either a validated simulation model and/or access to a climate chamber. Note that the model 

described here would have been nearly impossible to obtain without FEM simulations due to 

the large number of necessary training load cases and the need to obtain all deformation data 

for 27 different locations in the workspace. 

Another requirement is the need for several temperature sensors, of which at least one 

must be independent of internal heat sources and sinks. In some cases, an air temperature 

sensor may instead be used as input for the ambient model. 

When the model should be used is subjective. In the view of the authors, simple unified 

models (e.g. characteristic diagrams or artificial neural networks) should always be preferred 

wherever possible. Here the complexity of the machine and its thermal behaviour prevented 

such simple models. If the skill and computational capabilities allow, a simulation-based 

compensation may be more effective than correlative strategies. Note that the step from  

a validated FEM model to a reliable online-capable simulation-based compensation is a very 

big one. Lastly, if the above requirements are not met and a correlative compensation is still 

desired, then the best option is to add more temperature sensors and use more training data 

with both internal and ambient loads in order to create a more complex unified model.  

One final aspect to be considered is the typical milling process. Most often, an operator 

places a workpiece on the machining table, measures its location and then starts the cutting 

operation with cutting fluid. For the DMU 80 evo, the linear encoders of the translational axes 

will ensure position-independent accuracy while the cutting fluid minimizes the table error. 

Therefore, unless the cutting operation takes very long, the error will not depend much on the 

current ambient thermal machine tool state. What remains are mainly the internal thermal 

effects from the cutting operation. When using correlative compensation, the presented model 

is still very useful in this case, since it provides the correct input vector 𝑇2 irrespective of any 

ambient offsets present in the raw temperature sensor values. 

4. SUMMARY AND OUTLOOK 

This paper describes and tests a new composite thermal error compensation model for 

machine tools, which can deal with both internal and external thermal influences.  
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The compensation method is correlative in nature, as it uses temperature sensors to map  

the current thermal state directly onto the TCP error. However, it also employs transfer 

functions to cope with different thermal time scales.  

The model consists of three parts. The first one describes long-term ambient changes 

occurring over weeks or months. The second one describes daily or other short-term ambient 

cycles. The third one describes the local deformation from all current internal heat sources 

and sinks. Thermo-elastic FEM simulations were used to compute and study the corres-

ponding thermal effects separately and to train the three models. The compensation models 

use a combination of regression models (e.g. polynomials and characteristic diagrams) and 

time delay transfer functions. Validation measurements were performed to showed the 

feasibility of the approach and managed to reduce the thermal error by around 50% for 

complex internal and external thermal loads. 

The next planned steps include a further optimization of the model followed by an online 

validation measurement. A test of the model during milling operations is also planned. If all 

tests are successful, a transfer of this method to a different machine type will be attempted.  
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