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AUTOMATIC DETECTION OF AXES FOR TURNING PARTS 

This paper delves into a critical aspect of Computer-Aided Production Planning (CAPP): the automated detection 

of the main rotational axis in turning parts within Computer-Aided Designs (CAD). The identification of the 

principal turning axis in CAD models presents numerous opportunities in the field of CAPP. In this study, the 
authors employ advanced surface segmentation techniques to analyse the surface geometry, pinpointing rotational 

surfaces within the CAD model. Subsequently, significant features are extracted from these identified rotational 

surfaces, and the necessary data for rotational centers are gathered. By fine-tuning the weighting of the data 

gathered, the approach can be tailored to suit various planning strategies. This approach has the potential to 

significantly enhance both the efficiency and accuracy of the automated production planning process for turning 

parts in CAPP.  

1. INTRODUCTION 

The design and manufacturing phase plays a crucial role in the product development 

process. Process planning serves as the essential bridge between design and manufacturing, 

involving the strategic selection of required manufacturing processes and the systematic 

determination of their sequences. This aims to efficiently and competitively translate a 

designer's conceptualized ideas, specifically the designed part, into a tangible component [1]. 

The conventional method of process planning, relies on the process planner examining the 

part drawing and manufacturing specifications. This involves identifying comparable parts or 

features and recalling previous processes. A substantial amount of preparatory work must be 

conducted before conclusive decisions regarding a manufacturing plan can be reached [2]. In 

the design stage, diverse CAD technologies have played a significant role in shaping the 

design process. Concurrently, within the production domain, numerous Computer–Aided 

Manufacturing (CAM) technologies have had a marked impact on the process of material 

removal. Regarding the integration of design and manufacturing, CAPP technologies have 

played a crucial role. CAPP is a modernized approach to managing manufacturing processes, 
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replacing the reliance on individual expertise with software-driven solutions. Instead of 

depending solely on human domain experts to devise production instructions based on design 

criteria and facility capabilities, CAPP utilizes algorithms and software tools to generate 

standardized plans, minimizing variability and streamlining the manufacturing process [1]. 

CAPP proves highly promising in bridging information between CAD and CAM systems, 

functioning as an automated decision support system for planning the manufacturing process 

of the product [3]. Planning the machining process for a part is a complex undertaking 

involving various subtasks such as feature recognition, machine selection, tool selection, 

setup planning, and operation sequencing [4]. 

Currently, despite the advancements in manufacturing technology and automation, the 

integration of CAD and CAM systems does not meet the desired level of closeness. The 

process planning stage, primarily focused on interpreting design drawings, is often regarded 

as a bottleneck in the information flow between CAD and CAM. One proposed solution to 

this issue is the implementation of automated feature recognition [5]. Feature recognition 

constitutes a pivotal sub-discipline within CAD/CAM, centring on the development and 

deployment of algorithms designed to identify manufacturing significance within CAD 

models. It is aptly deemed an essential and foundational element integral to the automation 

and seamless integration of both design and downstream applications [6]. The initial phase in 

the feature recognition process for turning parts involves the identification of the main turning 

axis. Once this axis is ascertained, the turnable component can be deconstructed onto a two-

dimensional plane, thereby streamlining the subsequent feature recognition stage. 

In the context of axisymmetric components, a discernible turning axis, around which the 

manufacturing process typically revolves, is readily identifiable to the human observer with 

a single glance. Object recognition, an impressive cognitive ability of the human brain, is 

notable for its capability to discern patterns of light received by the eye, accounting for 

variations in viewing angle, ambient lighting, and distance associated with a given object [7]. 

Regrettably, the execution of a seemingly straightforward task, such as identifying the turning 

axis for axisymmetric components, proves to be a computationally intricate challenge. Much 

like the complexities inherent in the field of feature recognition, the discernment of the turning 

axis requires the application of sophisticated algorithms. 

This paper is motivated by the need for efficient CAPP, where pinpointing turning axes 

is a crucial first step. This identification is key to streamlining the workload in the planning 

of turn/mill parts. A tool that adeptly analyses the main axis serves as a cornerstone, 

facilitating the acquisition of other necessary CAPP elements. The overarching goal is to 

achieve automated manufacturing planning by systematically leveraging the insights gained 

from a thorough analysis of the main axis. 

2. RELATED WORK 

Advanced manufacturing technologies require automation technology that is flexible, 

fast, and reliable, as it is an indispensable characteristic for their successful implementation 

[8]. At the present level of technology, CAPP systems are poised to bridge a significant gap 

in manufacturing tasks, representing another stride toward achieving complete automation in 
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production systems. CAPP systems streamline the process planning task by automating it, 

reducing the manual effort involved. Considerable preparatory work is necessary before 

reaching final decisions regarding a manufacturing plan [2]. Employing CAPP can 

significantly decrease the workload in translating CAD models into process plans. Extensive 

research has focused on the integration of CAD model data into process planning systems [9]. 

Significant benefits can result from the implementation of CAPP. In 2020, the 

manufacturing sector in Europe employed nearly 35 million individuals, constituting 15% of 

the continent's Gross Domestic Product (GDP) [10]. In a detailed survey of twenty-two large 

and small companies using generative-type CAPP systems, the following estimated cost 

savings were achieved: 

1. 58% reduction in process planning effort, 

2. 10% saving in direct labor, 

3. 4% saving in material, 

4. 10% saving in scrap, 

5. 12% saving in tooling, 

6. 6% reduction in work-in-process [11]. 

Considering the scale of the manufacturing industry, it's evident that implementing 

CAPP technologies can significantly reduce costs and enhance efficiency. In the context of 

turning processes, the initial step is automatically detecting axes to initiate the use of CAPP. 

Axis detection within CAPP operations is essential for determining the orientation of 

CAD files, facilitating their alignment along specific axes, and achieving the Maximum 

Turnable State (MTS). The necessity for axis detection arises from the diversity of CAD 

software and drawing conventions, wherein different software packages may interpret the XY 

plane as the top-down plane, leading to inconsistencies even within the same organization or 

drafting team. Furthermore, there isn't a universally agreed-upon definition for a main 

rotational axis, and it's possible for there to be multiple solutions to a given problem. For 

instance, a sphere possesses an infinite number of axes. 

In CAPP contexts, addressing these orientation discrepancies traditionally involves 

manual intervention or the imposition of constraints by programmers mandating a specific X-

axis orientation for the part. However, such manual interventions or constraints are 

impractical in fully automated systems, necessitating software solutions to adapt to varying 

part orientations.  

Axis detection not only resolves orientation issues but also facilitates the calculation of 

the MTS for parts. The MTS signifies an intermediate state during manufacturing where 

further material removal by turning would result in surface imperfections on the final part. 

Conceptually, the MTS corresponds to a solid of revolution. Recognizing the MTS is pivotal 

in devising efficient process plans for Mill/Turn operations, where turning processes offer 

superior efficiency compared to milling. Consequently, identifying the MTS is fundamental 

for optimizing production strategies, as highlighted by Yip-Hoi and Dutta, 1997 [12]. 

2.1. CAPP 

CAPP serves as the linchpin connecting various stages in the design and manufacturing 

processes by optimizing conditions. Within Computer Integrated Manufacturing (CIM) 
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systems, the role of developed CAPP systems is pivotal for advancing manufacturing 

engineering. Fig. 1 provides a concise overview of the position of CAPP within the 

manufacturing process. 

 

Fig. 1. CAPP processes and their role in manufacturing 

However, the term CAPP has not been used uniformly since around 1965. CAPP is 

described as use of computer technology to assist in the planning of manufacturing processes. 

This includes activities such as determining the sequence of operations, selecting appropriate 

tools and equipment, estimating process times and costs, and generating instructions for 

manufacturing operations. CAPP systems typically integrate with CAD systems to utilize 

product design information in the planning process, aiming to improve efficiency, accuracy, 

and consistency in manufacturing planning and execution.  

Different authors have described CAPP in different ways. For instance, Yusof and Latif 

[13] characterize CAPP as utilizing computer technology to support process planners in their 

planning tasks, recognized as a crucial component of CIM. This encompasses identifying the 

processes and parameters essential for converting a block into a final part or product.  

While Yusof and Latif gave a narrow description for CAPP, Isnaini and Shirase gave a 

wider description for CAPP. Isnaini and Shirase [3] has included several steps into the 

category of CAPP. These steps are selection of manufacturing resources, selection of cutting 

condition, selection of tool path, selection of setup and, selection of manufacturing operation 

and their sequences. 

What unites both descriptions are their shared acknowledgment of the utilization of 

computer technology to assist planners in their planning tasks. This entails leveraging 

software and digital tools to streamline processes, optimize resource allocation, and enhance 
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overall efficiency in manufacturing planning. Additionally, they both underscore the 

significance of CAPP within the broader framework of computer integrated manufacturing. 

This recognition highlights the pivotal role that CAPP plays in integrating various 

manufacturing processes and technologies to achieve seamless production workflows and 

improve overall productivity. 

The primary functions of CAPP operations revolve around selecting the appropriate 

machine tool, machining operations, cutting tool, and determining the cost and time required 

for part production. These operations start by considering both the available facilities and the 

desired quality standards for the manufactured parts. Subsequently, the CAPP algorithm is 

applied to the manufacturing process, aiming to achieve optimized conditions for part 

production that align with the specified quality standards and operational constraints [14]. 

The conceptualization of process planning through computerized means traces its 

origins back to 1965, as articulated by Neibel [15]. Subsequent to this seminal work, the 

domain of CAPP has witnessed a profusion of research endeavors [1]. 

Kyprianou is credited with pioneering the concept of feature recognition, which involves 

identifying topological and geometric patterns within CAD databases and then comparing 

them to characterize specific shapes, known as features, that require identification [16, 17]. 

Following Kyprianou’s work, other ideas are incorporated into the research. Face adjacency 

graphs are developed for boundary representation of solid objects by Ansaldi in 1985 [18]. In 

1984, Henderson developed a rule-based feature detection which uses a database containing 

edge, face and vertex information of predefined features [19]. In 1982, Woo conducted early 

research in feature recognition by identifying cavities in objects using Constructive Solid 

Geometry (CSG) representations. This method relied on spatial relationships among primitive 

volume faces. In a subsequent study in 1983, he devised an algorithm to detect features by 

decomposing objects into a series of volumes. However, the algorithm's effectiveness varied 

for different shapes, and the resulting volumes were not always primitive solids [20, 21]. 

In 1990, Sahay et al. [22], pioneered feature recognition in cylindrical shapes by 

introducing a method comprising a systematic six-step process for decomposing a 2D 

representation of a cylindrical turning part: 

1. Initial pre–processing of geometric data to prepare for analysis. 

2. Categorization and precise marking of edges to delineate key structural elements. 

3. Extraction of feature subgraphs to identify distinct geometric patterns. 

4. Classification of features into simple and complex categories based on their 

structural complexity. 

5. Structuring a hierarchical organization of complex features to establish relationships 

and dependencies. 

6. Precise identification of features through a rigorous analytical process. 

This methodological framework not only laid the foundation for feature recognition in 

cylindrical shapes but also underscored the importance of systematic and structured 

approaches in geometric analysis and feature identification in manufacturing processes. 

Sahay et. al. proposed a method that operates on 2D representations of turning parts. 

These representations are obtained manually and utilized within the algorithm to detect 

features. Obtaining the cross-section of a turning part manually essentially entails performing 

all the work to calculate the maximum achievable state for turning operations. 
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In the context of CAPP and CIM, the ultimate objective is the full automation of every 

stage to achieve a manufacturing planning system devoid of human intervention. The 

detection of the main rotational axes of turnable parts assume a critical role in automating the 

process of feature detection within such parts. 

2.2. AXIS DETECTION 

The difficulty of detecting a main rotational axis arises from the fact that functional 

components do not consistently exhibit axisymmetry, although they may possess some level 

of axisymmetry that renders them suitable for turning operations either before or after 

undergoing other, more costly machining processes. Consequently, there is a need for  

a precise method to approximate the axisymmetry of a part with arbitrary geometry around  

a specified axis [23]. 

This problem is scarcely addressed in literature due to its perception as a designer-

centric issue, presumed to be resolved through human intervention. A few methodologies 

resort to volume decomposition to ascertain the rotation axis, which proves ineffective for 

non-axisymmetric features such as milling features. Zubair and Mansor [24] found it 

necessary to incorporate a defeaturing process into their algorithm to proceed with volume 

decomposition effectively. Their defeaturing operation involves selecting a planar face from 

the front plane of a half-section part model body for the revolve process. The resulting 

revolved body is subsequently subtracted from the original part model using Boolean 

operations to eliminate features that lack axis-symmetry. 

In 1997, Rico et. al. [25] employed a 2D approach to obtain CAPP procedures, leading 

up to automatic NC programming. By using a 2D approach, the authors eliminated the need 

for defeaturing and the part center automatically became the turning axis. However, this 

approach needs 2D interpretations of complex mill/turn parts to be prepared in addition to 3D 

CAD files. 

One of the solutions to main axis detection in literature is the algorithm developed by 

Zubair and Abu Mansor [26] which focuses on precise axis detection for orienting cylindrical 

part models. Initially, the algorithm identifies planar faces by analysing the normal vectors of 

the x, y, and z-axes within the 3D CAD model. This step enables automatic rotation of the 

CAD model to ensure correct positioning for subsequent calculations and machining setups. 

The meticulous detection of normal vectors of planar faces allows the algorithm to determine 

the vertical alignment of the part and make necessary adjustments for proper orientation. 

Additionally, the algorithm progresses to identify circular faces, enhancing face generation 

for further processing. This meticulous approach to axis detection highlights the algorithm's 

dedication to achieving accurate part orientation, a crucial aspect for successful machining 

operations. 

Another approach is proposed by Behandish et al. [23] for automating the process of 

determining the main rotational axis based on solving an eigenvalue/eigenvector problem. 

They introduced a turnability ratio, can be seen Fig. 2, calculated by revolving the part on 

candidate axes and conducting a 3D sweep. The goal is to maximize this ratio, indicating 

higher efficiency in the turning process. 
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Fig. 2. Turnability ratio [23] 

For axisymmetric parts, the turning axis is obtained through eigen–analysis. However, 

for non-axisymmetric parts, a method to identify the optimal axis is needed. The authors 

proposed a methodology based on evaluating the turnable closure (TC) of the part around  

a candidate axis. This involves computing the volume difference between the original part 

and its TC, aiming to minimize this difference for efficient machining. 

The methodology was illustrated through explicit and implicit approaches, 

demonstrating the computation of turnable closures and turnability ratios. The authors 

emphasized the importance of considering fixturing constraints, tool geometry, and setup for 

a more comprehensive analysis [23]. 

The detection of rotational surface axes can also be done using several methods like 

Hough Transfoms, Random Sample Consensus (RANSAC) [27] or Convex Hull algorithms 

[28]. The Hough Transform presents a significant challenge due to its computational demands 

in both time and space. With industrial parts CAD files containing millions of points, the 

Hough Transform becomes impractical for objects with more than three parameters [27]. Like 

Hough Transform, RANSAC can also be used to detect an axis. However, this approach 

assumes a limited number of cylinders within the scene and may fail in scenarios featuring 

multiple cylinders with varying radii along a single orientation [27]. While such limitations 

are present in both methods, using a Convex Hull algorithm may yield to better results in 

detection of rotational axes. Kreveld and Löffler showed that using the Convex Hull 

algorithms there are polygons called k-gon’s which have a random finite number of sides that 

can represent a circle [28]. 

Within existing literature, numerous methodologies have been explored for determining 

turning features applicable in CAPP, each with inherent limitations. Certain methods involve 

the use of components lacking non-axisymmetric characteristics, thereby positioning the 

primary rotational axis at the center of the CAD drawing. Zubair and Mansor [24] provide an 

illustration of this approach. Certain methodologies specifically employ the 2D depiction of 

revolute solids, as demonstrated by Kim and Cho [29] and Rico et al. [25]. While these 

limitations and prerequisites are suitable for theoretical investigations, achieving full 

automation of a turning process necessitates a robust methodology capable of handling parts 
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in any orientation. To achieve this goal, successful detection of a main rotational axis is 

paramount. 

3. METHODOLOGY 

This paper's proposed method can be applied to parts which have more than one 

cylindrical or conical feature, which have centres lying along the main turning axis. The 

method can be divided into two parts: 

1. Selection of candidate axes 

2. Selection of the most suitable axis 

The initial phase involves the identification of rotational surfaces, marking the 

foundational step towards determining the main rotational axis. Subsequently, the centers of 

the identified features are computed. Following this computation, the calculated centers 

undergo a weighting process, wherein their respective weights are assigned based on 

considerations such as height, radius, and surface area. 

3.1. SELECTION OF CANDIDATE AXES 

In this study, the characterization of rotational faces includes both cylindrical and 

conical configurations. This deliberate selection is predicated upon the prevalence of 

cylindrical and rotational faces as primary components fashioned through turning processes 

in manufacturing. 

3D geometry used in the algorithm is represented using meshes. In meshed solids, 

slicing perpendicular to the rotation axis reveals a surface geometry which is a regular 

polygon. To leverage this characteristic, the detection of rotational surfaces is carried out 

using methodologies from “Approximating Largest Convex Hulls for Imprecise Points” by 

Kreveld and Löffler [28] and “A Survey on Mesh Segmentation Techniques” by Shamir 

(2008) [30]. 

For every identified rotational surface on the component, an axis of revolution is 

computed and stored as a vector that spans the height of the respective feature. A random 

point on the calculated axis of a rotational feature is selected for each rotational surface which 

are going to be used as centre points for detected rotational surfaces in the next steps. 

Subsequently, the cross-product values between the vectors were computed. Notably, when 

the vectors are linearly dependent, implying they are either collinear or anti-collinear, cross-

product values equate to zero. Leveraging this mathematical property facilitates the 

identification of points situated along a specific axis within the 3D file.  

Two vectors are formed using three points, denoted as A, B, and C. These points are 

selected from a pre-existing list of centre points obtained in the preceding step, and the 

iteration process continues until all possible combinations of points are tested for linearity. 

This categorization method facilitates the clustering of points, thereby enabling the 

identification of suitable axes. This systematic approach to point classification serves as a 

foundation for detecting candidate axes within the dataset. The graphical representation of the 

algorithm can be seen on Fig. 3. 
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Fig. 3. Graphical representation of the algorithm 

3.2. SELECTION OF THE MOST SUITABLE AXIS 

Utilization of weighted factors serves as a pivotal strategy, endowing the algorithm with 

the capability to discern and prioritize the significance of distinct features within the given 

part. By assigning appropriate weights to these features, the algorithm is empowered to 

accurately identify a rotational axis which contains the centres of highest weighted centres of 

rotational features, for turning parts, thereby enhancing the overall effectiveness of the 

detection process. 

Cross product of vectors is collected and the values which are zero are considered along 

the same axis and linear, within a certain error margin. Although the error margin is typically 

minimal, the diverse range of file types and representations of CAD files necessitates the 

existence of an error function. 

Exploiting this inherent property facilitates the identification of points coexisting along 

a shared axis. However, establishing co-planar points alone does not ensure the accurate 

detection of a main axis, given the substantial diversity in part complexity and the distribution 

of rotational elements. Creation of two vectors from the rotational centres can be seen in 

Fig. 4. 



M. Erler et al./Journal of Machine Engineering, 2024, Vol. 24, No. 2, 68-82  77 

 

 

Fig. 4. Vector creation from 3 points 

Notably, the presence of numerous small concentric holes, each comprising multiple 

rotational elements, may yield linearly aligned points, potentially leading to computational 

inaccuracies as can be seen in Fig. 5. 

 

Fig. 5. False detection of main rotational axis 

To address the aforementioned challenge, a strategic approach is implemented by 

incorporating a weighted function within the framework. Weights are assigned to the center 

points based on the length, area and radius values of their parent features. This weighting 

approach facilitates the identification of the “heaviest” axis, typically utilized for producing 

turning parts. The weighing function in the algorithm can be seen in equation 1. 

Weight = Face Length ∗ Face Radius ∗ Face Area (1) 

While certain unconventional design elements may lead to erroneous results, these 

designs are not typically manufactured through turning processes and thus fall outside the 

scope of this method. 
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4. RESULTS AND DISCUSSION 

The assessment of the detection algorithm's performance involves the utilization of a set 

of diverse rotational part files. A total of 12 files have been selected for analysis. The results 

of the experiment can be seen on Fig. 6. The disparities between the calculated axis and the 

defined axis are presumed to arise from discretization errors stemming from the discrete 

representation of surface triangles. The meshing introduces specific inaccuracies due to 

rounding errors and the discretization of smooth curves, resulting in a characteristic 

tessellated surface. These errors inevitably lead to some uncertainty regarding the accurate 

size and position of features when extracting information from meshed solid data [31]. As 

Qiu et. al. [32] stated, it is always a tradeoff between triangle count and geometric accuracy. 

 

Fig. 6. Experimental data of 12 rotational parts  

In addition to errors resulting from discretization, uncertainties may arise in the 

geometric analysis. In some instances, multiple solutions might exist, with one being 

preferred by the user. In such cases, the “weights” presented in this algorithm can be utilized. 
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These weights can be adjusted based on user needs for attributes such as surface quality, 

turning machine type, or material type. This ability to influence the outcome of automated 

axis detection allows users to tailor the algorithm to their specific requirements, thereby 

minimizing errors and uncertainties. 

The presented methodology offers the means to compute the main rotational axes of 

components featuring multiple rotational attributes. However, it is important to note that 

components possessing singular rotational attributes, such as a solid cylindrical bar or a 

solitary conical part, are not amenable to assessment using this approach. 

Moreover, the precision of the results is contingent upon factors including the intricacy, 

resolution, and variability inherent in the meshed file. The method involves the pairwise 

matching of points, leading to a cascade of operations with a cubic growth in complexity 

relative to the point count. Consequently, computational expenses may escalate significantly 

for components characterized by an elevated number of rotational features and intricate 

geometries. 

In the investigation conducted by Baturynska [33], an intriguing assertion was put forth, 

positing a noteworthy correlation between the quantity of mesh triangles and the tangible 

dimensions, namely width, thickness, and length, of a given component. This proposition was 

substantiated through the application of two-tailed Pearson correlation tests, underscoring the 

empirical basis of the claim. Moreover, Valentan et al. [34] contributed to this discourse by 

elucidating that rotational element, such as wheels, exhibit a substantially higher prevalence 

of triangles compared to planar surfaces. 

Given the specific focus of our current study on rotational elements, it becomes 

imperative to recognize the pivotal role that mesh, B-Rep or CSG quality plays in shaping the 

outcomes of the main rotational axis analysis. Notwithstanding these limitations, the proposed 

method holds potential for streamlining processes such as CNC machining, 3D printing, and 

other manufacturing endeavors involving elements with rotational attributes. 

The algorithm serves as a foundational framework for the inception and advancement 

of algorithms pertinent to the automated production planning of rotational components. The 

identification of a main axis for turning facilitates the derivation of the maximum turnable 

state, consequently simplifying the analysis of these components to a 2D section 

representation as opposed to a voluminous 3D object replete with numerous vertices. This 

reduction in dimensionality effectively mitigates the computational overhead associated with 

automation processes. 

Primarily, our method excels in the detection of main rotational axes independent of the 

orientation of CAD files. This obviates the necessity for predefined alignments, allowing for 

flexibility wherein the part may exhibit the X axis or any arbitrary vector within three-

dimensional space as the rotation axis. Furthermore, from a computational standpoint, our 

method entails solely basic vector multiplications and comparisons, thereby resulting in 

minimal demands on both memory and processing power. 

Moreover, our algorithm adeptly handles intricate geometries and the presence of 

multiple non-axisymmetric facets, ensuring that the integrity of results remains unaffected by 

such complexities. 

The selection of rotational surfaces includes various facets within the entire component, 

including holes, pockets, chamfers, and cylindrical structures both inside or outside of the 
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part. The rationale behind this inclusive approach lies in the possibility that their respective 

centers may coincide with the main rotational axis. Consequently, all these features are 

considered as potential candidates for incorporation into the proposed algorithm. Despite the 

likelihood of their axes being situated elsewhere, the algorithm is designed to filter out such 

features, ultimately opting for those exhibiting uniaxial alignment and possessing the most 

pronounced significance. 

In addition, rotational surfaces characterized by multiple centers, such as ellipses, are 

deliberately excluded from consideration within the algorithm. This exclusionary measure is 

implemented due to the potential to introduce inaccuracies in the calculations, as the presence 

of multiple centers complicates the unambiguous determination of a main rotational axis. 

Turn-milling generates surfaces that are non-cylindrical, effectively producing 

polygonal shapes as the end result [35], rotational surfaces are rarely complete and usually 

they are cut in different ways to create extra features such as cut cones, key ways or boring 

holes. One part with incomplete surfaces can be seen on figure 7. 

 
Fig. 7. A rotational part with incomplete revolving surfaces 

The proposed method also considers those cut and incomplete rotational faces in 

calculations.  

Future endeavors will focus on integrating the proposed detection method into the 

domain of feature recognition. This integration aims to enhance feature recognition 

capabilities specifically tailored for turning parts, while also effectively discerning between 

milling features. By accomplishing this, the objective is to develop a comprehensive system 

that enables fully automated production planning for mill/turn parts. 

In summary, the future trajectory of this research entails a multidisciplinary approach 

encompassing advanced algorithm development, machine learning techniques, integration 

with existing software ecosystems, and continuous refinement of detection methodologies. 

By pushing the boundaries of feature recognition in turning parts and mill/turn applications, 

the ultimate goal is to empower manufacturers with a robust, fully automated production 

planning solution capable of optimizing efficiency and productivity in machining operations. 
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