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Additively manufactured components often show insufficient component quality due to the formation of different 

defects. Defects such as porosity result in material inhomogeneity and structural integrity issues. The integration 
of in-process monitoring in machining processes facilitates the identification of inhomogeneity characteristics in 

manufacturing, which is crucial for process adaptation. The incorporation of artificial defects in components has 

the potential to mimic and study the behaviour of real-world defects in a more controlled way. This study highlights 

the potential benefits of cutting force and vibration monitoring during machining operations with the goal  

of providing insights into the machining behaviours and the effects of the artificially introduced defects on the 

process. Detection of anomalies relies on identifying changes in force profiles or vibration patterns that might 

indicate the interaction between the tool and the defect. Machine learning algorithms were used to process and 

interpret the collected data. The algorithms are trained to recognize patterns, anomalies, or deviations from 

expected behaviours, which can aid in evaluating the effect of detected defects on the machining process and the 

resultant component quality. The main objective of this study is to contribute to enhancing quality control  

of machining processes for inhomogeneous materials. 

1. INTRODUCTION 

Metal Additive Manufacturing (MAM) has become a significant technological 

advancement over the last decade [1]. While this technology provides unprecedented freedom 

in design, a combination of different materials, and process flexibility, it still faces certain 

challenges that demand further investigation and resolution. The specimen manufactured 

using MAM may experience various defects. Some of these defects include pores caused by 

gas being trapped in the material, the keyhole effect, and a lack of fusion during the melting 

process. The specimen may also experience cracks, surface irregularities, and roughness, all 

of which may contribute to the degradation of mechanical properties [2–5]. Different types  

of defects may arise in various shapes, sizes, and distributions. 
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Lack-of-fusion defects can occur due to insufficient energy density and improper 

process parameters [4]. Such irregular regions inside the material, sometimes filled with 

unmelted metallic powder particles, have elongated shapes ranging from 50 µm to several 

millimeters in size [5]. 

Porosity caused by entrapped gas is characterized by its spherical shape. These defects 

can be on the order of 5 to 20 µm in PBF, while parts produced with Directed Energy 

Deposition (DED) are characteristically larger (>50 µm) [5]. Gas-entrapped porosity in  

a Laser Metal Deposition (LMD) process depends on process parameters and melt pool 

dynamics [5]. Ng et al. indicate that the gas-entrapped porosities lead to the formation of 

bubbles of larger diameter than the largest particle present in the metallic powder during the 

LMD process [6]. The authors conclude that these porosities tend to agglomerate and coalesce 

in the melt pool. 

One common porosity source in MAM is the keyhole effect. Gibson et al. define it as 

an effect that occurs when plasma is generated by the heat source, causing a deep penetration 

depth and the production of vapor that can then accumulate at the bottom of the melt pool, 

leading to porosity in the final product [4]. 

Subtractive manufacturing has been an active area of research with a focus on utilizing 

advanced artificial intelligence techniques and in-process monitoring methods for a variety 

of purposes. Among the most widely investigated objectives in this field are the prediction of 

cutting forces and the assessment of tool wear. Multiple authors investigate different tool 

condition monitoring techniques in milling operations combined with advanced Machine 

Learning (ML) models [7–13]. Cooper et al. have developed a technique to monitor the 

condition of milling tools using acoustic signals [10]. They use a generative adversarial neural 

network to identify anomalies in the time-frequency domain of the tools’ acoustic spectrum 

during cutting operations. By training the network and inverting the generator, the algorithm 

can differentiate between normal and anomalous tool conditions with a classification accuracy 

of 90.56%. Madhusudana et al. have incorporated in-process monitoring techniques that 

employ acceleration measurements to detect faults in the multipoint cutting tool [11]. They 

have used vibration data in conjunction with several ML algorithms for this purpose with an 

end-classification accuracy of almost 97%. Li et al. employed a high-precision Hall sensor to 

measure spindle current in Computer Numerical Control (CNC) systems. They developed a 

new method known as CNN-AD for predicting tool breakage [12]. Peng et al. explore a hybrid 

approach combining both measurement data and numerical data with the goal of predicting a 

cutting force in orthogonal cutting [13]. The results have shown a significant enhancement in 

prediction accuracy when compared to the conventional linear regression model.  

Fewer papers are involved in the investigation of utilizing ML methods for detecting 

defects on the workpiece in real time [14]. The study by Schlagenhauf et al. presents a novel 

method for detecting anomalies in workpieces during milling processes [14]. The authors 

created artificial anomalies in the form of boreholes ranging from 2 mm to 10 mm in diameter. 

These anomalies were larger than those observed in the current work. The authors utilized a 

convolutional-based encoder-decoder model to detect these anomalies in the milling of 

16MnCr5 material. The paper seeks to showcase the effectiveness of this approach in 

identifying anomalies in workpieces and to explore the impact of domain shift, particularly 

concerning variations in tool diameter and material, on the model's performance. Gauder et 
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al. have presented a new method for detecting pores in cast parts during the machining process 

[15]. The method uses an acoustic sensor to detect deviations in the acoustic signal, which are 

then analysed using a Convolutional Neural Network (CNN). The authors have used a non-

destructive testing method of acoustic emission measurement with a sampling frequency of 

1526 kHz. The proposed method uses only the raw data measured during the tests. To develop 

a pore detection algorithm, the authors produced samples with repeatable pores. Since it is 

not feasible to generate specific pores during the casting process, the authors used selective 

laser melting as an analogy method for controlled porosity implementation. The cylindrical 

pores with a diameter of 0.7–1.2 mm were manufactured using an SLM process in AlSi10Mg 

aluminum cubes. The Short-Time Fourier Transform (STFT) of the acoustic emission signals 

has been analyzed using the spectrograms as grayscale images and a CNN network was 

trained using these images. The accuracy of the model was tested, and it was found to be 90%. 

Pfirrmann et al. conducted a study on detecting material defects during the micro-milling 

process using force and acoustic emission measurements [16]. The study aimed to identify 

defects in the workpiece that were not caused by the machining process and provide 

information about the quality of the raw part. The type I hard alpha defects investigated were 

local segregations that caused an increase in hardness in that area. To create representative 

material samples, Ti6246 specimens were heat-treated using a TIG torch, resulting in specific 

defects that served as representative material properties for the tests. After synthesizing the 

material defects, the sample was ground to ensure a defined, flat surface for further 

processing. 

Axinte et al. conducted a study to examine the relationship between the quality of the 

machined surface in the broaching process and the output signals obtained from various 

measurements during the process [17]. These measurements include cutting force, acoustic 

emission and vibration measurements. The researchers found that the measurement signals 

could differ depending on the type of surface anomalies present. 

This study presents a non-destructive process monitoring technique aimed at detecting 

material defects during the post-processing phase. To investigate different scenarios, 

artificially created defects were introduced to represent different processing scenarios with 

and without pores. The dataset is accurately labelled to differentiate between normal and 

anomalous conditions. Artificial defects with a diameter of 0.5 mm were introduced into 

samples, which represent relatively small defects when compared to [14]. These artificially 

introduced pores mimic the porosities that could typically occur in additively manufactured 

parts. The main goal of the artificial defect addition is to develop and validate non-destructive 

testing methods and machine learning models that could be helpful in anomaly detection 

directly during the manufacturing process. This would aid in benchmarking the detection 

capabilities of such systems. Intelligent anomaly detection algorithms have the potential to 

identify even smaller defects occurring in manufacturing processes. However, this primarily 

depends on the quality and resolution of the data. Higher resolution makes it possible for the 

algorithm to detect smaller defects. Furthermore, it depends on the complexity and training 

of the algorithm. To achieve high accuracy in detecting small defects, advanced algorithms 

require a large and varied training dataset. Combining high-resolution measurements with 

advanced algorithms and high-resolution sensors would make it possible to detect even the 

smallest anomalies and defects. The detection and control of anomalies in additively 
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manufactured parts is a complex and critical task. In this regard, the model developed in this 

paper, holds significant potential for anomaly detection, particularly in the context of 

additively manufactured parts using transfer learning. Transfer learning is a method used to 

improve understanding of a particular task by relating it to other related tasks that have already 

been learned [18]. Such a learning method can be utilized in identifying anomalies in the post-

processing of additively manufactured parts using the model pre-trained on the dataset 

collected on the probes with artificially introduced defects. 

2. EXPERIMENTAL APPROACH 

For the training of machine learning algorithms, extensive datasets are typically 

required, originating from the respective process. However, the generation of additive parts 

is often extremely time-consuming, in most cases this makes the collection of suitable datasets 

challenging. Against this backdrop, an analogy approach was chosen for representing 

inhomogeneities. Conventional approaches often involve printing parts that are subsequently 

analysed using measurement systems to identify those inhomogeneities. The chosen approach 

follows an inverse strategy. Instead of analysing positions and then linking them with the data, 

inhomogeneities are generated from predefined data. Specifically, randomized borehole 

positions are created through a MATLAB script and transmitted to the machine as NC code. 

These boreholes have a diameter of 0.5 mm, representing the sample preparation for the 

inhomogeneous specimens. For the homogeneous control specimens, sample bodies of the 

same geometry are used, which remain unaltered and thus exhibit no porosity/inhomogeneity. 

The two possible approaches are illustrated in (Fig. 1). Additionally, the choice of drilled 

specimens implies that the actual machining experiments are conducted in the same clamping. 

During these experiments, grooves with a width of 5 mm and a depth of 0.5 mm are milled. 

Performing sample preparation and machining experiments in a single clamping allows for 

the direct linkage of borehole position data with measurement data. 

To capture various measurements on the workpiece side, the test specimen (specimen 

material: C45) is connected to different sensors. The sample body is directly mounted on the 

force measurement platform, a Kistler 9119AA. A 50g acceleration sensor (Kistler) is 

attached to this mounted specimen using wax. Acceleration and force data are recorded using 

an NI chassis with Type 9230 and 9223 measurement cards at a sampling rate of 10 kHz. 

QASS company's acoustic sensors are also attached to the specimen, recording data at  

a sampling rate of 1.6 MHz. Data acquisition is triggered by the NC code, allowing all systems 

to capture data within the same time window. This trigger also enables the precise calculation 

of the milling cutter's position at any given time. On the tool side, an Intendo² tool clamping 

system from Schunk is used. This hydro-deformable chuck is equipped with an acceleration 

sensor for recording raw data at a frequency of 15 kHz. 

For the experiments, grooves are milled along the length of the specimen. The grooves 

are created using a Gühring KG Ratio Cutter RF 100 Sharp 5 mm. Different tools are used 

for the paths in the homogeneous test specimen and the paths in the inhomogeneous specimen. 

The tool is a 5 mm diameter end mill with four teeth. 
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Fig. 1. Possible approaches to a milling surface with the knowledge of anomaly positions 

The width (ae) during grooving is 5 mm, with an axial depth of cut (ap) of 0.5 mm. This 

involves face milling, and two teeth are always engaged. According to the manufacturer's 

specifications, the C45 probe is machined at a cutting speed of 180 m/min and a feed per tooth 

rate of 0.0264 mm/tooth. 

Twenty grooves are milled and recorded per specimen. To reduce potential variations, 

a randomized experimental plan is followed, considering parameters such as homogeneous/ 

inhomogeneous probes and porosity levels of 0.5% and 1%. 

3. DATA HANDLING AND TRAINING 

The captured data undergo initial processing for training, wherein the idle and tool 

entry/exit regions are removed. Subsequently, the data is normalized and a mean-shifting 

transformation is applied to set the mean to a Y-axis intercept of zero. (Fig 2) illustrates this 

data processing using a defined borehole pattern, created solely for visualization purposes. 

To verify the reliability of the algorithm, its reliability is determined as follows. The 

positions of the bores determined by the algorithm are compared with the positions of the 

actually introduced bores. This results in the number of correctly recognized inhomogeneities. 

The reliability is calculated by dividing this number by the total number of milled bores. 

To account for material variations and influences from wear or other anomalies, these 

factors are varied in both the un-drilled homogeneous and inhomogeneous test specimens. 

Wear is measured by the cutting-edge radius, which is 7 µm for a new tool and 16 µm for  

a worn one. Algorithm training is performed using randomly compiled data from experiments 

on different test days and wear conditions. Randomized milling paths are also created and 

checked for the examined test specimens. In each case, 100 paths were used to verify the 

algorithm. 
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Fig. 2. Data handling 

For anomaly detection, an autoencoder model has been used in this paper. Autoencoders 

are neural networks, consisting of an encoder and decoder, used for unsupervised learning to 

reduce dimensionality [19]. The aim of an autoencoder is to learn representation functions for 

data [20]. In this study, two different types of autoencoders are used for the task of anomaly 

detection. Dense autoencoders or fully connected autoencoders, have the layers in both the 

encoder and decoder densely connected meaning that each neuron in one layer is connected 

to every neuron in the next layer. A Long Short-Term Memory (LSTM) autoencoder is a type 

of autoencoder that uses LSTM cells in its architecture. LSTM cells are effective with 

sequential data, making this type of autoencoder suitable for real-time applications [21].  

Ou et al. use Order Analysis (OA) and a Stacked Sparse Auto-Encoder (SSAE) to extract 

features and monitor tool wear state using the three-phase spindle current signals [22]. The 

method has been successfully implemented and the combination of OE with SSAE yielded  

a recognition accuracy of the tool of 95%. Schlagenhauf et al. also successfully employed  

a conventional encoder-decoder model for anomaly detection during milling [14]. 

4. RESULTS 

The results of various sensor data and their analysis with both machine learning 

algorithms are presented below. The use of the Dense-Autoencoder with individual force 

measurement data, as shown in (Fig 3) for the X-direction, serves as an example for the 

detection of anomalies. For this purpose, the data of a trajectory is inserted into the model and 

the reconstruction loss is considered as the outcome. The reconstruction loss shows an 
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increase in the values as soon as an anomaly is detected. These peaks can be marked 

automatically. Thus the line plot is overlaid by a scatterplot with the anomalous points. These 

points are also marked in the raw signal (image on the right) 

If the position data of the individual holes are taken into account, the correctness of the 

detection can be evaluated. This can be seen not only in the force measurement data but also 

in other sensor data so that the Dense-Autoencoder can detect anomalies such as in this 

example the drilled holes. 

 

Fig. 3. Bore detection with Dense-Autoencoder for forces in X-direction 

The same procedure was performed with the acceleration data in (Fig. 4). The 

reconstruction loss is illustrated on the left and the raw data with the anomalies marked in red 

on the right. Four holes were successfully detected in this example data set.  

If the results of the two sensor signals are compared, differences can be seen. For the 

force measurement, the basic noise of the reconstruction loss is 0.002, whereas it is up to 

0.006 for the acceleration. If the peak value that occurs with an anomaly is now considered, 

differences can be recognized here. The maximum values for force measurement are 0.005 

and for acceleration up to 0.017. Therefore, an interesting difference in the values exists, but 

in particular the ratio between max and noise changes. The ratio is 2.5 for the force 

measurement and 3.4 for the acceleration. This larger ratio also spans a larger range for 

separating anomalous and normal data. Detection therefore appears to be easier. 

With the combined acceleration data (Fig. 5), calculated using the quadratic mean, even 

better detection is possible. This is again discernible through the reconstruction loss. The base 

noise ranges between 0.001 and 0.006 for individual spatial direction data ((Fig. 4) shows the 

acceleration data in the X-direction), whereas for the quadratic mean, the reconstruction loss 

ranges between 0.001 and 0.002. Regarding peak values, no difference can be observed. For 

individual spatial directions and combined data, the maximum reconstruction loss is 0.017. 

However, due to the significantly larger difference between noise and peak in anomalies, the 

separation of anomalous data from normal data is easier.  

When examining the results of the LSTM-Autoencoder (Long Short-Term Memory), 

differences in the noise are apparent. The noise is around two for the reconstruction loss. 

However, the peak values also increase, particularly with acoustic emission data, exceeding 

20 (seen in (Fig. 6)). This disproportionate increase in peak values compared to the increase 

in noise allows for improved bore detection with the code used. 
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Fig. 4. Bore detection with Dense-Autoencoder for accelerations in X-direction 

 

Fig. 5. Bore detection with Dense-Autoencoder for combined accelerations 

 

Fig. 6. Bore detection with LSTM-Autoencoder for acoustic emission data 

This improvement is clearly evident in the reliability overview presented in Table 1, 

especially with a noticeable 12  increase in reliability for acoustic emission data. Evaluating 

other sensors and data reveals improvements in reliability across the board. The evaluation of 

the algorithm with the 100 test paths also highlighted that combined forces and accelerations 

achieve better results. Within the acceleration data, the use of the LSTM-Autoencoder leads 

to an increase in reliability from 94% to 98% in the X-direction. It is once again apparent that 

the reliability of force data is lower, reaching a maximum of 92% with LSTM, while this was 

already achieved with Dense using acceleration data. 
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In addition to the combined acceleration data, the iTENDO2 data stands out in (Tab. 1). 

The training time per step is lower, but reliability is already high at 94% with Dense 

Autoencoder. Using the LSTM-Autoencoder, a reliability of 96% can be achieved, 

demonstrating successful detection of defects, whether on the spindle or tool side. 

Table 1. Experimental literature data for WAAM manufacturing 

 

5. SUMMARY AND OUTLOOK 

In summary, the investigations have successfully demonstrated that both high-end and 

low-cost sensors, as well as both workpiece-side and tool-side measurement techniques, can 

effectively detect bores as small as 0.5 mm. Both the type of sensor and the algorithm used 

have an impact on the reliability of bore detection. To verify and compare reliability, 100 

milling paths were examined, and the bore positions were compared with those identified by 

the algorithms. In particular, the LSTM-Autoencoder employed in these studies proved to be 

efficient, achieving a reliability of 98%. This was notable, especially in the case of 

acceleration, iTENDO2 and acoustic emission data (QASS). 

The results presented include training and validation using data collected in the same 

process. To ensure that the model can also be used in other milling processes and with other 

materials, further investigations will be carried out. For this purpose, additive manufactured 

parts, aluminum, gray cast iron and other materials as well as different cutting conditions are 

to be investigated. This includes the milling of real geometries, changes to ae and ap, as well 

as any necessary adaptation by means of transfer learning. In the context of the described 

investigations, transfer learning could be employed to adapt the pre-trained model of the 

shown anal to improve the detection of inhomogeneity in varying conditions. By applying 
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transfer learning, the need to collect large amounts of training data for each new task can be 

reduced, as existing knowledge from previous training processes can be leveraged to enhance 

the model's performance. Depending on the available data, various methods such as inductive, 

transductive, or unsupervised transfer learning can be applied and optimized. 

Inhomogeneities in additively manufactured parts, as well as in casted parts, have a size 

distribution. To get closer towards a realistic comparison this size distribution should be 

represented by the different bore diameters. Therefore, different bore sizes have already been 

tested. The results will be shown in another publication. 

A further approach for detecting anomalies using feature-based learning methods will 

also be investigated. 
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