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DYNAMIC MODEL AND PD CONTROL WITH FORCES COMPENSATION OF 

DUAL-STAGE GOUGH-STEWART PLATFORM  

This paper investigates a dual-stage Gough-Stewart platform. The lower platform is responsible for simulating the 

oscillations of moving vehicles such as cars, ships, and airplanes. The upper platform is connected to devices that 

require either balance stabilization or motion stabilization according to specific requirements. The dynamic model 

of the robot system is derived in a general form based on the Lagrange equations of motion with Lagrange 

multipliers. Using these equations in a compact form, a PD controller with forces compensation in task space is 

designed for the robot system. Oscillation generation and balance stabilization are computed and simulated using 
the kinematic and dynamic parameters of two Bosch Rexroth robots. The computation and simulation results 

demonstrate the dynamic model's accuracy and the controller's effectiveness.  

1. INTRODUCTION 

The robot system comprises two Gough-Stewart platforms (GSP) [1], positioned in 

lower and upper stages. Each GSP has an upper work plate and a lower base plate, connected 

by six legs with universal joints. The leg lengths on both platforms are adjusted using either 

electric motors or hydraulic cylinders. Figure 1 shows the dual-stage Gough-Stewart platform, 

with the lower stage generating oscillations and the upper stage maintaining stability. The 

sensors are attached to the work plates of both stages to directly measure the position, 

orientation, velocity, and angular velocity of these plates. 

The GSP has a high rigid structure and accurate positioning, making it applicable in 

various fields such as flight simulation, robotic surgery, mobile stabilization platforms, 

precision machining, vibration compensation in machining (functions like the hybrid six 

sigma mechanism [2]). Many devices on transportation vehicles, such as cars, ships, and 

______________ 

1 Department of Mechatronics, School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 

Viet Nam 
2 Department of Mechatronics, Faculty of Aerospace Engineering, Le Quy Don Technical University, Viet Nam 
3 Faculty of Industrial & Systems engineering, Hanoi University of Industry, Viet Nam 
* E-mail: hahuyhung@lqdtu.edu.vn 

https://doi.org/ 10.36897/jme/196504 



76  K.B. Phan et al./Journal of Machine Engineering, 2024, Vol. 24, No. 4, 75–92  

 

aircraft, require balance stabilization for items like cooking tables, treatment tables, and 

gangways between ships and offshore rigs [3, 4]. The GSP is used to regenerate the 

oscillations of moving vehicles, creating a semi-natural simulation system for balance 

stabilization control. This approach addresses the high cost, time demands, and complexity 

of conducting stability control research directly on actual mobile platforms across various 

vehicle types and terrains.  

Numerous studies have focused on dynamics modeling and control of GSPs, employing 

motion equations such as Newton-Euler, Lagrange, Kane, or virtual work principles [5–7]. 

Control strategies for GSPs include kinematic control, inverse dynamics control in joint or 

task space, PID, sliding mode, and adaptive controls, etc [8–10]. However, while single-stage 

GSP is commonly explored, studies on multi-stage GSPs are less common due to the 

complexity of its closed-chain structure and high degrees of freedom [9–14]. 

This paper presents a dynamic model and PD control with forces compensation in task 

space for dual-stage GSP, using a multibody approach with Lagrange’s equations and 

multipliers. The paper is organized as follows: Section 1 introduces the study; Section 2 

derives kinematic and dynamic modeling for the dual-stage GSPs; Section 3 describes the 

controller design; Section 4 presents the robot system’s parameters for simulation; Section 5 

discusses results on oscillation regeneration and balance control, followed by conclusions. 

      

Fig. 1. The dual-stage Gough-Stewart platforms 

2. KINEMATIC AND DYNAMIC MODELING 

2.1. KINEMATIC MODELING OF THE DUAL-STAGE GSP 

To derive the kinematic equations for the dual-stage GSP, coordinate frames must be 

attached to the robot's links (Fig. 2a shows the kinematic diagram of the two-stage GSPs, and 

Fig. 2b shows the kinematic diagram of a single GSP at the k-th stage, with k = 1,2). 

The base plate of the k-th robot is denoted as Bk, the work plate (upper plate) of the k-th 

robot is denoted as Pk. The center of the joints on the base plate Bk is labeled as Bki (i = 1..6), 

and the center of the joints on the upper plate Pk is labeled as Pki (i = 1..6). 



K.B. Phan et al./Journal of Machine Engineering, 2024, Vol. 24, No. 4, 75–92  77 

 

The base frame O0x0y0z0 is attached at the center of the base plate of the lower platform, 

with the z0 axis perpendicular to the plate Bk and pointing upwards, and the x0 axis passing 

through the midpoint of the line connecting joints Bk1 and Bk6. The frames Okxkykzk (k = 1,2) 

are attached to the work plates of the corresponding platform at stage 1 and stage 2, where 

the zk axis is perpendicular to the plate Pk and points upwards, and the xk passes through the 

midpoint of the line connecting joints Pk1 and Pk6. The distance from the center of the plates 

to the joint centers on the corresponding plates are a1i, b1i, a2i, b2j, respectively. The leg lengths 

of the robots at levels 1 and 2 are denoted as d1i, d2j, where i, j = 1,..,6. 

The frame Bkixk-1,iyk-1,izk-1,i is attached to the base plate (lower plate), with the origin at 

the center of the i-th joint;  the axis Bkixk-1,i coincides with Ok-1Bki; the axis Bkizk-1,i is 

perpendicular to the plane of the base plate and points upwards. The frame Pkixpiypizpi is 

attached to the plate Pk, with the origin at the center of the i-th joint; the axis Pkixpi coincides 

with OkPki; the axis Pkizpi is perpendicular to the plate Pk, see Fig. 2b. 

 

Fig. 2. The dual-stage Gough-Stewart platforms 

The generalized coordinate vectors, which define the orientation and position in the 

workspace of the work plates of robots 1 and 2, are denoted as p1, p2, respectively: 

 𝒑𝑘 = [𝑥𝑘 𝑦𝑘 𝑧𝑘 𝛼𝑘 𝛽𝑘 𝛾𝑘]𝑇, 𝑘 = 1,2 (1) 

The generalized coordinate vectors in the joint space of the robots 1 and 2 is: 

 𝒒𝑘 = [𝒅𝑘 𝜽𝑘 𝝍𝑘]𝑇 , 𝑘 = 1,2  (2) 
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Where , ,
kk kd θ ψ is the generalized coordinate vectors with components being the lengths 

and angles of the legs of the lower and upper platform, respectively. 

𝒅𝑘 = [𝑑𝑘1 𝑑𝑘2 𝑑𝑘3 𝑑𝑘4 𝑑𝑘5 𝑑𝑘6]𝑇 

𝜽𝑘 = [𝜃𝑘1 𝜃𝑘2 𝜃𝑘3 𝜃𝑘4 𝜃𝑘5 𝜃𝑘6]𝑇 ,  𝑘 = 1,2             (3) 

𝝍𝑘 = [𝜓𝑘1 𝜓𝑘2 𝜓𝑘3 𝜓𝑘4 𝜓𝑘5 𝜓𝑘6]𝑇  

Consider the kinematic loop of the i-th leg at stage k of the robot, as shown in Fig. 3. 

The coordinates of point P in the Ok-1 frame is determined in two ways, corresponding to two 

paths. The transformation from the frame Ok-1xk-1yk-1zk-1 to the frame Pkixkiykizki through the 

two paths is as follows: 

 

Fig. 3. The dual-stage Gough-Stewart platforms 

Path 1: Rotate the frame Ok-1xk-1yk-1zk-1 around the zk-1 axis by an angle ki, then translate 

along the xk-1,i axis by a distance rkb. Rotate the frame Bkixk-1,iyk-1,izk-1,i around the Bkixk-1,i, Bkiyk-

1,i, axes by the angles ki, ki. Translate Bkixkiykizki along the zki axis by a distance dki. 

Path 2: Perform three basic rotations by angles k, k, k and three basic translations 

along the xk-1, yk-1, zk-1 axes to take the frame Ok-1xk-1yk-1zk-1 into alignment with the frame 

Okxkykzk. Rotate the frame Okxkykzk around the zk axis by an angle ki, then translate along the 

xk axis by a distance rkb. 

Following the two kinematic paths at the i-th leg, by determining the homogeneous 

transformation matrices at each step and multiplying the transformation matrices together, we 

obtain the homogeneous matrices that determine the position and orientation of the frame 

Pkixkiykizki relative to the frame Ok-1xk-1yk-1zk-1 as follows: 

 
( ) ( )

( ) ( )

1 1 1,

1, 1, 1,

1 1

2,
1, 2; 1, 6

, , ,

, , , , , , ;

k k k i

ki k i kb k i ki ki ki ki

k k k

ki k k k k k k ki kp ki
k i

r d

x y z r

  

   

− − −

− −

− −

= =

=

=

A A A

A A A
 (4) 
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From (4), since the position of point Pki calculated from both paths is the same, we obtain 

three equations based on the position of point Pki as follows: 

 

   

   

   

1 1

1 1, 2,

1 1

3 1, 2,

1 1

3 1, 2,

1,4 1,4

2,4 2,4 ; 1,..,6

3,4 3,4

k k

i ki ki

k k

i ki ki

k k

i ki ki

f

f i

f

− −

− −

− −

= −

= − =

= −







A A

A A

A A

 (5) 

Thus, for each kinematic loop of the i-th leg, we have 3 equations. Since a single 

platform of the robot has 6 legs, there are a total of 18 equations: 

𝒇𝑘(𝒒𝑘) = 𝒇𝑘(𝒑𝑘)  𝒒𝑘 = [𝜓𝑘𝑖 , 𝜃𝑘𝑖 , 𝑑𝑘𝑖]𝑇 𝑖 = 1, . . ,6 𝑘 = 1,2  𝒑𝑘 = [𝑥𝑘, 𝑦𝑘 , 𝑧𝑘, 𝛼𝑘 , 𝛽𝑘, 𝛾𝑘]𝑇 (6) 

Equation (6) can be simplified to the following form: 

 𝒇𝑘(𝒒𝑘, 𝒑𝑘) = 𝒇18𝑥1(𝒒𝑘, 𝒑𝑘) = 𝒇𝑘(𝑿𝑘) = 0𝑿𝑘 = (𝒒𝑘, 𝒑𝑘);  𝑘 = 1,2 (7) 

Considering both levels of the robot, k=1, 2, we obtain the generalized kinematic 

equations of the two-stage robot system, consisting of 36 equations. 

Kinematic problems: The kinematic problems of a multi-stage platform include the 

forward kinematics problem, the inverse kinematics problem. The forward kinematics 

problem is to determine the position and orientation of the work plate (workspace variables 

pk) from the known joint variables (joint space variables qk or dk), at a specific stage of the 

robot system. The inverse kinematics problem is to compute the variables in the joint space 

(find dk, qk), given the desired motion of the work plate (given pk). 

Velocities computation: The velocities of the rigid bodies (links) in the robot system are 

generally calculated for the k-th stage of the robot. By differentiating the first equation of 

equation (6), we obtain: 

∑
𝜕𝒇𝑘𝜉

𝜕𝒑𝑘𝑖

18
𝑖=1 𝒑̇𝑘𝑖 = − ∑

𝜕𝒇𝑘𝜉

𝜕𝒒𝑘𝑗

6
𝑗=1 𝒒̇𝑘𝑗;  𝜉 = 1, . . . ,18 ⇔ 𝑱𝑃𝑘𝒑̇𝑘 = 𝑱𝑞𝑘𝒒̇𝑘 (8) 

From (8), the velocities of the generalized coordinates in the joint space can be 

calculated: 

 𝒒̇𝑘 = 𝑱𝑞𝑘
−1𝑱𝑝𝑘𝒑̇𝑘  (9) 

Accelerations computation:  

Differentiate equations (8) with respect to time: 

2 2
18 18 18 6 6 6

1 1 1 1 1 1

, 1,..,18
k k k k

ki kj ki ks kl ks

j i i s l ski kj ki ks sl ks

   


= = = = = =

   
+ = − + =

     
     

f f f f
p p p q q q

p p p q q q
 (10) 

Equation (10) is rewritten in the following form: 

 1 2 18

2 2
18 18 6 6 6

1 1 1 1 1

; , , . . .

, 1,..,18

pk k k k k k k

k k k

k ki kj ks kl ks

j i s l ski kj ks sl ks

  




= = = = =

= =

  
= − − + =

    
    

J p g g g g g

f f f
g p p q q q

p p q q q

 
(11) 
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Differentiate equation (9) to obtain the acceleration of the generalized coordinates in 

joint space: 

 
1 1 1

k qk pk k qk pk k qk qk k

− − −
= + −q J J p J J p J J q  (12) 

2.2. DYNAMIC MODELING OF THE K-TH-STAGE GSP 

For convenience in presenting dynamic modeling method of the two-stage GSPs, the 

dynamic model of the k-stage GSP is derived first; then, the dynamic model of the two-stage 

GSPs is combined and solved simultaneously. 

This section presents the dynamic modeling for the k-th stage of the robot as shown in 

Fig.1b. The generalized coordinates and the first and second derivatives of the generalized 

coordinates for the k-th stage of the robot in the dynamic problem include 18 joint variables, 

represented in the algebraic vector qk, and 6 generalized coordinate variables of the work plate 

Pk, represented in the algebraic vector pk. 

Applying the Lagrange equations of motion with Lagrange multipliers, the dynamic 

state of the k-th stage robot system is described by the constraint equations (6) and the 

differential equations of motion: 

( ) ( ) ( ) ( )

( )

*
,

0, 1,2

k k k k k k k k k k k k

k k
k

+ + + + =

= =





M X X C X X X P X Q X U U

f X
 (13) 

Where: 𝑿𝑘 , 𝑿̇𝑘, 𝑿̈𝑘 are the generalized coordinate vector, its first and second time 

derivatives, respectively: 

( , ); ( , ); ( , )
k k k k k k k k k
= = =X q p X q p X q p  (14) 

Mk(Xk) is the generalized mass matrix: 

( )
1,1 1,2 1,24

24,1 24,2 24,24

...

... ... ... ...

...

k k

k k k

k k k

m m m

m m m

=

 
 
 
 
 

M X  (15) 

The matrix Mk(Xk) is calculated as follows: 

( )
1

;;
n

i

Ci i

Ti Ti

T T

ki Ti Ti Ri i Rik k

k k

m
=

=
 

= =
 

+M (X )
r ω

J J

X X

J J J I J  (16) 

With n being the number of moving links at stage k, mi is the mass of the i-th moving 

link. JTi, JRi are the translational Jacobian matrix and the rotational Jacobian matrix of the  

i-th moving link. These matrices are calculated based on the position of the center of mass 

and the angular velocity of the links. Ii is the inertia tensor of the link with respect to the 

coordinate system located at the center of mass. 
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The angular velocity of the i link in the system is calculated using the skew symmetric 

matrix, through the direction cosine matrix Ai of link i: 

 

0

( ) 0

0

iz iy

T

i i i iz ix

iy ix

k k

 

 

 

−

= = −

−

 
 
 
  

ω X , X A A  (17) 

𝑪𝑘(𝑿𝑘 , 𝑿̇𝑘)is the centrifugal and Coriolis matrix, is function of the generalized coordinates 

and velocities 𝑿𝑘 , 𝑿̇𝑘: 

 ( )
( )

( )
( )

( ),
1

2
k k k

T

k k k k

n k k n

k k

 
=  − 

 

 
 
 

C X X
M X M X

E X X E
X X

 (18) 

Where En is the unit matrix of size [24x24]. 

Pk is the [24x1] vector of generalized forces due to potential forces: 

 ( )

T

k

k k

k




=
 
 
 

Π

X
P X   (19) 

Where 
k

Π  is the potential energy of the system. 

Qk is the [24x1] vector of generalized forces due to non-conservative forces: 

  , , .., ,
T

k k k k k
=

1 2 23 24
Q Q Q Q Q   (20) 

Uk* is the [1x24] vector whose elements are the generalized forces of the constraint 

forces at the joints: 

  * * * *

1 2 23 24
, , ..., ,

k k k k

T

k
=U U U U U   (21) 

Uk is the [1x24] vector, with elements representing the driving forces at the legs: 

  
1 2 6
, , ... , 0, 0,0,..., 0, 0,0

k k k

T

k
=U U U U  (22) 

The solution of the dynamic equations (13) are performed when the dynamic 

components in the system are computed. 

The forward dynamics problem of the robot: Given the driving forces at the legs and 

external forces acting on the robot, determine the motion of the work plate. 

By differentiating the constraint equations twice with respect to time, from (13) we have: 

 
( ) ( ) ( )

( ) ( )

*

,

,

k k k k k k k k k k k k

k k k k k k

+ + + =

=

+



M X X C X X X P Q U U

G X X g X X

X
 (23) 

The constraint forces can be expressed in the form of Lagrange multipliers as follows: 

 
* T

k k k
=U G λ   (24) 
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1 1

1 24

18 18

1 24

...

... ... ...

...

Where

k k

k k

k

k k

k k

f f

X X

f f

X X

 

 

=

 

 

 
 
 
 
 
 
  

G  (25) 

Substituting into equation (22) and writing in matrix form, we have: 

( )

( )

( ) ( )

( )

,( )

,0

T

k k k k k k k k kk k k k

k k k kk k

− − − +
=

    
    

    

X C X X X P Q UM X G X

λ g X XG X

X
 (26) 

The equations (26) have 42 equations, with 42 unknowns consisting of 24 unknowns for 

the generalized coordinates, their first and second derivatives, and 18 Lagrange multipliers 

k. 

The inverse dynamics problem: Calculating the inverse dynamics is an important task 

in controlling the parallel robot system to meet the specified requirements. Given the motion 

of the work plate 𝒑𝑘, 𝒑̇𝑘, 𝒑̈𝑘and the external forces Pk, Qk find the motion 𝒒𝑘, 𝒒̇𝑘, 𝒒̈𝑘and 

driving forces Uk at the legs. The motions of the robot legs are solved using the inverse 

kinematics, where the unknowns in the inverse dynamics include the 6 driving forces 

variables in Uk and 18 Lagrange multipliers in k. 

Rewriting the expression 𝑼𝑘
∗ = −𝑮𝑘

∗𝑇𝝀𝑘 and substituting it into the first equation of (13), 

we have: 

( ) ( ) ( ) ( ) ( )*
,

T

k k k k k k k k k k k k k k k
+ ++ = +M X X C X X X P Q GX X X λ U  (27) 

The equations (13) become: 

( ) ( ) ( ) ( )

( )

,
k k k k k k k k k k k k k

k k

+ + + =

=





M X X C X X X P X Q X K y

f X 0
 (28) 

   6 6 *

1 2 6 1 2 1824 18

18 6 24 24

Where: ; , ,.., , , ,..,
Tc T

k k k k k k k k kx

x x

U U U   
 

= = 
 

E
K G y

0
 (29) 

To compute the inverse dynamic equations (28), the inverse kinematics problem in the 

second equation is computed first, and then substituted into the first equation to determine the 

driving forces and Lagrange multipliers, as well as the constraint forces. 

Dynamic modelling of the dual-stage GSPs 

The dynamic equation (13) combined for the two-stage GSPs is written as follows: 

 
( ) ( ) ( ) ( )

( )

*
, + + + =

=

 +



M X X C X X X P Q U U

f X 0

X X
 (30) 
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Where: 

( )
( )

( )

1 1 1 1 1

2 2 2 2 2 2

2

48 1 48 48 48 48 48 1

*

48 1 48 1 48 1 36 1

; ; ; ;

; ; ;

;
x x x x

x x x x

= = = = = =

= = = =

           
           
           

      
      
         

1

1 11 1

2 2 2

1

2

*

*

X X X M C P
X X X M C P

X X X M C P

U f XQ U
Q U U f X

Q U f XU

 (31) 

The equations of motion (30) have 84 equations, with 84 unknowns consisting of 48 

unknowns for the generalized coordinates, their first and second derivatives, and 36 Lagrange 

multipliers . 

3. PD CONTROL WITH FORCES COMPENSATION IN TASK SPACE 

To design the PD controller with forces compensation in the task space, the dynamic 

equations should be simplified into a compact form that represents the relationship between 

the driving force at the legs and the variables in the task space. This requires eliminating the 

Lagrange multipliers, following the method presented in [15]. As previously, the equations 

are first simplified for a single platform, then extended to the entire system for clarity in the 

derivation. 

From (9), we deduce: 

1

k qk pk

k k k

k

k

−

= = =
  
  

   

q J J
X p p

p E
H   (32) 

Where E6x6 is the unit matrix. 

From equations (12) and (32), we obtain: 

1 1 1 1

k qk pk k qk pk k qk qk qk pk k

− − − −
= + −q J J p J J p J J J J p  (33) 

Equation (33) can be rewritten in the form: 

1 1 1 1

k qk pk qk pk qk qk qk pk

k k k k k

k

k k

− − − −

−
= = + = +

    
    

     

q J J J J J J J J
X p p p p

p E E
H S  (34) 

Multiply both sides of the first equation of (13) by: 

T

k k k k k k k k k

T T T T T T

k k k k k k
+ ++ + =H M X H C X H P H Q H G Hλ U  (35) 

Since 𝑯𝑘𝑮𝑘
𝑇𝝀𝑘 = 0 [14], equation (35) becomes: 

k k k k k k k

T T T T T

k k k k k
+ ++ =H M X H C X H P H Q H U  (36) 
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Substitute (9) and (33) into (36): 

 ( ) ( )( )
k k k k k k k k k k k

T T T T T T

k k k k k k k k
+ ++ =+H M H H M S H C H H P H Q HX X Up p  (37) 

Equation (37) simplifies to: 

 
k k k kk k k

+ ++= M C P QT p p   (38) 

Where: 

 (; ); ; ;
k k k k k k k k k k k k k

T T T T T T

k k k k k k k
= = + = = =M H M H C H M S H C H P H P Q H Q H UT  (39) 

From (38), choose the control law [16, 17]: 

               
kP kDk k k k k

= ++ +T K K P Qe e                                                 (40) 

𝒆𝑘, 𝒆̇𝑘, 𝒆̈𝑘are the error vectors for position, orientation, velocity, and acceleration of the 

work plate of k-th platform, respectively. 

    1 2 6 1 2 6
, , ..., , , ...,;

kd kd

T T

k k k k k k k k k k
e e e e e e= − = = − =e p p e p p  (41) 

With the relation as follows: 

 
k k kP kDk k k k

+ = +M Cp p K Ke e   (42) 

From (41), with ( )k kd k k
= − = −e p p p : 

 

1 1

1 1
Where: 

( ) 0

( );

k k kP kD kD k kP kD kP

kD kD k kP kP

k k k k k k k k k k k k

k k

− −

− −

− − = +  + + +  + + =

= + =

M C M C M

M C M

K K K K K K

K K K K

e e e e e e e e e e
 (43) 

The book [17] presents methods for proving system stability based on Lyapunov theory. 

𝑲̄𝑘𝐷, 𝑲̄𝑘𝑃 ,are diagonal and positive definite matrices. 

1 2 1 2
( , ,..., ), 0; ( , ,..., ), 0, 1,2,...6

kP kP kP kPs kPs kD kD kD kDs kDs
diag K K K K diag K K K K s=  =  =K K  (44) 

The above expressions for a single platform are combined to expressions for dual-stage 

GSPs as follows: 

 + ++= M C P QT p p   (45) 

The above expressions for a single platform are combined to expressions for dual-stage 

GSPs as follows: 

1 1 1

2 2 2 2

12 1 12 12 12 12 12 1 12 1
; ; ; ; ;; ;

x x x x x
= = = = = = =
             
             
             

1 1 1 1

2 2 2

T X p M C P Q
T X p M C P Q

T X p M C P Q
 (46) 

 
1 1 1 1 1

2 2 2 2 2

12 1 12 1 12x1 12x1 12x1
; ;; ;

P D

P D

P x D x
= = = = =
         
         
         

K K e e e
K K e e e

K K e e e
 (47) 

Figure 4 presents the block scheme of PD control with forces compensation in task space 

of the dual-stage GSPs. In the control system diagram, the position and velocity of the work 

plates are measured using MRU-PD Motion Reference Units from Inertial Labs, which are 

placed on the work plates of the lower and upper platforms. Additionally, the position and 
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orientation of the work plates can be determined from the forward kinematics problem by 

knowing the values of the joint variables. The external forces acting on the robot can be 

calculated using the dynamic equations or directly estimated based on the method presented 

in [18], particularly in cases where the external forces vary and are difficult to calculate. 

 

Fig. 4. Block scheme of task space PD control with forces compensation 

4. THE KINEMATIC AND DYNAMIC PARAMETERS OF APPLIED ROBOT 

The platforms used for computations and simulations include: the GSP at stage 1 is 

eMotion-1500/2700-6DOF-650-MK1 (referred to as E1500), and the GSP at stage 2 is the 

MicroMotion 600 (referred to as M600) from Bosch Rexroth, Fig. 1. The kinematic and 

dynamic parameters of the lower and upper platform are shown in Tab. 1 and Tab. 2.  

Table 1. Kinematic parameters of the robot 

r1b  (m) r1p (m) 1b (deg) 1p (deg) r2b (m) r2p (m) 2b (deg) 2p (deg) 

1.280 1.101 8.60 20.86 0.354 0.320 14.61 21.56 

Table 2. Dynamic parameters of the robot 

 m (kg) xC (m) yC (m) zC (m) Ixx (kgm2)  Iyy (kgm2)  Izz (kgm2) 

Cross B1i 2.46 0 0 0 0.0046 0.0035 0.0035 

Cyl B1i 150.4 0 0.059 0.544 19.384 18.392 1.539 

Pis P1i 31.63 0 0 -0.375 2.632 2.362 0.046 

Cross B1i 2.46 0 0 0 0.0046 0.0035 0.0035 

Plate P1 238.2 0 0 0.150 63.384 63.384 135.562 

Cross B2i 0.48 0 0 0 3.56e-5 1.18e-5 1.18e-5 

Cyl B2i 9.65 0 0 0.168 0.110 0.110 0.006 

Pis P2i 3.84 0 0 -0.144 0.020 0.020 0.0008 

Cross P2i 0.48 0 0 0 3.56e-5 1.18e-5 1.18e-5 

Plate P2 36.50 0 0 0.120 1.305 1.305 2.566 
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The moments of inertia in Tab. 2 are calculated with respect to the coordinate frame 

attached to the center of mass of each corresponding rigid body. The center of mass 

coordinates are calculated relative to the coordinate frame attached to the local frame, as 

shown in Figure 2 and Fig. 3. 

Leg lengths of the E1500 platform: stroke length: 950 mm; minimum leg length: 

1306.14 mm; maximum leg length: 2256.14 mm. Leg lengths of the M600 platform: stroke 

length 350 mm; minimum leg length: 463.6 mm; maximum leg length: 813.6 mm. 

Figure 5 shows the diagram created in MATLAB/Simulink in combination with 

MSCAdams software to compute and simulate the motions of the robot system. 

 

Fig. 5. Robot system diagram in MATLAB/Simulink and MSCAdams 

5. COMPUTATION AND SIMULATION RESULT 

The PD controller with forces compensation in the task space is applied to the dual-stage 

platform in the study  that the lower platform simulates the oscillations of a ship, while the 

upper platform maintains stable balance. The controller of E1500 platform is modified with 

K1Pi = 10000, K1Di=1000 (i = 1..6) and the controller of M600 platform is modified with K2Pi 

= 10000, K2Di=1000 (i = 1..6).  

The inputs of the work plates: 

The oscillation generated at the work plate of the E1500 simulates the ship's oscillation 

on sea waves at sea state 6, presented in [19], Figure 6. The motion data of the ship is taking 

from [20], sea state 6, wave type (beta): long-crested (unidirectional), wave coming from bow 

(front), wave  angle: 180 degrees. Ship: HMS Norfolk, dimensions: 137 x15x16m. 
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Fig. 6. Oscillations of the ship at sea state 6, wave long-crested [20] 

The set balance position and orientation of the work plate of the M600 platform: 

 𝒓𝑃2 = [0 0 2.403 0 0 0] (48) 

In this case, input data of the orientation and position of the lower work plate are in 

numerical form, velocity is calculated using numerical differentiation. 

Computation and simulation results: 

With the oscillations of the work plate on the E1500 are regenerated in Fig. 7, the 

computation program produces results for position, orientation errors, the motion and driving 

forces of the legs of the E1500 platform, as shown in Fig. 8, 9.  

 

Fig. 7. Oscillations of the work plate of E1500 platform 

The set balance position and orientation of the work plate of the M600 (Fig. 10), the errors, motion and driving 

forces of the legs of the M600 platform, as shown in Fig. 11, 12. 
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Fig. 8. Position, orientation errors of the work plate of  E1500 

 

Fig. 9. Position, velocity, acceleration, and forces of the legs of  E1500 

Simulation results for the E1500 platform: Absolute average position error: 0.2201 cm. 

Absolute average orientation error: 0.0705 deg. Maximum absolute position error: 0.2432 cm. 
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Maximum absolute orientation error: 0.0754 deg. Maximum control force response: 

881.1206 N, Fig. 9. 

 

Fig. 10. The work plate of M600 maintains balance 

 

Fig. 11. Balancing errors of the work plate of  M600  
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Simulation results for the M600 platform: Absolute average position error: 0.0056 cm. 

Absolute average orientation error: 0.0006 deg. Maximum absolute position error: 0.012 cm. 

Maximum absolute orientation error: 0.0021 deg. Maximum control force response: 

103.2423 N, Fig.12. 

 

Fig. 12. Position, velocity, acceleration, and forces of the legs of M600 

6. CONCLUSIONS 

The computation and simulation results indicate that the first platform effectively 

regenerates the required oscillations, with the motion and driving forces on its legs 

continuously calculated. The second platform’s work plate maintains stable balance around 

the target position with minimal error, making it suitable for balance stabilization on maritime 

transportation platforms. 

The paper models the kinematics and dynamics of a complex multi-stage parallel robot 

system with a closed loop structure and a large number degrees of freedom. The kinematic 

and dynamic equations represent the relationships between driving forces, constraint forces, 
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external forces, and the motions of the legs and work plates across the stages of the robot 

system, enabling both forward and inverse dynamic analyses. 

The PD controller with forces compensation enables oscillation regeneration on the 

lower platform to simulate vehicle motion, while the upper platform maintains stability. 

The results validate the dynamic model's accuracy and the controller’s effectiveness, 

highlighting practical applications for oscillation regeneration and balance stabilization across 

different vehicles and platforms. 
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