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MACHINE LEARNING-DRIVEN RUL PREDICTION AND UNCERTAINTY 

QUANTIFICATION FOR BALL SCREW DRIVES IN A CLOUD-READY 

MAINTENANCE FRAMEWORK 

In today's rapidly evolving industrial landscape, efficient predictive maintenance solutions are essential for 

minimizing downtime and enhancing productivity. This research introduces an adaptive cloud-based model 

pipeline for predicting the Remaining Useful Life (RUL) of machine components, specifically ball screws. The 

pipeline integrates local pre-processing, edge computing, and cloud-based adaptive model training, ensuring data 

privacy and reducing data transmission volumes. The system classifies wear states using various machine learning 

models and predicts RUL through regression analysis, incorporating uncertainty quantification for robust 

maintenance scheduling. The experimental setup includes accelerated degradation of ball screws, with data 

collected via a three-dimensional accelerometer. Feature extraction and data augmentation techniques are 

employed to enhance prediction accuracy. Random Forest and Gradient Boosting models demonstrate superior 

performance, with Random Forest selected for its robustness and uncertainty quantification capabilities. Empirical 

results indicate high prediction accuracy, with Random Forest achieving up to 91% accuracy in Phase 2. This 

cloud-ready predictive maintenance framework leverages scalable cloud infrastructure for efficient data processing 

and real-time updates, offering a practical solution for industrial applications. The proposed approach significantly 

advances the adoption of digital business models within the manufacturing industry, providing a reliable and 

efficient tool for predictive maintenance. 

1. INTRODUCTION 

Since introducing the concept of Industry 4.0 in 2011, many industrial applications have 

been created in various fields [1–5]. Multiple technologies from areas such as the Internet of 

Things, Big Data, AI (especially machine learning), and finally, cloud computing are 

proposed and effectively combined to create modern cyber-physical systems (i.e. a highly 

connected, intelligent, and flexible industrial production facility) [1, 3, 6–8]. This generally 

enables more adaptable and customized production with a remarkable increase in efficiency 
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[9–12]. In practice, however, implementation has many obstacles, especially in the production 

sector of small and medium-sized enter-prises (SMEs). In addition to a lack of financial 

resources, management expertise, and planning strategy, the most critical problem triggers 

are the lack of skilled workers and infrastructure [13–16].  

One important example in this context is the condition monitoring or failure prediction 

of ball screw drives, which are often used in high-precision production machines to convert 

rotary movements into precise linear positioning. The lifetime of ball screws can deviate 

considerably from the standard lifetime [17–19]. For example, an over-supply or undersupply 

of lubricant can lead to an undesirable increase in frictional torque, which can severely affect 

the life of the ball screw and thus lead to premature failure of the ball screw and unexpected 

machine downtime, affecting the overall efficiency of the machine [20]. Against this 

background, it is essential to classify the general state of wear of the components as part of 

intelligent condition monitoring to solve the problem and, based on this, to create a forecast 

of the remaining service life.  

An intelligent yet safe and trustworthy data infrastructure is essential to implement data-

driven models (e.g. machine learning methods). Gaia-X offers one approach, launched in 

2019 and aims to create a secure and transparent environment for data ex-change [21, 22]. 

The data-centric ecosystem brings together research institutions, technology providers and 

companies to generate new business ideas in a privacy-compliant and standardised way 

[23, 24]. The standardized data exchange facilitates and supports implementing Industry 4.0 

applications such as predictive maintenance and real-time monitoring [25]. In this work, 

different machine learning models for the remaining useful life (RUL) prediction of ball screw 

drives are investigated, and a prediction pipeline is pro-posed, which takes the need for  

a cloud-ready approach into consideration and also includes the uncertainty in the prediction.  

2. STATE OF THE ART 

Recent studies have extensively explored various methods to monitor and analyse the 

health condition and wear of ball screws. Schopp (2009) observed increased vibration 

amplitudes and noise levels under artificial loads, akin to worn-out ball screws in industrial 

settings. Although the natural frequency decrease indicates preload loss, the high variance 

due to pitting and bearing ball orientation makes it a suboptimal health indicator. Ex-tending 

this research, Verl et al. (2009) conducted a run-to-failure experiment with a single axis ball 

screw under an artificial load. They used time and frequency domain features correlated with 

wear, such as reversal positioning error and vibration energy, to form a health condition 

indicator. However, they did not pursue RUL estimation. Furthering Verl et al.'s work, 

Walther (2011) included motor currents and position signals, finding distinct vibration energy 

patterns for different wear mechanisms. Nevertheless, the generalizability of these results was 

limited due to the lack of validation on new specimens and long-term trials. Maier (2015) 

incorporated feed drive motor torque monitoring and Hilbert-Huang transform features, 

noting that motor torque varies significantly with position for decom-missioned ball screws. 

Möhring and Bertram (2012) approached the problem differently by using direct 

measurement with strain gauges and temperature monitoring to investigate preload. While 
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long-term testing could detect preload loss, wear detection was hindered by sensor sensitivity 

to thermal changes. Building on these findings, J. Wen et al. (2018) used vibration signals to 

study ball screw health, extracting various features. The RMS of vibration signals served as 

a partial health indicator, showing an increasing trend through different wear stages. They 

created a health condition model using a multiple classifier system and local class accuracy 

technique, though its generalizability remains untested. Denkena et al. (2021) conducted 

experiments on a single-axis ball screw test bench with three preload values, using vibration 

and acceleration data collected via computer numerical control and an accelerometer. 

Principal component analysis on time and frequency domain features identified two key 

components for a preload classification model. Complementing these studies, Schlagenhauf 

et al. (2022) also performed destructive wear tests on ball screw spindles, using high-

resolution pitting damage images for wear progression quantification. Classification methods 

enabled wear quantification based on visual pitting area characterization. 

All the before-mentioned studies use a local processing approach with many 

inefficiencies against better scalable cloud computing approaches. Because of this, we look 

into some cloud-based approaches and industry scenarios for condition monitoring in 

manufacturing. Cloud-based prediction technologies are service-orientated and enable 

multiple companies to offer and manage prediction services over the Internet [26]. For 

example, Villalonga et al. [27] built a global monitoring system for a network of CNC 

machines us-ing local and global control. They evaluated the effectiveness of the architecture 

using bearing failure benchmarks. Using big data analytics or statistical methods in machine 

learning is an increasingly important trend in cloud-based condition monitoring. For instance, 

in [28] Arévalo et al. proposed a cloud-based architecture for condition monitoring using  

a fusion of classification methods based on the Dempster-Shafer Evidence Theory (DSET) 

[29]. The method's functionality has been successfully evaluated for small-scale bulk goods 

plants. In [30], a cloud-based framework for intelligent online diagnostic services was 

developed specifically for machining difficult-to-cut materials. In addition to a knowledge 

based detection algorithm for identifying the occurrence of CTF (Critical Tool Failure), the 

tool life was diagnosed in [30] using a pattern recognition method based on artificial neural 

networks. In [31], a new method for monitoring wear on CNC milling machines was 

developed by segmenting and classifying individual machining cycles based on path length, 

spindle speed, and cycle duration. 

Besides the dominating focus on local processing approaches in the condition 

monitoring of ball screws, the functionally relevant prediction uncertainty aspect has received 

little attention in the literature. Still, the ability to explain data-driven algorithms and 

transparency by estimating and visualizing the uncertainty associated with the model's 

predictions is essential in machine learning to assess whether the model is wrong or doesn't 

know enough to solve the task [32]. Generally, methods for quantifying (epistemic and 

aleatory) uncertainty can be divided into Bayesian and frequentist approaches [32, 33]. While 

Bayesian methods define a priori a hypothesis space of plausible models, frequentist 

approaches consider how well the distribution over the observations implied by each 

hypothesis is consistent with the data [32]. Many methods for quantifying uncertainty have 

been developed in the context of machine learning. For example, formal statistical inference 

techniques for predictions generated by supervised learning ensembles have been developed 
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in [34] to quantify uncertainty in random forests through confidence intervals and hypothesis 

testing. 

Despite the above methods, to the best of our knowledge, there is no comparable 

approach in the field of predictive maintenance of ball screw drives that combines cloud 

technology with machine learning and uncertainty quantification, which, in addition to high 

accuracy, can lead to efficient data storage, processing and updating in real-time.  

3. PROPOSED PREDICTION PIPELINE FOR ADAPTIVE CLOUD-BASED 

MODEL USAGE 

The proposed pipeline consists of three main components to address different issues in 

evaluating sensor signals and analysing them to predict the RUL of machine components. In 

most cases, sensor data for machine components has a relatively high sample rate with 

hundreds or thousands of measurement values per second. This leads to the need for a local 

pre-processing step, which can be carried out via edge computing. It enables simple 

anonymisation, which plays an important role in data protection issues for specific or highly 

relevant production processes. Another benefit of local preprocessing is the reduced volume 

of data that needs to be sent from the machine (on-premise) to the cloud solution, where 

evaluation models are often run as shown in state-of-the-art methods. As shown in Fig. 1,  

a message broker is the interface between the cloud-run data storage and the machine learning 

models for specific predictions regarding the monitored component or machine. 

The main issue with most prediction tasks in the context of RUL predictions is the 

shortage of sufficient data points covering different wear states and operating conditions, as 

seen in section 4. The main reason is that rather complex, time-consuming, and expensive 

experiments are needed to track the degradation process for different components. 

Additionally, due to production tolerances and assembling factors, the intrinsic variety of 

mechanically produced parts increases the variety of possible sensor signals. This leads to the 

necessity of increasing the number of monitored components to increase and generalize the 

prediction quality. This issue can be compensated via adaptive model training like in [35], fed 

through a continuous stream of production data to cyclic train new models on a steadily 

increasing training base or meta-learning approaches as in [36]. This enables continuous 

improvement, especially in the generalization of the models. The different resulting model 

instances can be combined and connected in an ecosystem like Gaia-X to address various 

business models. These business models can accommodate different pricing or data exchange 

scenarios, such as “pay with data,” which benefits both the prediction service provider and 

the prediction consumer. The provider gains increased training data, enhancing model quality, 

while the consumer receives higher quality predictions for more efficient machine or 

component use. Additionally, using an ecosystem with specialized participants and services 

for tasks like storage or computing can increase the efficiency of the individual modules.  

To enable such a scenario, the first step in implementing an example ecosystem to 

showcase the descriptive functionalities is conceptualizing and implementing the modules, as 

shown in Figure 1. In this work, we first focus on the data science perspective to investigate 

a suitable preprocessing and modelling approach. Furthermore, we evaluate different feature 
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based approaches in terms of their ability to predict RUL to consider the whole ecosystem in 

our further research. We used a laboratory set to acquire experimental data, as described 

below. Future work will focus on the capability of different approaches to continuously 

incorporate new training data and increase performance.  

 

Fig. 1. Proposed prediction Pipeline for adaptive cloud-based model usage 

4. EXPERIMENTAL SETUP AND DATA ACQUISITION 

The experimental setup consists of one ball screw, one motor, one hydraulic cylinder to 

apply load and a pair of linear guide rails. The ball screw is mounted on bearings that are 

connected to the test bench and is driven by the motor. During the accelerated degradation 

processes, a force of 30 kN is applied through mechanical screws axially. A three-dimensional 

accelerometer is mounted on the screw nut. The x-direction is defined as the screw nut 

direction of motion, which is the axial direction of the spindle. The y-direction is the opposite 

direction of gravity. The z-direction is defined by the right-hand rule and the two directions 

mentioned above. Due to the durability of ball screws, the degradation process of the ball 

screw is accelerated. Driven by the motor, the screw nut cyclically moves back and forth with 

a velocity of 300 rpm between the two ends of the ball screw, which spans 600 mm. This 

degradation acceleration movement is performed continuously with intermittent interruptions 

for measurements triggered manually, and the experiment is terminated when the experiment 

operator deems the ball screw to be sufficiently degraded based on visual inspection of the 

metal debris. 

The manually triggered data collection of vibration signals in the x-, y-, and z-direction 

is performed daily, with multiple measurements throughout the day. During measurement 

sessions, the hydraulic cylinder applies an axial load of 2 kN. Each time a measurement is 

made, the ball nut is moved from one end of the spindle to the other, i.e. end-to-end, with no 

turnaround, with a velocity profile shape as accelerated degradation. While the target velocity 
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for accelerated degradation is only 300 revolutions per minute, three measurement samples 

with individual end-to-end velocities (Speed 1 = 300 rpm / Speed 2 = 450 rpm / Speed 3 = 

600 rpm) are collected during each measurement session. The time intervals between 

measurements are approximately 1 hour. The number of measurements per day is regular. 

Data is collected on two ball screws of the same model and specification, which all undergo 

the same accelerated degradation resulting in two data sets (dataset 1 and dataset 2). This 

paper uses the measurements with a target velocity of 450 rpm (Speed 2) for the following 

RUL modelling in the degradation process. Considering the possible anomalies from the 

measurement sensors, an outlier filtering is performed on the raw vibrational signal data as 

described in [37]. The first quantile (Q1, 25th percentile) and third quantile (Q3, 75th 

percentile) of the data are used for filtering. The interquartile range (IQR), calculated as the 

difference between Q1 and Q3, measures statistical dispersion and defines the range where 

most data points lie. Outliers are values significantly higher or lower than the majority of data 

points. The outlier boundaries are set as described in (1), which is a generous range that 

permits a wide range of data points to be considered non-outliers. Data points detected outside 

the outlier boundaries are not considered for the following feature generation. 

𝑄1 −  6 ∗  𝐼𝑄𝑅 ∪  𝑄3 +  6 ∗  𝐼𝑄𝑅 (1) 

5. FEATURE-BASED WEAR-STATE PREDICTION 

Feature extraction is performed on the filtered experimental datasets. The evaluation and 

selection of a feature selection method are performed in tandem with the evaluation and 

selection of data augmentation methods to enhance the existing data. The performances of all 

combinations of the feature selection and data augmentation method candidates for phase-

wise regression (wear state-specific regression model) are compared via the achievable 

accuracy and used as the basis for method and feature selection. Therefore, features are 

extracted from both experimental datasets and augmented datasets. In this pa-per, 28 common 

features for RUL-prediction tasks were chosen (see Table 1).  

The precondition for selecting features is determining a feature selection method. The 

methods used for filter-type feature selection are Principal Component Analysis (PCA), 

which performs and evaluates a dimensionality reduction of correlated data, and the Laplacian 

score, which evaluates the ability to maintain the local structure [38]. The features considered 

are limited to only features from the sensor signal of the x-axis or features of the sensor signals 

from all three x-, y-, and z-directions. Table 2 shows the top 5 selected features for the 

considered signal cases. Rank 1 represents the Lapcian score ranking of a feature for speed 1, 

and correspondingly, Rank 2 represents the ranking of the feature for speed 2. 

The subsequent data augmentation can enable coverage of the unexplored input space, 

avoid overfitting, and improve model generalization [39]. Since there is no standard for data 

augmentation in this field, the data augmentation settings used in the work of Um et al. [39] 

are used as the basis for setting the hyperparameters of the different data augmentation 

methods in this paper and the following methods from [40, 41] are applied: 
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- Jittering: slightly decreasing or increasing the oscillation data randomly to simulate 

real data fluctuations.  

- Interpolation: pattern mixing generates extended data points by estimating new data 

points around known points. 

Table 1.  Common features for RUL-prediction tasks 

Feature Mathematical Description 

Root Mean Square 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖𝑢

2
𝑁

𝑖=1
 

Variance 𝜎2 =
1

𝑁
∑ (𝑥𝑖𝑢 − 𝜇)2

𝑁

𝑖=1
 

Standard Deviation 𝜎 = √
1

𝑁
∑ (𝑥𝑖𝑢 − 𝜇)2

𝑁

𝑖=1
 

Power 𝑃 =
1

𝑁
∑ 𝑥𝑖𝑢

2
𝑁

𝑖=1
 

Peak 𝑝𝑒𝑎𝑘 = max (|𝑥𝑖𝑢|) 

Peak to Peak 𝑃2𝑃 = max(|𝑥𝑖𝑢|) − min(|𝑥𝑖𝑢|) 

Peak Factor 𝑃𝐹 =  
max (𝑥𝑖𝑢)

𝑅𝑀𝑆
 

Impulse Factor 𝐼𝐹 =  
𝑃𝑒𝑎𝑘

|𝜇|
 

Crest Factor 𝐶𝐹 =  
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 

Form Factor 𝐹𝐹 =  
𝑅𝑀𝑆

𝜇
 

Margin Factor 
𝑀𝐹 =  

𝑃𝑒𝑎𝑘

√1
𝑁

∑ 𝑥𝑖𝑢
2𝑁

𝑖=1

 

Energy 𝐸 = ∑ 𝑥𝑖𝑢
2

𝑁

𝑖=1
 

Envelope energy 𝐸𝐸 = ∑ |ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥𝑖𝑢)|2
𝑁

𝑖=1
 

Zero Crossing 𝑍𝐶 = ∑
|𝑠𝑖𝑔𝑛(𝑥𝑖𝑢) − 𝑠𝑖𝑔𝑛(𝑥(𝑖−1)𝑢)|

2

𝑁

𝑖=2
 

Binned Entropy 𝐵𝐸 = − ∑ 𝑝(𝑥𝑖𝑢) log2(𝑝(𝑥𝑖𝑢))
20

𝑖=1
 

Skew 𝑆𝑘𝑒𝑤 =
∑ (𝑥𝑖𝑢 − 𝜇)3𝑁

𝑖=1

(𝑁 − 1)𝜎3
 

Quantile 𝑄 =
100 × ∑ 𝑥𝑖𝑢 ≤ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑥𝑖𝑢, 0.9)𝑁

𝑖=1

𝑙𝑒𝑛(𝑥𝑖𝑢)
 

Kurtosis 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑ (

𝑥𝑖𝑢 − 𝜇

𝜎
)4

𝑁

𝑖=1
 

Pulse Indicator 𝑃𝐼 =
𝑝𝑒𝑎𝑘

𝜇
 

Frequency Mean 
𝑓, 𝐴 = 𝑤𝑒𝑙𝑐ℎ(𝑥𝑖𝑢) 

𝐹𝑀𝑒𝑎𝑛 =
∑ 𝑓𝑖 × 𝐴𝑖

𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

 

Frequency Main 𝐹𝑀𝑎𝑖𝑛 =
𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 max 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑥𝑢

𝑙𝑒𝑛(𝑥𝑢)
 

Frequency Variance 𝐹𝑉 =
∑ 𝐴𝑖(𝑓𝑖 − 𝐹𝑀𝑒𝑎𝑛)2𝑁

𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

 

Fourier Fast Transformation Coefficient 1 𝐹𝐹𝑇𝐶𝑜𝑒1 = 𝐹𝐹𝑇(𝑥𝑢)[0] 

Fourier Fast Transformation Coefficient 2 𝐹𝐹𝑇𝐶𝑜𝑒2 = 𝐹𝐹𝑇(𝑥𝑢)[1] 

Fourier Fast Transformation Coefficient 3 𝐹𝐹𝑇𝐶𝑜𝑒3 = 𝐹𝐹𝑇(𝑥𝑢)[2] 

Fourier Fast Transformation Coefficient 4 𝐹𝐹𝑇𝐶𝑜𝑒4 = 𝐹𝐹𝑇(𝑥𝑢)[3] 

Spectral Density 𝑆𝐷 = �̅� 

Total Wavelet Energy 𝐶 = 𝑤𝑎𝑣𝑒𝑑𝑒𝑐(𝑥𝑢, 𝑤𝑎𝑣𝑒𝑙𝑒𝑡, 𝑙𝑒𝑣𝑒𝑙)      𝑇𝑊𝐸 = ∑ ∑ 𝐶𝑙𝑒𝑣𝑒𝑙,𝑖
2

𝑁

𝑖=1

𝑀

𝑖=1
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Table 2. Top 5 selected features for speed 1-2 for Laplacian Score x and Laplacian Score xyz 

 Laplacian Score x Rank 1 Rank 2 
Rank 

Sum 
Laplacian Score xyz Rank 1 Rank 2 

Rank 

Sum 

S
p

ee
d

 1
 

RMS_x 0 0 0 RMS_x 0 0 0 

Quantile_x 2 1 3 Total Energy_y 1 3 4 

Skew_x 3 2 5 Spectral Density_y 2 4 6 

Kurtosis_x 4 3 7 FFT Coe4_y 3 5 8 

Pulse Indicator_x 5 4 9 FFT COE3_y 4 6 10 

S
p

ee
d

 2
 

Kurtosis_x 1 3 4 Energy Coe4_y 1 9 10 

Frequency Main_x 2 5 7 FFT Coe2_y 8 8 16 

Quantile_x 7 1 8 FFT Coe3_y 12 7 19 

Frequency Mean_x 3 6 9 Quantile_y 7 16 23 

FFT Coe2_x 4 7 11 FFT Coe4_y 18 6 24 

Using the abovementioned augmentation methods, ten augmented datasets are generated 

from dataset 1 with each augmentation method and used as training data for a preliminary 

regression analysis. The synthetically generated data's feature set is the input for the 

regression model. Meanwhile, the target variable is the RUL value in the form of the 

percentage value of the full lifetime. For which the regression performance, see Fig. 2, is 

calculated via R2-score difference to mean prediction. Here, negative percentage values mean 

a poor ability to capture any data pattern for regression. They indicate a worse performance 

than predicting the mean of target variables for all observations. The best results can be 

achieved for the feature set by Laplacian Score xyz based on speed 1 data. This can be derived 

for all three speeds. For the following feature-based wear state prediction, the features from 

speed 1 for xyz-direction are extracted for the 20 augmented datasets used to train the 

classifier, identifying the given wear state, e.g., phase 1 or phase 2. The original dataset 2 is 

used for testing the classification algorithm. Dataset 1 is used as validation data in the 

following investigation. 

In the next step, the classifiers listed in Table 4 are examined to classify the different 

wear phases. The performance is evaluated and compared using confusion matrices and the 

corresponding accuracy results. A corresponding function is also used to run through all 

combinations of the hyperparameter range under consideration. The unnaturally high 

accuracy of > 99% result is mostly due to the relatively small variance of the augmented data 

from the test set. This is a natural limitation when working with a limited data set, as in this 

paper. 

Table 4 shows an excerpt of the comparison of the classification accuracy results for 

different combinations of classification methods, hyperparameters, and data split. The default 

values are presents for the standard functions from the respective libraries. Based on the 

validation results, the model with the highest accuracy is selected as the final phase wise 

regression classification model, in this case, the random forest. This model identifies via the 

classification in the first stage the wear state of the component. So, if a component is still in 

its steady wear phase or in an exponential wear phase at the later part of its lifetime. 
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Fig. 2. Preliminary regression accuracy 

Table 3. Classification accuracy for Wear State Detection 

Classification Method 

Validation Data Test Data 

with default 

 Hyperparameters 

with optimized  

Hyperparameters 

with the optimized  

Hyperparameters 

Decision Tree 99 % 100 % 92 % 

Support Vector Machine 100 % 99 % 94 % 

K-nearest Neighbor 100 % 100 % 78 % 

Random Forest 100 % 100 % 95 % 

Neural Network NA 100 % 93 % 

6. FEATURE-BASED RUL-PREDICTION 

The classification results determine the current phase of the ball screw operation. The 

data from the feature space is fed into the regression model corresponding to the individual 

phase. For each model, hyperparameter optimization and, thus, a comparison between the 

standard model and the model optimized with hyperparameters are now carried out. The 

model with the better performance is selected based on the prediction's R2 value compared to 
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the true value. The R2 value measures the proportion of the variance of the target value, in 

this case, the remaining service life, in a regression model. The regression accuracies for the 

four investigated methods with different combinations of hyperparameters for the phases are 

shown in Table 1. Furthermore, it can be observed that the accuracies for phase 2 are 

significantly higher than in phase 1. The characteristics of the two phases likely cause this. 

phase 1 is relatively stationary, with a stable and roughly constant degradation rate. 

Degradation accelerates in phase 2. Therefore, the various features considered in the 

regression models may not vary sufficiently for the model to make distinctive RUL 

predictions based on those features in phase 1. 

Table 4. Regression method accuracies comparison for Speed 2 

 Regression Method 

Validation Data 

Phase 1 Phase 2 

Default 

Hyperparameters 

Optimized 

Hyperparameters 

Default 

Hyperparameters 

Optimized 

Hyperparameters 

S
p

ee
d

 2
 Support Vector Machine 25% 20% 4% 8% 

Random Forest 57% 54% 91% 91% 

Gradient Boosting 47% 53% 78% 93% 

Neural Network NA 28% NA 54% 

The two regression methods, Random Forest and Gradient Boosting with the correspon-

ding hyper-parameters, are selected for their similar good predictive performance on the 

validation (dataset 1) in Table 4 A clear correlation can be confirmed for the random forest 

RUL model using visualizations of the predicted and true RUL values, as seen in Fig, 3 (blue 

circles delta to the dotted center line in red). In phase 1, the points are more spread out but 

still show a general clustering trend around the line of ideal predictions. This suggests that 

the model's predictions are reasonably accurate over the entire range of RUL values in phase 

1. In phase 2, the points are more tightly grouped around the optimal diagonal, indicating  

a high accuracy of the model's predictions. Similar observations can be made for the gradient 

boost model. For speed 2, although the values from the random forest generally follow the 

ideal line for both phase 1 and phase 2. Compared to the phase 1 of the random forest for 

speed 1, the predictions for phase 1 of speed 2 deviate more strongly, possibly due to the 

higher speed being closer to the critical speed. Similar observations can again be made for the 

gradient-boosting regressor. The random forest for the RUL prediction was chosen because it 

inherently enables uncertainty quantification.  

Table 5. Validation accuracies for selected regression 

 
Regression Method 

Test Data 

 Phase 1 Phase 2 

Speed 2 
Random Forest with default HP (P1&P2) 68% 80% 

Gradient Boosting with optimized HP (P1&P2) 64% 83% 
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7. UNCERTAINTY INVESTIGATION FOR MODEL PREDICTION 

Random forests are enabled for uncertainty determination due to their ensemble learning 

approach, which constructs multiple decision trees and aggregates the individual trees’ 

results. The individual trees are based on a random data subset and consider a random se-

lection of features at each split. The randomness leads to variability and uncertainty amongst 

all the trees. Therefore, the aggregate result of all the trees reflects that uncertainty. The 

uncertainty of the random forest regression models is calculated after the approach from 

Mentch and Hooker [42]. Figure 3 visualizes the predictions vs. the relative remaining useful 

life values between zero and one and includes the 64%, 95%, and 99% confidence intervals 

around the prediction. Redcolored predictions are outside the possible relative RUL range and 

are, therefore, not plausible. Ideal predictions are represented through a red dotted line 

representing the optimal solution. 

The uncertainty quantification is shown in Fig. 3. For the 1st phase, Fig. 3 (top), the range 

of uncertainty is superior towards the end of the phase, beyond the true RUL value of 0.2. 

This narrower and superior uncertainty range continues to phase 2, shown in Fig. 3 (bottom). 

This can be attributed to the more distinctive features of the 2nd phase, the exponentially 

increasing wear phase. This could suggest that this portion of predictions beyond the true 

RUL value of 0.2 should be classified into phase 2 instead. The rapid in-crease of RMS 

observed in the data at around 20% RUL is also a possible explanation for the sudden decrease 

in the uncertainty range starting from 20% RUL for both models. Considering the scale of 

uncertainties and behaviour of feature trends, the classification of this portion into phase 2 is 

further supported. The mean values, represented by the blue circles in Figure 3, deviate from 

the ideal line. However, the confidence intervals show that both phases' most frequent 

predicted value generally occurs near or on the ideal line. 

 

Fig. 3. Predicted vs true values for regression model with three confidence intervals for the two phases  

In phase 1, reasonable confidence in the predictions can be observed. Here, the first 

predictions at the beginning of the lifetime must be critically evaluated. The resulting pre-

dictions, which lead to the assumption of a nearly complete degraded component, most likely 
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result from run-in effects. To compensate for such effects, a larger study regarding the 

investigated components and datasets is needed to enable differentiation between run-in 

characteristics and classical wear characteristics.  

The predictions in phase 2 are usually very precise and highly confident. Predictions 

with a remaining useful lifetime of less than 15% are especially accurate and made with strong 

confidence.  

8. SUMMARY AND CONCLUSION 

The proposed prediction pipeline for adaptive cloud-based model usage is designed to 

evaluate sensor signals and predict machine components' remaining useful life (RUL). The 

pipeline comprises three main components: local preprocessing via edge computing, data 

transmission through a message broker, and adaptive model training in the cloud. Local 

preprocessing reduces data volume and enhances privacy, while adaptive model training 

improves prediction quality by continuously incorporating new production data. The 

experimental setup involves a ball screw test bench with accelerated degradation, where data 

is collected using a three-dimensional accelerometer. Various preprocessing steps, such as 

outlier filtering, are applied to the collected data to ensure quality. Feature extraction and data 

augmentation techniques are employed to enhance the dataset. Principal Component Analysis 

(PCA) and the Laplacian Score are used for feature selection. The extracted features are then 

used for phase-wise wear state prediction, with different classifiers tested to identify the 

optimal model. Multiple machine learning models were investigated for wear state prediction, 

including Decision Trees, Support Vector Machines (SVM), K-nearest Neighbors (KNN), 

Random Forests, and Neural Networks. These models were evaluated based on their 

classification accuracy using default and optimized hyperparameters. Ran-dom Forests and 

SVMs showed the highest accuracy, with Random Forests being selected as the final model 

due to their robustness and high accuracy in both default and optimized settings. Regression 

models such as Random Forest, Gradient Boosting, Support Vector Machines (SVM), and 

Neural Networks were evaluated for RUL prediction. These models were optimized using 

hyperparameters to improve accuracy, particularly for phase 2, where degradation accelerates. 

The Random Forest and Gradient Boosting models demonstrated the best performance, with 

the Random Forest selected for its superior accuracy and ability to quantify uncertainty. The 

regression models' accuracies were compared using R2 values, with Random Forest and 

Gradient Boosting showing strong predictive performance across different phases. 

Uncertainty quantification is conducted using the Random Forest model, providing prediction 

confidence intervals. The results show high accuracy and confidence in phase 2 predictions, 

while phase 1 predictions require further investigation due to run-in effects.  

The proposed adaptive cloud-based model usage pipeline effectively addresses the 

challenges of predicting the remaining useful life of machine components. The pipeline 

ensures high-quality predictions while maintaining data privacy by incorporating local 

preprocessing, efficient data transmission, and adaptive model training. The experimental 

setup and data augmentation methods enhance the dataset, enabling more accurate and 

reliable wear state and RUL predictions. Investigating different machine learning models for 
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wear state and RUL prediction highlighted the robustness and accuracy of Random Forest 

and Gradient Boosting models. Random Forest, in particular, was selected for its ability to 

handle feature variability and provide uncertainty quantification, making it highly suitable for 

the RUL prediction task. The models' performance was validated through rigorous testing and 

comparison, demonstrating their effectiveness in capturing the degradation patterns of 

machine components. Overall, this research provides a robust frame-work for future 

implementations of adaptive cloud-based prediction models, offering significant benefits in 

predictive maintenance and machine component management. Future work will expand the 

dataset and refine the models to improve prediction accuracy and generalization across 

different operating conditions and component types and address the implementation of the 

different functionalities in an artificial Gaia-X ecosystem. 
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