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ENABLING FEDERATED LEARNING SERVICES USING OPC UA, LINKED 

DATA AND GAIA-X IN COGNITIVE PRODUCTION 

Value creation in production is based on collaboration of different stakeholders and requires the secure and 
sovereign exchange of knowledge. Today, knowledge has mostly been built up individually and is only exchanged 

in a proprietary manner. This paper presents an exemplary pipeline for federated services in cross-domain and 

cross-company value creation networks for cognitive production. On the example of collaboratively training of  

a federated machine learning model, machine tool lifetime is predicted in industrial manufacturing for high-end 

operating resources (high-quality cutting tools). From the shop floor to the cloud, all service relevant information 

is structured using existing digital twin standards and a linked data approach. In particular, the Industry 4.0 Asset 

Administration Shell (AAS) and OPC UA are used for collecting and referencing operational and engineering data. 

GAIA-X connectors transfer the service relevant data through a shared data space. The solution enables intelligent 

analysis and decision-making under the prioritization of data sovereignty and transparency and, therefore, acts as 

an enabler for future collaborative, data-driven manufacturing applications. 

1. INTRODUCTION AND STATE OF THE ART 

In production, enormous amounts of data are generated every second and processed 

internally in manufacturing machines. This data provides valuable insights regarding the 

condition of machines, tools, and products that can unlock unprecedented opportunities for 

value creation. Although machine manufacturers and service providers possess the necessary 

expertise to develop data-driven applications, they often face a disadvantage due to limited 

access to this crucial data. Despite advancements in interconnecting plant components with 
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higher-level control systems or integrating entire plants with production control systems like 

MES, the management, storage, and generation of data predominantly occur in isolated, 

proprietary systems [1]. Against this background, cognitive production refers to artificial 

intelligence and machine learning in production processes; technologies that enable a smarter 

production by automating decision-making processes and optimizing operational procedures. 

The adoption of cloud infrastructures, which facilitate collaborative work and leverage 

machine learning for new insights, has been modest within the production sector for several 

reasons. A significant barrier is the lack of assured technical solutions for secure data storage 

and controlled, purpose-specific data exchange that respects data sovereignty, especially with 

the current leading cloud service providers [2]. Investments in digital infrastructure are often 

associated with uncertain returns and risks. Nevertheless, machine manufacturers, service 

providers, and users are adopting Industry 4.0 initiatives and cloud data services to improve 

their competitive edge and increase sales through the utilization of data. Further, they engage 

in data exchange and utilization, particularly with the promise of reduced costs, improved 

quality, and enhanced productivity, provided that the balance of risks and rewards is 

maintained. However, the fear of a possible loss of intellectual property (IP) and business 

secrets remains a major problem in highly competitive markets and the reason why many 

projects and products have not been successful to date. 

The journey towards integrating advanced digital solutions in manufacturing has 

encountered several hurdles, starting with the underutilization of standards that hinder 

seamless connection to data sources. A significant challenge is the high level of machine-

related hardware and software requirements for data collection and provisioning, coupled 

with a notable lack of consistency in interoperable description forms across different levels. 

Despite the potential of semantic industry standards such as OPC UA Companion 

Specifications (CSs) [3] and the Asset Administration Shell (AAS) [4], their adoption as data 

sources for service applications remains limited. To bridge these gaps, the European cloud 

initiative GAIA-X, leveraging the International Data Spaces (IDS) Standard [5, 6], proposes 

a framework aiming to facilitate data-driven applications in alignment with European 

principles of data protection and sovereignty, emphasizing openness, transparency, and trust 

[7]. Despite this, the ecosystem still lacks sophisticated connectors, such as the Eclipse 

Dataspace Components (EDC) Connector [8], essential for linking domain-specific data 

spaces and enabling the practical realization of new business domains. While a pioneering 

architectural approach integrating Asset Administration Shells, OPC UA, and the EDC 

connector within industrial production settings has been explored [9], the systematic 

definition of cross-domain architecture patterns remains an uncharted area, especially for 

incorporating new use–cases into the GAIA-X Federation Services. A critical concern that 

remains inadequately addressed by GAIA-X is the safeguarding of IP after the data transfer 

and navigating regulatory hurdles like export control, which poses significant barriers to data 

sharing, especially for data constrained by geographical boundaries. 

Moreover, the challenge extends beyond mere data collection from machinery. For the 

enablement of advanced machine learning applications, data must be enriched with additional 

information – such as quality measurements or order specifics – to support intelligent analysis 

and decision-making. This enrichment process is pivotal in generating actionable insights and 

developing predictive models to improve operational efficiency and product quality. 
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However, current digital twin standards like AAS fall short in addressing the need for data 

enrichment. The shift towards Semantic Web and linked data technologies highlights their 

crucial role in representing, capturing, and integrating industrial data. These technologies, 

embodying a range of methodologies for articulating and disseminating knowledge across the 

World Wide Web in standardized formats, promise to enhance data integration and support 

reasoning processes [10, 11]. Nevertheless, challenges persist, such as data retention issues in 

Resource Description Framework (RDF) stores, when dealing with high sample rates or 

extended durations. While specialized time series databases excel in storing vast amounts of 

measurements, they are limited by their metadata support capabilities. This predicament calls 

for a flexible approach that merges Linked Data principles with straightforward data formats 

and APIs for time series data, laying the groundwork for creating semantic digital twins within 

the manufacturing domain, as outlined in the LinkedFactory (LF) proposal [12], which 

advocates for portable SPARQL queries over contextualized time series data in industrial 

settings. 

Federated Learning (FL) was successfully used to train and offer services like Google 

GBoard [13] and many services in Apple iOS [14] all utilizing highly sensitive data like user 

locations and inputs. FL involves a multi-step process where algorithms are dispatched to and 

trained directly at the data source. Together with other techniques, such as differential privacy, 

FL provides a mechanism for training machine learning models while maintaining privacy, 

addressing intellectual property concerns and circumventing regulatory barriers. In difference 

to small and simple models that can be trained on-device, i.e. on a charging Wi-Fi connected 

phone, processing and training machine learning models on large amounts of machine data 

requires significant computation power and memory. Small to medium sized enterprises 

usually do not have the IT infrastructure nor personal to supply the required resources. FL as 

a Federated GAIA-X Service addresses data minimization and anonymization requirements 

while providing privacy preserving and standardized on-demand infrastructure essential for 

training complex models. By linking sources using the LinkedFactory, data suitable for 

machine learning (ML) and cognitive production can be provided. 

One significant use-case in production industry is tool lifetime estimation: Tool 

breakage is one of the main causes of unscheduled downtime in machining and is usually the 

result of a combination of tool damage and wear characteristics that occur during the 

machining time and have a negative impact on added value. Accordingly, tool failures are 

responsible for 7–20% of the total downtime of milling machines [15]. The costs for tools and 

tool changes account for 3–12% of the total machining costs [16]. Currently, on average, only 

50-80 % of the effective life of milling tools is utilized [17]. Research has shown that an 

accurate and reliable tool condition monitoring (TCM) system can reduce the cost of 

machining by 10–40% by reducing downtime and maximizing tool life [18, 19]. Lack  

of access to the required data is the main impedance for developing a well working solution 

for predicting tool wear across varying machines, tools, workpiece materials and, thus, is an 

ideal use-case to validate the proposed architecture. 

In detail, the following motivations and market requirements arise in the machining 

production of the exemplary actors described: Tool manufacturers aim to offer new services 

for their high-end equipment and to open up new value chains based on real tool and load 

data collected in practice. This can consist of an application-specific tool life prediction, 
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precise parameter recommendations for individual applications, machines and materials or 

the efficient estimation of the cost of a tool overhaul. On the other hand, tool users want 

precise parameterization for their application to improve product quality, a reliable tool life 

prediction to increase the tool life with low risk and a quick statement on the effort and costs 

of tool reworking. Successful development of a suitable ML model failed due to lack of data. 

The central challenge within the manufacturing sector is clear: access to and analysis of data 

is crucial yet impeded by various technical, proprietary, and regulatory barriers. Current 

deficits in transferring data in accordance with industry standards into the GAIA-X data 

infrastructure, the systematic integration of machine learning, and ensuring semantic 

interoperability of various services in GAIA-X emphasizes the complexity of realizing cross-

company GAIA-X services based on this real data.  

Table 1 summarizes the aspects of already existing solutions presented in this chapter, 

which exhibit deficiencies and the requirements for the approach presented in the Chapter 2 

that improves upon these solutions and is beneficial to meet those shortcomings. 

Table 1. Comparison of existing secure data exchange solutions and demanded features 

Criteria Federated Learning GAIA-X  Market demands 

Shopfloor Connectivity Not Applicable (N/A) 
Low, not inherently 

supported 

High, using Digital Twin 

based data collection 

Combining Data Sources Not Applicable (N/A) Not Applicable (N/A  
Linked Data, seamlessly 
combining multiple sources 

ensuring data alignment 

Data Sovereignty and 

Privacy 

High, as data remains 

local (e.g, on-premise) 

Moderate, sovereign, but 

requires strict adherence to 

GAIA-X policies, as 

transferred data could be 

misused 

Combining the benefits of 

Federated Learning and 

GAIA-X 

IT Infrastructure 

Requirements 

Significant, demands 

robust local 

computational and 

storage capabilities 

Minimal, cloud-based 

services minimize local 

infrastructure dependency 

Minimal, optimally uses cloud 

resources to lower the 

necessity for extensive local 

infrastructure 

Regarding automated model-update by the use of federated learning, the presented 

approach can be transferred to other use-cases, such as machine-integrated force measurement 

(kinetic model) [20], geometric error calibration (kinematic model) [21], or thermal error 

correction for machine tools (thermal model) [22]. 

2. APPROACH AND ARCHITECTURE 

The aim of this contribution is to realize the basic architecture and data models for an 

innovative product service application in industrial manufacturing using the example of high-

end operating resources, such as high-quality cutting machine tools in a value-added network 
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using Federated Leaning and the secure, sovereign data infrastructure of GAIA-X. This effort 

is contextualized by the tool lifetime estimation use-case presented earlier, serving as a pivotal 

experiment and proof of concept that both challenges and substantiates the proposed 

methodologies. Data about the tool itself, its manufacture, use, and logistics processes are 

captured and established machine/plant level communication protocols are explicitly 

considered and semantically integrated based on their information models. This strategic 

collection of user-generated data provides a foundation for innovative business services based 

on data analytics. As today, numerous digital service technologies are being developed at the 

same time, small and medium-sized enterprises (SMEs) have difficulties to apply them to 

their applications. The novelty of this contribution is the application of technologies 

developed in the context of Industry 4.0 and GAIA-X to the specific and relevant use-case 

tool wear prediction, while, at the same time, including federated learning as a GAIA-X 

service as well the Fraunhofer LinkedFactory as an interconnected database. The presented 

architecture fosters a collaborative space for manufacturers (of machines and tools alike) and 

users, facilitating the training of ML models with authentic application data in a privacy-

preserving manner. 

The utilization of FL, in particular, emphasizes the commitment to data sovereignty, 

enabling model training at the GAIA-X service node and the synthesis of data local insights 

into a cohesive, higher-level model. The results of this collaborative learning not only enhance 

the accuracy of tool life predictions and enable more tailored parameterizations for specific 

applications (considering machine, tool, material, and process variables) but also empower 

manufacturers to refine their products based on actionable data insights. Conversely, users 

stand to gain improved product quality and productivity, alongside reduced operational risks. 

The consistent use of information models from OPC UA (especially from the umati 

community) and AAS enables broad applicability beyond the consortium. The AI models 

generated in the process significantly reduce the entry barrier to machine learning in 

production while at the same time securing data sovereignty. Figure 1 illustrates the 

relationship between the basic components explained below. In industry, the standardized 

OPC UA interface is becoming increasingly popular for connecting machines and control 

systems [23]. This standardization is useful for connecting various control systems from 

different manufacturers. For the use-case presented in this paper, the generic VDMA 

Companion Specification for machine tools 40501 [24] was taken as a base and applied to the 

specific machine tool. The result shown in Fig. 2 depicts an exemplary milling machine to 

illustrate how the structures of the machines are described in the OPC UA information model. 

For example, the Maho machine consists of four axes and one spindle as components. While 

OPC UA is the standard for productive use and maintenance, it is not recommended for 

communication across the entire life cycle and the associated information along the value 

chain. Instead, the Asset Administration Shell (AAS) is used for this purpose [25]. 

The Asset Administration Shell (AAS) serves as a standardized digital representation of 

an asset, such as a machine, tool or good, and thus plays a fundamental role for the digital 

twin-based data provisioning in the presented use-case by facilitating interoperability between 

applications responsible for managing manufacturing systems. It holds digital models of 

different aspects of an asset, referred to as sub models, and provides descriptions of technical 

functionalities exposed by the assets or the corresponding AAS [4]. 



C. Friedrich et al./Journal of Machine Engineering, 2024, Vol. 24, No. 2, 18-33  23 

 

 

 

Fig. 1. Approach of Federated Services using OPC UA and the GAIA-X Cloud 

The overall structure of the AAS is described as a metamodel defined by the Industrial 

Digital Twin Association (IDTA). During its life cycle or the assets life cycle, respectively, 

the AAS can be enriched with additional information. An important part of the AAS 

infrastructure is the AAS Registry, a collection to store and look up information on multiple 

AAS instances, their endpoints, and sub models. Currently there are several AAS frameworks 

under development. The most common are FA³ST AAS from Fraunhofer IOSB, BaSyx AAS 

Environment from Fraunhofer IESE and the AASX server from the IDTA itself. As the FA³ST 

AAS currently does not offer a dedicated MQTT interface for external system communication 

[26] and the BaSyx and IDTA frameworks are equivalent regarding the supported 

functionalities, the Java-based BaSyx framework was chosen for the implementation. 

The Eclipse Dataspace Connector is the main component of the open-source Eclipse 

Dataspace Components (EDC) Framework [8] for trusted, self-sovereign, inter-organizational 

data exchange. It allows to build, access, and connect multi-cloud, policy-based dataspaces 

while retaining full control over the own data offered. The approach utilizes the connector to 

catalogue available data assets on the data provider side, such as time series data for smart 

revisioning or federated learning services and publish them as contracts with associated 

policies to the participants of the data space. Data sources can be any references to local 

filesystems, cloud storage systems, or APIs. For policy definition, the Open Digital Rights 

Language (ODRL) is used to determine permissions, prohibitions, and obligations that 

regulate access and usage of an asset. For example, the usage of an asset can be restricted to 

the purpose of training of a machine learning model. The framework includes a set of official 

service extensions that enhance the connector's core functionality with features like 

persistence, authentication, or connectivity to provider-specific cloud services. On the 

consumer side, another connector instance can be used to fetch the provider's catalogue and 

request access to the desired data assets. 
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Fig. 2. OPC UA CS Machine Tool 

The proposed architecture describes a robust software pipeline from the Shopfloor to 

the cloud based on open-source software. At its core, the architecture encapsulates a multi-

tiered approach, orchestrating the collection and linking of operational (OPC UA) and 

engineering data (ERP/MES) originating from different sources of the Shopfloor and 

Topfloor level. Next, digital twin-based data aggregation and referencing as well as secure 

and sovereign data transmission via Gaia-X dataspaces is implemented, as shown in Fig. 3. 

To this end, it enhances the base architecture described in [9] with Linked Data concepts to 

support intelligent analysis and decision-making for federated services. 
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Fig. 3. System architecture within a company 

3. IMPLEMENTATION 

Based on the proposed architecture, an exemplary implementation for the use-case of 

tool wear predicting for milling machines is described next, including the data description, 

the data pipeline as well as the integration of federated learning algorithms. 

3.1. SEMANTIC MODELS FOR PRODUCT AND PROCESS DATA 

To draw conclusions on the factors influencing product quality and production 

performance, the combination of data on processes, products, and resources is necessary.  

A flexible data architecture should allow for integration of observed objects and their 

attributes at any time while semantic models help to organize the data by capturing structural 

as well as provenance information. The proposed approach is based on the LinkedFactory 

(LF) architecture that defines a simple data format and protocol to capture, store, and retrieve 

production data. This web-oriented approach allows to combine the semantic descriptions  

of production systems (stored as RDF) and large amounts of production data (stored in a time 

series database), i.e. from MES or ERP systems and OPC UA servers [12]. The LF uses  

a JSON-LD inspired data format - a lightweight linked data format that employs a simple 

hierarchical structure to represent items and their attributes - and an HTTP-based APIs to 

exchange the data [27] The attribute values are further qualified by a context (organizational 

unit, simulation run, etc.) and a timestamp. Therefore, all LF-JSON data represents time 

series, which can be accessed by item, attribute, and context, as shown in Fig. 4. 

 

Fig. 4. Simple hierarchical data format 
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This approach enables the representation of data for multiple use-cases in different 

views, for example part-, process-, and machine-centric views, exemplary depicted in Fig. 5. 

 

Fig. 5. Different views of production data 

The retrieval of time series data was facilitated by machine data collection from an OPC 

UA communication. In this way, the time series data provided by an OPC UA server is 

serialized into the above-mentioned JSON format to be stored into the instance of 

LinkedFactory, which is accomplished through a specific OPC UA connector. For the 

presented use-case, the information model, shown in Fig. 2, serves as a base for building the 

serialized JSON data. In addition to the data collected as time series data, metadata of the 

produced workpiece and the tool used needs to be stored to add the required semantic to the 

data points. Therefore, a metamodel is created according to the Semantic Aspect Meta Model 

(SAMM), in which Digital Twins are seen as a collection of aspects that supply a domain-

specific view on an asset using RDF vocabulary [28]. SAMM describes in a formal and 

therefore machine-readable format the structure of an aspect, i.e. the physical unit and the 

possible value range. For the metamodel of the underlying use-case, the properties of the 

workpieces and the machine tools (parameters, their unit of measurement and their 

limit/threshold) were described (see excerpt in Fig. 6) since they are currently not included in 

the existing OPC UA information models (Fig. 2). The depiction in Fig. 7 shows exemplary 

how the three different views (machine, workpiece, and tool) are linked among each other. 

Based on the machine runs, the start and end times of the production of  

a workpiece are tracked. During the presented run on the machine “Maho” with the given 

time the workpiece “wp-3” was manufactured with the machine tool “X1_Fed_X_Pro”. In 

the milling process, the variable “spindleCurrent” includes the time series data of the spindle 

current, shown here only for one datapoint. The produced workpiece “wp-3” originates from 

a specific raw material or previous production step with a given hardness and tensile strength. 

Furthermore, the production process by which the workpiece was machined in the given 

production time is shown, e.g. “Drilling”. Moreover, the designated machine tool 

“X1_Fed_X_Pro” can be identified with a specific Data Matrix Code (DMC) and had the 

following process values (feed and rotational speed). The previous explanation points out 

different representations of the data stored in the LinkedFactory instance for the machine, 

workpiece, and machine tool data. These are instance data and time series data as JSON-based 

format as well as semantic description as RDF models. With this regard, it is possible to use 

the query language SPARQL to merge the data sources into one result. 
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Fig. 6. Semantic Description in RDF 

 

Fig. 7. Connection of different time series items for machine, workpiece and tool (data linking)  

An extension leveraging so-called federated queries allows to connect with LF HTTP-

APIs [29]. For fetching time series data related to a particular item with SPARQL, federated 

queries are used with a custom service extension to retrieve the data. In conclusion, it can be 

stated that the LF approach provides a standardized format for managing time series data 

emerging from diverse sources and enriches it with the according semantic behind. With the 

LF SPARQL endpoint interface data frames can be retrieved, filtered, and combined for 

building and training machine learning models or to perform other data analysis.. 

3.2. DATA PIPELINE 

For the pipeline it is assumed that the AAS of a machine or tool is created and registered 

once the asset exists in the company, as it is supposed to represent the entire life cycle of an 

asset. Fig. 8 illustrates the data pipeline from asset registration to the transfer of digital twin 

information via a shared data space. The LinkedFactory uses the digital twin information 
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stored in the AAS, i.e. the OPC UA endpoint references, to configure its connectors and 

retrieve the required information directly from the different source systems. This is 

particularly useful for time series information, as a lot of machine data is generated at a high 

cycle frequency on the production floor and OPC UA only propagates variables after a 

change. The LinkedFactory APIs for managing the meta model and the time series data are 

implemented within a platform called LinkedFactory POD. This is a Java-based software that 

provides the LF web APIs and several backends for storing RDF models and LF-JSON-based 

time series data. The linked data output is written to a storage location, that is then referenced 

in the AAS as “External Segment” [30] and catalogued via its data address by the EDC 

connector for data transfer. On the consumer side another EDC connector instance in the 

shared data space can be used to fetch the provider's catalogue and request access to the 

desired AAS properties. It is essential to highlight that the storage references are only used 

by the provider’s EDC connector to retrieve the actual data. References are not shared with 

the consumer and the consumer does not access the storage locations. 

 

Fig. 8. Sequence diagram of the proposed data pipeline 

3.3. EDC AAS EXTENSION 

Unlike FA3ST [31], the Eclipse BaSyx project does not yet feature an AAS extension 

for the EDC connector that automatically catalogues entries from Asset Administration 

Shells. Therefore, a custom service extension had to be implemented to periodically check 
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the AAS registry for any changes to the registered administration shells and update the 

catalogue if necessary. The update process can also be triggered using MQTT events, for 

example from the LinkedFactory. To avoid the cataloguing of all AAS entries, which could 

unintentionally give away information about the overall structure of the Asset Administration 

Shells once the catalogue gets fetched by a consumer [9], an entity of the AAS metamodel 

attribute “HasExtension” [32] is used as an indicator to whether the entry should be 

catalogued or not. The flag of type Boolean can be set for each level of the metamodel 

hierarchy: AAS, SubModel, SubModelCollection or property. If the flag is negated at 

runtime, the corresponding catalogue entry and all subordinated AAS elements are removed 

recursively. Additionally, a second extension entity of type String was added to enable the 

automatic policy assignment from an expandable set of pre-defined policy definitions, for 

example “confidential-policy” or “ML-training-only-policy”. After cataloguing an asset, a 

policy that matches the entity name is assigned. This allows for automatic linking of policies 

and assets beyond a single default policy for all assets. 

3.4. FEDERATED LEARNING 

Federated Learning represents a paradigm shift in machine learning, where the training 

of algorithms is decentralized across multiple devices or systems, known as nodes, without 

exchanging the data they hold. This approach is particularly beneficial in scenarios where 

data privacy, security, and sovereignty are of paramount importance. The integration of the 

Eclipse Dataspace Connector with the GAIA-X Federated Service, operating a Federated 

Learning agent, marks a pivotal step in the data flow from shop floor to machine learning in 

the cloud. 

The Federated Learning Agent, utilizing data facilitated through the EDC connector, 

enables the aggregation of data from diverse participants into a unified machine learning 

model. This process builds on the GAIA-X guarantee of data sovereignty and extends it for 

the development of machine learning models addressing core concerns about participating in 

machine learning efforts with an emphasis on maintaining privacy. The Federated Learning 

Agent retrieves sample data from the Data Provider using the EDC connector. It then extracts 

the data schema, which becomes the basis for registering the data source within the Federated 

Learning Platform. This procedure allows the Federated Learning Platform to employ its 

patent-pending federated pipelines for data alignment and preprocessing, ensuring dataset 

consistency across different parameters such as frequency and field availability. These 

pipelines play an essential role in the preparation of data for machine learning, performing 

critical operations, such as data normalization [33]. As federated learning sessions are 

initiated, the Federated Learning Platform dispatches tasks to the Federated Learning Agent, 

as depicted in Fig. 9. The Agent then processes these tasks using the local data while adhering 

to the data privacy and security standards set by GAIA-X. This deployment offers a scalable 

and flexible solution providing the required memory and computational resources when 

needed while maintaining data privacy and security. A combination of feature extraction on 

mechanical signals like forces, torques, and vibrations, along with a deep learning architecture 

is used to provide a robust modelling approach. The Federated Learning model architecture 
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is designed to forecast tool wear with high precision. It is built around stacked recurrent neural 

network (RNN) layers and employs nonlinear regression to effectively model the temporal 

dependencies inherent in the tool wear process. The rich set of dynamically computed 

features—encompassing statistical, Fourier, and Wavelet transformations—play a critical 

role in the model's success. These features, computed on a rolling basis, introduce an 

additional computational burden but are indispensable for capturing the nuanced behaviours 

indicative of tool condition.  

 

Fig. 9. FL data flow with EDC and Federated Learning Agent 

This additional computational burden highlights the need for a flexible IT infrastructure 

to efficiently provide the required compute and memory. In the FL implementation, the 

FedAvg algorithm applies as the primary federated learning method, leveraging its efficacy 

and simplicity in model update aggregation [34]. In addition, for environments where data 

sources are markedly heterogeneous, the concept of Clustered FL is incorporated as an 

advanced strategy to enhance performance by grouping similar datasets for training [35], thus, 

optimizing the learning process for data diversity. 

The implementation of the proposed architecture and validation experiments are in 

progress. Detailed results will be presented in a subsequent contribution that focus on the 

practical aspects and data analysis. 
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3.5. LIMITATIONS 

The presented implementation primarily describes an architecture for data provisioning 

and has some limitations regarding the digital twin-based data exchange on the consumer 

side. The custom EDC connector extension does not yet allow to automatically synchronize 

Asset Administration Shells across company boundaries. Therefore, the consumer needs to 

know or identify which asset to request from the catalogue listing. One general limitation is 

the lack of a timestamp for AAS entries that could serve as an update indicator for 

synchronization purposes. The utilization of the AAS “HasExtension” attribute enables the 

automatic assignment of a suitable policy to an asset in the EDC connector. However, this 

also means that the policy templates need to be managed and maintained. Finally, the pipeline 

does not yet provide an easy-to-use Plug&Play solution for SMEs and has no graphical user 

interface to review the EDC connectors catalogue. 

4. CONCLUSION AND SUMMARY  

In conclusion, this paper presents an approach to address the complex challenges 

inherent in collaborative value creation networks within the manufacturing sector using the 

example for tool wearing prediction in cognitive production. By leveraging existing AAS 

digital twin standards, Linked Data concepts and GAIA-X federated services, it proposes a 

robust software pipeline for the secure and sovereign exchange of knowledge. Thereby the 

paper offers a proof-of-concept architecture, to orchestrate a seamless integration of disparate 

systems, focused on interoperability and standardization within industrial settings. The 

integration of the LinkedFactory approach in the solution enables the usage and querying of 

annotated time series and semantics data in order to have complete production data sets that 

allows for the potential outsourcing of complex data analysis tasks. The extension of the EDC 

connector for BaSyx, aimed at mitigating the inherent limitations of existing systems [9]. 

Using federated learning and the cohesive collection, aggregation, and transmission of data, 

the solution sets a foundation not only for the specific use-case of machine tool lifetime 

prediction but also for extending to broader manufacturing challenges. By prioritizing data 

sovereignty and transparency, while also facilitating intelligent analysis and decision-making, 

the proposed architecture emerges as an enabler for future collaborative, data-driven 

manufacturing applications. In summary, the solution outlined in this paper represents a step 

forward in unlocking the potential of distributed data for value creation in manufacturing. It 

emphasizes the importance of collaboration among stakeholders and the necessity of secure 

and sovereign knowledge exchange in driving innovation and efficiency within the industry. 
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