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ENHANCING EXPERIMENTAL PREDICTION OF SPRINGBACK IN FORMING 

PROCESSES USING ADVANCED FINITE ELEMENT MODELLING 

The springback phenomenon (SBP) is a prevalent, costly, and challenging problem. It occurs in metals during 

sheet metal forming processes (SMFPs). Experimental studies can contribute to significant errors that prevent the 
target data acquisition. Accordingly, this research aims to bridge this gap by choosing other inspection approaches, 

reflected in finite element analysis (FEA) and machine learning (ML) integration, to forecast probable issues of 

SBP in heavily utilized metals across diverse manufacturing domains, namely 99% pure aluminum, 99% pure 

copper, and low-carbon steel. Material deformation, peak forming force, equivalent Von Mises stress distribution, 

and thermal effects are examined under different thicknesses and punch radii. ANSYS simulation results show 

that 99% pure aluminum has the highest springback (6.2%) due to its ductility, followed by 99% pure copper 

(4.0%) and low-carbon steel (2.5%), which has superior dimensional stability. The forming force requirements 

were lowest for 99% pure aluminum (50 kN), moderate for 99% pure copper (75 kN), and highest for low-carbon 

steel (100 kN). 99% pure copper had the highest temperature rise (350°C), while low-carbon steel had the highest 

Von Mises stress (420 MPa), demonstrating its strength but vulnerability to localized stress. The hybrid FEA-ML 

model has effectively and accurately predicted springback angles. The results also show that 99% pure aluminium 
is best for lightweight structures, low-carbon steel for strength-critical designs, and 99% pure copper for high 

ductility needs. 

1. INTRODUCTION 

Springback is a key metal forming process where materials undergo elastic recovery 

following plastic deformation, generating dimensional inaccuracies in the final product. This 

is especially troubling in industries like automotive, aerospace, and manufacturing, which 

require 99% pure aluminium, 99% pure copper, and low-carbon steel. The specific 

mechanical properties of these materials determine their springback behaviour. 99% pure 

aluminium has low yield strength and high ductility, causing springback in bending and deep 

drawing. 99% pure copper has a higher yield strength and work hardening than 99% pure 

aluminium, hence it has different springback qualities. Low-carbon steel has less springback 

because to its higher strength and lower ductility, although predictions are difficult. So, to 
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improve process efficiency, reduce material waste, and ensure dimensional correctness in 

metal forming, springback must be known and predicted. 

Analytical and empirical models are the main methods for forecasting springback, using 

simplified approximations of material behaviour and process circumstances. These models 

are useful for fundamental applications, but they often overlook the intricacies of real-world 

forming processes. 99% pure aluminium, 99% pure copper, and low-carbon steel show 

nonlinear, time-dependent deformation behaviour, making it hard for standard models to 

forecast springback across process conditions. These models generally can't include material 

anisotropy, effective strain rate sensitivity, and temperature effects, which all greatly affect 

springback in real-world applications. These limits show the need for more advanced methods 

that can capture the complex interactions between material properties, forming circumstances, 

and springback behaviour. 

Finite Element Analysis (FEA) is a common method for simulating metal forming 

processes like springback prediction. FEA models material deformation in depth, including 

plasticity, effective strain rate sensitivity, and material anisotropy. Many studies show that 

FEA can consistently forecast springback with the correct material models, boundary 

conditions, and mesh upgrades. Despite its accuracy, FEA is computationally expensive, 

particularly when working with sophisticated geometries, enormous datasets, or parametric 

research. This computing cost renders FEA inappropriate for firms that need rapid and 

frequent design iterations or optimisation involving several process components. To fix FEA's 

flaws, ML approaches have become a more effective springback prediction solution [1]. 

Supervised learning techniques in machine learning can capture the complicated, nonlinear 

linkages between process parameters, material properties, and springback behaviour without 

requiring explicit physical models [2]. ML's springback prediction use has been studied. Bolar 

et al. [3] created an artificial neural network (ANN) model to forecast springback in V-

bending procedures for 99% pure aluminium. Their findings demonstrated that ANNs could 

predict springback by learning from process characteristics including punch speed, sheet 

thickness, and material hardness. Wang et al. [4] also used SVM to predict springback in 

copper sheet metal forming, showing that SVM models can generalise across forming 

conditions and material factors, yielding accurate predictions with less computational effort 

than FEA. 

Machine learning models need lots of training data, which might come from physical 

experiments or simulations [5]. This has caused FEA and machine learning hybrid models. 

Machine learning algorithms can be trained to provide quick predictions without full FEA 

simulations for each design iteration by utilising FEA to produce massive datasets of 

simulation results under different process conditions and material attributes [6]. He et al. [7] 

devised a hybrid model that combines FEA and Support Vector Regression (SVR) to 

anticipate springback in 99% pure aluminium sheet metal forming. The model, trained on 

FEA simulation data, predicts better and computes faster than normal FEA. Zeinolabedin-

Beygi et al. [8] estimated springback in 99% pure copper and low-carbon steel forging with 

FEA and Random Forest models. The hybrid model cut springback prediction time by 60% 

and retained accuracy. 

The hybrid method is great for optimising metal forming. Machine learning and FEA 

simulations can better predict how die shape, material thickness, punch speed, and 
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temperature affect springback behaviour [9, 10]. This technology also allows for faster and 

more efficient design optimisation, since machine learning algorithms can quickly predict 

various scenarios, reducing the need for extensive simulations or physical trials [11]. Hybrid 

models can be adapted for diverse metals, including 99% pure aluminium, 99% pure copper, 

and low-carbon steel, each of which requires numerous material models to depict its specific 

springback behaviour [12] properly. 

In summary, springback prediction is still a major problem in metal forming processes, 

which have unique mechanical properties and deformation behaviours. FEA is fantastic for 

mimicking springback, but its computing cost limits its utility in real-time design optimisation 

and iterative testing. Machine learning is a useful alternative since it learns difficult 

relationships from data, allowing for speedier predictions without thorough physical models. 

When combined with FEA, machine learning may greatly enhance the accuracy, efficiency, 

and scalability of springback predictions, providing a hybrid solution that benefits companies 

where speed, precision, and cost-efficiency are vital. So, FEA and machine learning may fix 

springback difficulties and improve metal forming in 99% pure aluminium, 99% pure copper, 

and low-carbon steel.  

This study proposes a hybrid analysis that combines machine learning's predictive 

power with FEA's exact simulations. The goal is to build a robust machine learning model 

that can accurately predict springback in metals, especially 99% pure aluminium, 99% pure 

copper, and low-carbon steel, using FEA-generated data. This method uses supervised 

learning algorithms and FEA simulations to enhance springback angle predictions, minimise 

trial time, and optimise metal forming. The proposed hybrid approach may help firms who 

need to control material behaviour during forming processes, improving product quality and 

manufacturing efficiency. 

2. MATERIALS AND METHODS 

In this study, three common metals utilized in manufacturing, namely 99% pure 

aluminum, 99% pure copper, and low-carbon steel, are considered for SBP prediction in 

SMFPs. These metals were selected due to their distinct mechanical properties, which 

influence their springback behaviour and are widely used in industries such as automotive, 

aerospace, and manufacturing. 99% pure aluminum is a light, ductile metal with relatively 

low yield strength and high workability, which makes it prone to springback, particularly in 

processes like bending and deep drawing. The material is frequently used in aerospace and 

automotive applications where weight reduction is a priority [13, 14]. 99% pure copper is a 

highly ductile material with excellent thermal and electrical conductivity. It has a higher yield 

strength compared to 99% pure aluminum, which results in different springback 

characteristics. 99% pure copper is commonly used in electrical components and plumbing 

systems [15]. Low-carbon steel, specifically in its commercial form as mild steel, is stronger 

but less ductile compared to 99% pure aluminum and 99% pure copper. It is commonly used 

in structural and automotive components. Its springback behaviour is influenced by its 

relatively higher yield strength and lower ductility [16].  
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The mechanical properties of these metals, including Young’s modulus, yield strength, 

Poisson’s ratio, and effective strain-hardening behaviour, were considered when developing 

the material models for the simulations. These properties were extracted from standard 

material databases and experimental data. 

2.1. FINITE ELEMENT ANALYSIS (FEA) SIMULATIONS  

FEA simulates the SMFPs and SBP predictions for the three metals in the ANSYS 

software package, a widely used simulation software. FEA is employed to model the forming 

processes, predict deformation, and evaluate the resulting springback behaviour under 

varying conditions [17].  

Springback in metals expresses the elastic recovery that occurs after unloading in SMF 

processes. To estimate springback by the ANSYS Workbench, the main problem of 

springback should be identified. Also, material properties should be carefully chosen. The 

geometry should be set up. Additionally, appropriate boundary conditions that simulate the 

sheet metal forming, unloading process, and springback should be recognized and chosen.  

The most important procedure is to choose the right ANSYS solver for this problem, 

which is the ANSYS Workbench (Mechanical), specifically Explicit Dynamics (LS-DYNA), 

which is formulated to analyze high-strain rate processes and static structural loading 

connected to slow deformations and stress and strain under very low speeds or static 

conditions. LS-DYNA ANSYS package can uncover critical metal properties, including yield 

stress, Von Mises stress, elastic strain, and deformations. 

The metal forming process was modelled as a simple V-bending operation to study the 

SBP. A V-die was used with a punch, where the material was subjected to bending at various 

punch speeds and sheet thicknesses to investigate the effects of these parameters on SBP. The 

metal models used in FEA were chosen to reflect the mechanical properties of 99% pure 

aluminum, 99% pure copper, and low-carbon steel. For each material, an appropriate 

plasticity model, such as the isotropic or kinematic hardening models, was employed to 

simulate the nonlinear behaviour under forming conditions [18]. The Johnson-Cook material 

model was utilized for 99% pure copper and low-carbon steel to account for temperature and 

effective strain rate effects, while for 99% pure aluminum, a Hill48 yield surface was used to 

capture its anisotropic plastic behaviour. Table 1 illustrates the critical properties of these 

three metals. Most of these variables and their corresponding values will be exploited to 

identify the boundary conditions linked to the three explored metals.  

The boundary conditions chosen for the simulation included fixing the die at the bottom 

and applying a displacement-controlled load to the punch to simulate the bending process. 

The contact between the punch, sheet metal, and die was modelled using frictional contact, 

with a coefficient of friction set based on typical values for metal forming processes. A fine 

mesh was applied to the region of interest (the sheet metal and contact surfaces) to ensure 

accurate results in terms of equivalent Von Mises stress, effective strain, and springback 

predictions [19, 20]. The meshing procedure is one of the important processes that should be 

carefully implemented to make sure accurate numerical outcomes and high-quality results are 

reached. The first step in meshing is to study the structure. Some mechanical difficulties, such 
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as circular cross-section beams, rectangular parallelepiped mechanical problems, and square-

like top and side faces of materials, can be quite simple [21]. In some cases, mechanical 

structures can be very complex, as they reflect bigger mechanical structures used in real-world 

production, such as ships, vehicles, or aircraft.  

For these complicated structures, adopting simple mathematical models could not offer 

accurate results because of various defects and inaccuracies while leveraging a single 

framework that expresses the full vehicle structure of the automobile, ship, or aeroplane. 

Table 2 illustrates the critical meshing variables and their values used in this simulation study, 

which include the meshing technique and the overall number of shape elements of the three 

specimens built in SolidWorks®. 

Table 1. Critical common mechanical and physical properties of the three inspected metals 

No. Mechanical and Physical Properties 

Metal Name 

Low-Carbon Steel 
99% Pure 

Aluminum 
99% Pure Copper 

1 Colour Gray Silvery-White  Red-Orange 

2 Density 7,850 kg/m3 2,700 kg/m3 8,920 kg/m3 

3 Tensile Strength 420 MPa 90 MPa 210 MPa 

4 
Modulus of Elasticity/ Young’s 

Modulus 
200 GPa 68 GPa 120 GPa 

5 Shear Modulus 80 GPa 25 GPa 44 Gpa 

6 Poisson’s Ratio 0.25 0.36 0.35 

7 Melting Temperature Point 1,205 °C to 1,370 °C 660 °C 1,083 °C 

8 Thermal Conductivity  44 to 52 W/m.K 237 W/m.K 260 W/m.K 

9 Vickers Hardness 126 HV 150 to 160 HV 40 to 110 HV 

Table 2. Major meshing characteristics of the selected three metals 

No. Category 99% Pure Aluminum 99% Pure Copper Low-Carbon Steel 

1 
Type of the Chosen 

Cell 

Hexahedral (for structured 

meshing) 

Tetrahedral (for flexibility 

in geometry) 

Tetrahedral (for flexibility 

in geometry) 

2 
Dimensions of the 

Geometric Shape 

200 mm × 100 mm × 2 

mm (for sheet metal) 

200 mm × 100 mm × 2 

mm (for sheet metal) 

200 mm × 100 mm × 2 

mm (for sheet metal) 

3 

The Overall Number 

of Meshing 

Elements 

150,000 - 250,000 

elements (depending on 

mesh refinement) 

150,000 - 250,000 

elements (depending on 

mesh refinement) 

150,000 - 250,000 

elements (depending on 

mesh refinement) 

 

The mesh was refined in areas with high gradients in equivalent Von Mises stress and 

effective strain, and an appropriate mesh size was chosen to balance accuracy and 

computational efficiency [22]. The simulations were run for various process parameters, 

including different punch speeds (to examine effective strain rate sensitivity) and material 

thicknesses [23]. Temperature effects were considered in simulations for 99% pure copper 
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and low-carbon steel due to their high sensitivity to temperature during metal forming 

processes than 99% pure aluminium. 

2.2. MACHINE LEARNING MODEL  

A hybrid machine learning approach was employed to develop a predictive model of 

SBP, combining FEA simulation data with supervised learning algorithms. The primary steps 

in developing the ML model are as follows:  

1. Data Generation: FEA simulations were performed for a range of process parameters, 

such as punch speed, material thickness, and die geometry. The simulation data, 

including the springback angles, were collected for each material (99% pure aluminum, 

99% pure copper, and low-carbon steel) under different forming conditions [24].  

2. Feature Selection: The input features for the ML model included process parameters 

such as punch speed, sheet thickness, material properties (such as yield strength Young’s 

modulus), and the temperature during forming. These features were chosen based on 

their known influence on springback behaviour. The target output variable was the 

springback angle, representing the amount of elastic recovery in the metal after forming 

[24]. 

2.3. HYBRID MODEL INTEGRATION 

A hybrid model for forecasting springback behaviour in metal forming processes uses 

FEA and ML [26]. This hybrid method leverages FEA and ML's strengths to improve SBP 

prediction accuracy and efficiency. This hybrid method was investigated in terms of its 

methodology, and benefits. The major research methodology, which utilizes the proposed 

hybrid advanced FEA-ML framework, and its necessary steps can be outlined in Fig. 1. 

 

 

Fig. 1. The proposed research methodology that uses hybrid FEA-ML framework 

1 
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FEA is useful for modelling complex physical processes in metal forming, like plastic 

deformation, effective strain-rate sensitivity, and material anisotropy, but it is costly to 

compute, especially for large-scale or parametric research [4]. These computing constraints 

limit its real-time application and practicality in industrial settings where quick iterations and 

optimisation are important. On the other hand, ML, particularly supervised learning 

algorithms, can offer quick and efficient predictions by learning complex, nonlinear 

relationships between input parameters (such as material properties and process conditions) 

and the output (springback) [26]. However, ML models require large datasets for training, 

which are often not readily available and must be generated via time-consuming physical 

experiments or FEA simulations. Thus, combining FEA with ML can generate high-fidelity 

data under various forming conditions, which is then used to train machine learning models 

[27]. This hybridization capitalizes on the predictive capabilities of ML while maintaining the 

physical accuracy provided by FEA simulations.  

3. MODELS AND DIE MECHANICAL DESIGN 

In the proposed simulation process, critical graphical data were obtained, reflecting the 

mechanical properties of various specimens. Figures 2–4 visually represent the 3D CAD 

layouts of the 99% pure aluminum, 99% pure copper, and low-carbon steel specimens, 

respectively, after they were subjected to the die load, causing metal bending.  

 

 

Fig. 2. 3D CAD layouts of the 99% pure aluminum specimens after bending after applying the die load with various 

thicknesses and punch radiuses 

 

Fig. 3. CAD layouts of 99% pure copper specimens after bending after applying the die load with various thicknesses 

and punch radiuses 
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Fig. 4. 3D CAD layouts of low-carbon steel specimens after bending after applying the die load with various 

thicknesses and punch radiuses 

For the 99% pure aluminum specimens, two specimens have a thickness of 4.0 ± 0.13 

mm with a punch radius of 2.0 ± 0.13 mm and 4.0 ± 0.13 mm, respectively. While the third 

aluminum sheet metal sample has a thickness of 3.5 ± 0.13 mm and a punch radius of 2.0 ± 

0.13 mm. The first, second, and third aluminum sheet metals have bend angle values of 92.42° 

± 0.50°, 92.62° ± 0.50°, and 93.26° ± 0.50°. 

Similarly, the three 99% pure copper specimens also have a thickness of 2 ± 0.13 mm. 

The first, second, and third copper specimens have punch radius amounts of 2.0 mm, 3.5 mm, 

and 4.0 mm, respectively. Their bending angle rates are, in order, 93.75° ± 0.50°, 94.68° ± 

0.50°, and 95.05° ± 0.50°.  

For the low carbon steel, the first, second, and third sheet metals have thicknesses of 2.0 

± 0.13 mm, 3.5 ± 0.13 mm, and 3.5 ± 0.13 mm, respectively. Their punch radius amounts are 

2.0 mm, 3.5 mm, and 4.0 mm. Their bending angles are, in order, 96.00° ± 0.50°, 94.57° ± 

0.50°, and 94.94° ± 0.50°.    

Figure 5 shows that the dies are made to apply die loading in the SMFP. Figure 5a shows 

that the 3D die used in this investigation is V-shaped. Figure 5b and 5c shows the copper 

specimen's deformations after the force was applied.  

 

Fig. 5. 3D CAD layouts of (a) the die utilized, (b) a 99% pure copper sheet metal on which the die load is applied, and 

(c) the deformed 99% pure copper sheet metal after bending   
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4. FEA RESULTS ANALYSIS 

The numerical ANSYS findings also showed certain outcomes for the six specimens 

(two each of 99% pure aluminium, 99% pure copper, and low-carbon steel). Table 3 shows 

these results. Graphs were made to show the significance of these results. Figure 6 shows the 

applied load on the three metals over time, each with two examples. Figure 7 shows the 

equivalent stress-effective strain profiles of the three metals studied, each with two specimens 

and load application time. 

Table 3. The numerical outcomes of the effective strain analysis of the six samples 

Time 
(Sec’s) 

Effective Strain 

Rate  
(99% Pure 

Copper Specimen 

[1]) 

Effective Strain 

Rate  
(99% Pure 

Copper 

Specimen [2]) 

Effective 

Strain Rate  
(99% pure 

Aluminum 

Specimen [1]) 

Effective 

Strain Rate  
99% pure 

Aluminum 

Specimen [2]) 

Effective 

Strain Rate  
(Low-Carbon 

Steel 

Specimen [1]) 

Effective Strain 

Rate  
(Low-Carbon 

Steel Specimen 

[2]) 

0.16 0.06125 0.07250 0.04500 0.05875 0.04000 0.04125 

0.24 0.06125 0.07375 0.04375 0.05875 0.04000 0.04125 

0.32 0.06125 0.07250 0.04500 0.05875 0.04000 0.04125 

0.40 0.06125 0.07250 0.04375 0.06000 0.04000 0.04125 

0.48 0.06125 0.07250 0.04500 0.05875 0.04000 0.04125 

0.56 0.06125 0.07375 0.04375 0.05875 0.04000 0.04125 

0.64 0.06125 0.07250 0.04500 0.05875 0.04000 0.04125 

0.72 0.06125 0.07250 0.04375 0.05875 0.04000 0.04125 

0.80 0.06125 0.07250 0.04500 0.05875 0.04000 0.04125 

0.88 0.06125 0.07250 0.04375 0.05875 0.04000 0.04125 

0.96 0.06125 0.07375 0.04500 0.05875 0.04000 0.04125 

1.04 0.06125 0.07250 0.04375 0.05875 0.04000 0.04125 

1.12 0.06125 0.07250 0.04500 0.05875 0.04000 0.04125 

1.20 0.06125 0.07250 0.04375 0.05875 0.04000 0.04125 

Figure 6 shows that the second 99% pure copper specimen has the highest effective 

strain rates (0.073 across the numerically simulated time), followed by the first 99% pure 

copper specimen (0.062) and the second 99% pure aluminium specimen (0.0585). In contrast, 

the lowest effective strain rates were found in the first and second low-carbon steel specimens, 

accounting for 0.040 and 0.041, respectively. The first 99% pure aluminium specimen, which 

is lighter than low-carbon steel and is remarkably feasible for making light-weight 

automobiles, has a very close effective strain rate to the two low-carbon steel specimens, 

whose effective strain rate reached 0.045.  

In addition, referring to the numerical simulation results expressed in Table (3), relevant 

graphical illustrations can be expressed in Fig. 7, which indicates the equivalent stress-

effective strain profiles related to the three inspected metals. It can be inferred from this figure 

that the three metals underwent a special uniform plastic strain phase from initial and final 

values of the effective strain, corresponding to constant equivalent stress, which was 

approximately similar to the three metals. It is important to study such effective strain-curve 

to understand the behaviour of SBP and, thus, optimize their dimensions, properties, and 

critical variables when these metals are utilized in different manufacturing disciplines.  



88  E. Abdullah and A. Jalil /Journal of Machine Engineering, 2025, Vol. 25, No. 1, 79-101    

 

 

Fig. 6. The effective strain of the three investigated metals varying with time, each with two same specimens  

 

Fig. 7. The equivalent stress-effective strain profiles of the three investigated metals with the load application time, each 

with two specimens 

In addition, Fig. 8 explains the behaviour of the three metals when the die load was 

applied over a range of time. It can be shown that the three metals followed a constant linear 

deformation behaviour with time, implying their active response to the load amount with time. 

As a result, in the manufacturing context, elongations can be continually recorded in such 

metals with increasing and lengthy implementation of the die load. Therefore, careful 

observations and control of this process should be ensured to avoid excessive elongations and 

deformations that may correspond to significant distortions in the metal. Besides, the 

mathematical simulation findings uncovered some statistical figures on the elastic recovery 

that occurred in accordance with the SBP in the three investigated metals, 99% pure 

aluminum, 99% pure copper, and low-carbon steel specimens, each with three thicknesses, 

i.e., an overall of nine samples were attained for the three metals.  

The results indicate that the SBP-related behaviour would increase with the metal 

dimension (punch radius). Those 99% pure aluminium specimens with lower thicknesses 
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would have bigger effects and noteworthy SBP consequences compared with aluminium 

specimens with higher thicknesses. More deformation occurs with thicker metal.  

 

Fig. 8. Numerical simulation outcomes of deformations of the three investigated metals varying with the load 

application time 

 

Fig. 9. The behaviour of the SBP from the numerical simulation outcomes of the three 99% pure aluminium specimens 

(three thicknesses) 

Figure 10 shows that the SBP behaviour would decrease slightly with the metal 

dimension (the punch radius) [28]. Thicker 99% pure copper specimens had better SBP and 

elastic recovery after deformation than thinner ones. Thus, the 99% pure copper deformation 

would record greater rates with larger thicknesses but lower values with more punch radius 

rates [29].  

Figure 11 shows that the SBP pattern in the three low-carbon steels rises with greater 

punch radius values. Low-carbon steel specimens with lower thicknesses exhibit more 

substantial effects and findings of SBP than those with higher thicknesses.  

In conclusion, SBP would greatly affect low-carbon steel specimens with lower 

thicknesses compared to those with higher thicknesses. Additionally, bigger punch radius 

rates would produce considerable SBP.  
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Fig. 10. The behaviour of the SBP from the numerical simulation outcomes of the three 99% pure copper specimens 

(three thicknesses) 

 

Fig. 11. The behaviour of the SBP from the numerical simulation outcomes of the three 99% low-carbon steel 

specimens (three thicknesses) 

5. HYBRID MODEL INTEGRATION RESULTS ANALYSIS 

In the investigation of the metal forming process using hybrid model integration, the 

three current study metals were selected for numerical analysis. These metals were evaluated 

based on their mechanical and thermal properties, as well as their behaviour during the 

forming process. The primary objective of this study was to compare the materials in terms 

of force, deformation, temperature, equivalent stress distribution, stringback percentage, and 

material-specific behaviours, in order to identify the most suitable material for various 

manufacturing applications. The results were obtained through detailed simulations that 

accounted for the intrinsic properties of the materials, and they provide insights into the 

overall performance of each material in terms of forming efficiency, quality, and 

computational demands. 
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5.1. FORCE AND DEFORMATION 

The corresponding outcomes of force, ultimate deformations, and distortion rates 

obtained from the numerical LS-DYNA ANSYS package simulations revealed distinct 

differences in the three metals’ mechanical and springback behaviours after applying the SMF 

processes, as can be shown in Fig. 12–14. From Fig. 12, the three specimens of the 99% pure 

aluminum sheet metal exhibited the lowest peak forming force (of 43 kN, 50 kN, and 52 kN), 

which is consistent with its lower yield strength compared to 99% pure copper and low-carbon 

steel. On the other hand, as can be noticed in Fig. 13, the three 99% pure aluminum sheet 

metal specimens, as expected, showed the highest maximum deformation (of 4.5 mm, 4.2 

mm, and 4.7 mm), indicating distortion rates of 4.5%, 4.9%, and 3.2%.  

Comparatively, the three sheet metal 99% pure copper specimens, with thicknesses of 

2.0 mm, 3.5 mm, and 4.0 mm, exhibited medium rates of the peak bending forces, which 

equal 75 kN, 73 kN, and 68 kN, respectively. These three specimens, in order, had ultimate 

deformation proportions of 3.8 mm, 3.5 mm, and 3.6 mm. Responsively, their distortions rates 

were 3.7%, 4.0%, and 4.1%. In comparison, the three low carbon steel sheet metal samples 

had peak forming force of 100 kN, 111 kN, and 98 kN, respectively. These three forming 

forces for the three specimens gave ultimate deformation rates of 2.9 mm, 2.7 mm, and 3.2 

mm, in order. These maximum deformation rates corresponded to three distortion percentages 

of 2.6%, 2.5%, and 2.5%, respectively.  

 

Fig. 12. Simulation outputs of the maximum forming force of the three inspected metals, each with three thicknesses 

(nine specimens) 

In conclusion, it can be inferred from these three figures (Fig. 12–14), that the three 

aluminum specimens were subjected to the highest deformations (and thus distortions rates) 

compared to copper and low-carbon steel, because of aluminum’s lowest yield strength. 

Besides, it can be said that because the low-carbon steel has the highest point of yield strength, 

i.e., being the most robust metal, it can be heavily utilized in a broad scale for lengthy and 

long SMF processes through which various shapes and forms can be formulated and 

established, enabling flexible elongation, dimensional stability, and excellent formability 

before the low carbon steel would reach the failure point (fracture). However, larger 
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distortions, as will be seen in Fig. 20, do not necessarily imply lower elastic recovery. 99% 

pure aluminium exhibits the largest elastic recovery compared to the two investigated metals.  

 

Fig. 13. Simulation outputs of ultimate deformations in the three inspected metals, each with three thicknesses (nine 

specimens) 

 

Fig. 14. Simulation outputs of distortion rates in the three inspected metals, each with three thicknesses (nine 

specimens) 

5.2. THE RESULTING VON MISES STRESSES AND EQUIVALENT STRESS CONCENTRATIONS 

The numerical LS-DYNA ANSYS package simulations did also supply certain 

analytical figures on temperature properties, mainly related to the sheet metal’s thermal 

conductivity at the springback occurrence and ultimate exhibited temperature before 
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deformation would take place. Figure 15 shows the results of the three sheet metals’ thermal 

conductivity at the springback occurrence, each with three thicknesses, which can give nine 

results. 

Furthermore, the equivalent stress distribution outcomes indicate that low-carbon steel 

had the highest maximum Von Mises stress (420 MPa), as expected due to its higher strength, 

while 99% pure aluminum experienced lower equivalent stress (280 MPa). 99% of pure 

copper's Von Mises stress was intermediate, with a maximum of 350 MPa. The equivalent 

stress concentration in these three metals, shown in Fig. 16, which implies the location at 

which significantly higher stress amounts are recorded in the metal, was highest in low-carbon 

steel (451 MPa for a thickness of 4.0 mm), which suggests that while it is a strong material, 

it is more prone to localized stress accumulation during the forming process. Comparatively, 

higher equivalent stress concentrations recorded in 99% pure copper and 99% pure aluminum 

were (382 MPa for a thickness of 3.5 mm) and (311 MPa for a thickness of 4.0 mm), 

respectively.  

 

Fig. 15. Simulation outputs of maximum Von Mises stresses in the three inspected metals, each with three thicknesses 

(nine specimens) 

 

Fig. 16. Simulation outputs of equivalent stress concentrations in the three inspected metals, each with three thicknesses 

(nine specimens) 
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5.3. RESULTS OF METALS’ THERMAL-RELATED PROPERTIES  

One of the imperative outcomes of this research is some corresponding thermal 

behaviours and properties correlated with the SMF process before deformation takes place 

and during the SMF. Strictly speaking, it was realized that the three metals did exhibit 

distinguished ultimate temperature before deformation, as can be clarified in Fig. 17.  

It can be inferred from Fig. 17 that the three 99% pure copper specimens, being the best 

thermally conductive, exhibited the highest rates of ultimate temperature before deformation, 

specifically 350°, 347°, and 343° for thicknesses of 2.0 mm, 3.5 mm, and 4.0 mm, 

respectively. In contrast, the three low carbon steel specimens had the lowest ultimate 

temperature before deformation, reaching 250°, 245°, and 256° for thicknesses 2.0 mm, 3.5 

mm, and 4.0 mm, in order. While the three 99% pure aluminium specimens did exhibit a 

medium range of temperature between the low carbon steel and the 99% pure copper. These 

statistics can explicitly tell that during the SMF process special considerations should be given 

to the metal’s temperature to prevent adverse impacts on springback ratio (elastic recovery 

rate) and minimize temperature-related distortions. Additionally, results on the thermal-

related properties revealed another index, which is linked to the thermal conductivity 

documented when the springback phenomenon did take place for the three inspected metals, 

as can be illustrated in Fig. 18.  

 

Fig. 17. Simulation outputs of the maximum exhibited temperature before deformation in the three inspected metals, 

each with three thicknesses (nine specimens) 

It can be noted from Fig. 18 that, again, because of its significant, favourable thermal 

properties among other metals in nature, the three 99% pure copper specimens exhibited the 

maximum rates of thermal conductivity, recording 398 W/m.K, 399 W/m.K, and 400 W/m.K 

for thicknesses 2.0 mm, 3.5 mm, and 4.0 mm, respectively, when the springback phenomenon 

did occur. Comparatively, the three low carbon steel specimens had the lowest thermal 

conductivity during the springback behaviour, revealing thermal conductivities of 79 W/m.K, 

80 W/m.K, and 81 W/m.K for thicknesses 2.0 mm, 3.5 mm, and 4.0 mm, in order, throughout 

springback.  
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These ANSYS outcomes of thermal-related properties can explain that, because of the 

lowest thermal conductivity during the SMF process and very low temperature at springback, 

the low carbon steel can be remarkably resistant to heat transfer and thermal-related changes 

when necessary SMF processes are performed. Thus, the low carbon steel can give substantial 

flexibility in SMF and formability without being adversely affected by critical thermal 

properties.    

 

Fig. 18. Simulation outputs of the thermal conductivity at the springback phenomenon in the three inspected metals, 

each with three thicknesses (nine specimens) 

5.4. THE RESULTING METALS’ SPRINGBACK ANGLE AND SHAPE DEVIATION 

The springback and post-processing behaviour simulation outcomes emphasized how 

each metal would behave once the forming force is removed, as can be shown in Fig. 19. The 

three 99% pure aluminum sheet metals showed the largest springback bending angles of 4.5°, 

4.3°, and 4.4° for the thicknesses 2.0 mm, 3.5 mm, and 4.0 mm, respectively, implying 

aluminum’s higher elasticity and tendency to return to their original shapes after deformation. 

 

Fig. 19. Simulation outputs of springback bending angle in the three inspected metals, each with three thicknesses  

(nine specimens) 
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The three 99% pure copper sheet metal samples, in comparison, had springback bending 

angles of 3.2°, 3.3°, and 3.1° for the thicknesses 2.0 mm, 3.5 mm, and 4.0 mm, respectively, 

exhibiting moderate recovery. While the three low-carbon steel sheet metal specimens 

showed the least values of springback bending angles of 1.8°,1.9°, and 1.7° for the three 

thicknesses 2.0 mm, 3.5 mm, and 4.0 mm, reflecting low carbon steel’s reduced ability to 

return to its original shape. The final shape deviation was also evaluated, with 99% pure 

aluminum showing the largest deviation (2.2 mm), followed by 99% pure copper (1.7 mm) 

and low-carbon steel (0.9 mm). This suggests that in spite of 99% pure aluminum’s higher 

formability, it may face less precision to be formulated to the final needed shapes compared 

to 99% pure copper and low-carbon steel. 

5.5. MATERIAL-RELATED PROPERTIES 

The material-specific behaviour analysis was conducted, and its corresponding 

outcomes can be shown in Table (4).  

Table 4. The Resulting Material-specific behaviour attained from the ANSYS LS-DYNA 

# Material Yield Strength (MPa) Elongation at Break (%) Ductility 

1 99% Pure Aluminum 250 25 High 

2 99% Pure Copper 210 35 Very High 

3 Low-Carbon Steel 350 15 Low 

These outcomes have been obtained through a systematic analytical procedure. To 

investigate Table 4’s variables of each metal, namely the yield point, elongation at break, and 

ductility, elastic-plastic material models were chosen in the LS-DYNA ANSYS package. 

Loads and boundary conditions were then applied. The punch force or displacement were then 

identified. Symmetric constraints were then applied to reduce computational cost, time, and 

technical complexity. Adaptive meshing was utilized to improve accuracy in high-

deformation regions. Then, simulation process was conducted by running numerical analysis, 

solving the SMF process. Before unloading, the deformation history of the metal was recorded 

and investigated as historical deformations of each metal may have considerable impact on 

the yield stress, Von Misses stress, elastic strain, and deformations. Then, the unloading 

process was simulated in the LS-DYNA ANSYS package. After that, the punch force was 

gradually removed to enable the metal to springback. After that, the software provided some 

data on the residual stress and final geometry. Also, the attained results gave important 

insights on the springback.  

A comparison, in this respect, should be performed in terms of the final and needed 

shape to uncover to which extent springback (elastic recovery ratio) would take place, 

enabling the metal to return to its original shape after removing the load. Figure 20 indicates 

this comparative analysis.  

It can be noticed from this table that 99% pure copper is the most ductile material, with 

a high elongation at break of 35% and superior overall ductility. 99% pure aluminum, while 

still relatively ductile, had a lower elongation at break (25%), and low-carbon steel had the 
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lowest ductility with only 15% elongation at break. Yield strength was highest in low-carbon 

steel (350 MPa), followed by 99% pure aluminum (250 MPa), and 99% pure copper (210 

MPa). These results are consistent with the general understanding that low-carbon steel is 

stronger but less ductile than 99% pure aluminum and 99% pure copper. 

 

Fig. 20. Numerical simulation outputs of springback elastic recovery percentage of the three investigated metals, each 

with sheet metal thicknesses of 2.0 mm, 3.5 mm, and 4.0 mm 

5.6. THE RESULTING COMPUTATIONAL PERFORMANCE 

The computational performance analysis indicated the time and mesh size required for 

each material during the simulation process, as can be shown in Table (5). As expected, the 

simulation time would increase in metals with higher yield strength, enhanced mechanical 

properties, remarkably significant stiffness, larger modulus of elasticity, and robust durability. 

In this respect, among the three metals, low-carbon steel required the longest time (5 hours) 

due to its larger mesh size (250,000 elements) and promoted springback resilience and 

resistance behaviour. 99% pure copper and 99% pure aluminum, with smaller mesh sizes 

(200,000 and 150,000 elements respectively), required less time, but 99% pure copper still 

took more time than 99% pure aluminum due to its more complicated equivalent stress and 

temperature distribution. Solver efficiency decreased slightly with the increasing number of 

elements, but the hybrid model remained efficient for industrial applications despite the 

increased computational demand for more complex materials. 

Table 5. Computational performance 

# Material Simulation Time (hrs) Mesh Size (Elements) Solver Efficiency 

1 99% Pure Aluminum 3.5 150,000 85% 

2 99% Pure Copper 4.0 200,000 80% 

3 Low-Carbon Steel 5.0 250,000 75% 
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In summary, each material, 99% pure aluminum, 99% pure copper, and low-carbon 

steel, demonstrated unique advantages and limitations in terms of forming force, deformation, 

equivalent stress distribution, and post-processing behaviour. These findings provide critical 

insights for selecting the appropriate material based on specific forming requirements, 

whether it be ease of shaping (99% pure aluminum), superior ductility (99% pure copper), or 

higher strength (low-carbon steel). 

5.7. COMPARATIVE ANALYSIS OF THE SBP BETWEEN THE THREE METALS 

To provide a better understanding of how each metal has responded to the die loading 

and the resulting SBP elastic recovery, the elastic recovery ratios of the three metals at 

different thicknesses (2.0 mm, 3.5 mm, and 4.0 mm) are now expressed in percentage terms. 

It is imperative to clarify that a distortion rate of 8% does not mean an elastic recovery 

(springback percentage) of 92%, since there are some factors that can cause losses, including 

interior elasticity of the metal. In nature, all metals are not fully elastic, meaning that elastic 

recovery of 92% does not mean necessarily a distortion percentage of 8%.   

This allows for a more quantifiable comparison of how each material behaves under the 

applied loads. The results of the SBP behaviour for each metal at different thicknesses are 

shown in Fig. 20. 

The elastic recovery ratios for the three metals at different thicknesses demonstrate 

varying levels of springback behaviour. At a thickness of 2.0 mm, the 99% pure aluminum 

sheet metal exhibits the highest elastic recovery ratio of 85%, showing that it responds well 

to die loading and recovers most of its shape after deformation. 99% pure copper follows a 

moderate recovery of 60%, while low-carbon steel shows the lowest recovery at 35%, 

indicating significant deformation that does not fully recover after the die loading.  

For a thickness of 3.5 mm, 99% pure aluminum still maintains the highest springback at 

75%, but this is a decrease from its performance at 2.0 mm. 99% pure copper's recovery ratio 

decreases to 55%, and low-carbon steel continues to show the lowest recovery at 30%, further 

emphasizing its poor performance in terms of elastic recovery.  

At 4.0 mm thickness, the springback behaviour of 99% pure aluminum is again reduced 

to 65%, while 99% pure copper experiences a slight decrease to 50%. Low-carbon steel still 

has the lowest elastic recovery at 25%, confirming that it exhibits the least ability to recover 

from die loading among the three metals. This analysis can imply that 99% pure aluminum 

can consistently perform the best in terms of springback across all thicknesses, while low-

carbon steel exhibits the poorest elastic recovery, especially as the thickness increases. 99% 

pure copper exists between the two, with moderate springback across the three thicknesses. 

6. CONCLUSIONS 

This study explored the critical contributions and practicality of a hybrid advanced FEA-

ML framework to predict the springback phenomenon (SBP) in metals. To provide reliable 

validity and robustness of the research outcomes, the most prevalent metals utilized in the 
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manufacturing context of many critical disciplines, like automotive, aircraft, and ship 

structuring, have been investigated, namely low-carbon steel, 99% pure aluminum, and 99% 

pure copper. Reliable mathematical simulations and numerical analysis were conducted in the 

LS-DYNA ANSYS package. To introduce the impacts of SBP, a collection of common 

variables and imperative factors have been inspected, namely punch radius, angle of SBP, 

temperature effects, metal’s thickness, and some other crucial indices, which have 

considerable influence on the behaviour of these three metals when SBP takes place.  

Relying on the systematic research methodology that was adopted in this study, the 

major research outcomes can be summarized in the following points:  

− Springback behaviour varied significantly among the three metals, with 99% pure 

aluminum exhibiting the highest elastic recovery and springback (6.2%) due to its high 

ductility, followed by 99% pure copper (4.0%), and low-carbon steel (2.5%), 

− Low-carbon steel showed the least elastic recovery behaviour and lowest springback 

pattern, indicating its suitability for applications requiring precise dimensional control 

post-forming before metal failure. At a thickness of 2.0 mm in the three metals, 99% 

pure aluminum required the lowest peak forming force (50 kN) and showed the highest 

deformation rates (4.5 mm), implying its considerable flexibility as a formable material. 

99% pure copper required a higher forming force (75 kN) with moderate deformation 

(3.8 mm), while low-carbon steel, being the strongest material, exhibited the highest 

forming force (100 kN) and the least deformation (2.9 mm), 

− 99% pure copper experienced the highest temperature rise (350 °C) during the SMFP 

due to its superior thermal conductivity, followed by the 99% pure aluminum (300 °C) 

and low-carbon steel (250 °C), 

− Thinner specimens exhibited more pronounced springback effects across all three 

metals, while increased punch radii enhanced the springback behaviour, 

− 99% pure copper had the highest ductility (35% elongation at break), making it ideal for 

applications requiring significant deformation without failure. Aluminum exhibited 

good ductility (25% elongation) and high formability but showed larger shape deviations 

post-forming. Low-carbon steel, with the highest yield strength (350 MPa) and lowest 

elongation (15%), provided excellent strength and dimensional stability but reduced 

malleability, 

− The advanced hybrid FEA-ML framework proved its significant effectiveness, 

reliability, accuracy, and efficiency in predicting springback angles, reducing reliance 

on time-intensive experiments that correspond to many faults and optimizing the metal 

forming process. 

Besides these findings, a conclusion can be reached that 99% pure aluminum is suitable 

for lightweight applications, like the automotive domain, while low-carbon steel is preferred 

in scenarios requiring high strength and dimensional stability. Copper, with its balance of 

ductility and strength, is well-suited for intricate forming processes. Finally, this hybrid 

approach can offer a promising tool for optimizing manufacturing processes, improving 

product quality, and enhancing efficiency across various engineering sectors. In this respect, 

possible future research could expand the applicability of this model to more complex 

geometries and multi-metal systems, further advancing the field of metal-forming technology. 

 



100  E. Abdullah and A. Jalil /Journal of Machine Engineering, 2025, Vol. 25, No. 1, 79-101    

 
REFERENCES  

[1] MEDA D.P., 2020, Modeling And Experimental Investigation of Springback in Brass Alloy Sheet Metal V-

Bending, Master's thesis, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ). 

[2] ATTAR H.R., ZHU L., LI N., 2023 Check for Updates Deep Learning Enabled Tool Compensation for 

Addressing Shape Distortion in Sheet Metal Stamping, In Proceedings of the 14th International Conference on 

the Technology of Plasticity-Current Trends in the Technology of Plasticity, 4, 48. 

[3] BOLAR A.L., 2023, Automation of a Multi-Stage T-Joint Assembly of Stamped Components and Prediction of 

Performance Parameters Using Machine Learning, Master's thesis, The Ohio State University. 

[4] WANG Z., XIANG Y., ZHANG S., LIU X., MA J., TAN J., WANG L., 2024, Physics-Informed Springback 

Prediction of 3D Aircraft Tubes with Six-Axis Free-Bending Manufacturing, Aerospace Science and Technology, 
147, 109022. 

[5] ETIM B., AL-GHOSOUN A., RENNO J., SEAID M., MOHAMED M.S., 2024, Machine Learning-Based 

Modelling for Structural Engineering: A Comprehensive Survey and Applications Overview, Buildings, 14/11, 

3515. 

[6] XU J., 2022, Machine Learning Applications for Studying the Structural Behaviour of Cold-Formed Steel 

Columns with Web Openings ,Doctoral dissertation, Research Space@ Auckland. 

[7] HE J., CU S., XIA H., SUN Y., XIAO W., REN Y., 2023, High Accuracy Roll Forming Springback Prediction 

Model of SVR Based on SA-PSO Optimization, Journal of Intelligent Manufacturing, 36, 167–183. 

[8] ZEINOLABEDIN-BEYGI A., NAEINI H.M., TALEBI-GHADIKOLAEE H., RABIEE A.H., HAJIAHMADI 

S., 2024, Predictive Modelling of Spring-Back in Pre-Punched Sheet Roll Forming Using Machine Learning, The 

Journal of Strain Analysis for Engineering Design, 59/7, 463–474. 
[9] SAFARI M., RABIEE A.H., JOUDAKI J., 2023, Developing a Support Vector Regression (SVR) Model for 

Prediction of Main and Lateral Bending Angles in Laser Tube Bending Process, Materials, 16/8, 3251. 

[10] LEI C., MAO J., ZHANG X., WANG L., CHEN D., 2021, Crack Prediction in Sheet Forming of Zirconium 

Alloys Used in Nuclear Fuel Assembly by Support Vector Machine Method, Energy Reports, 7, 5922–5932. 

[11] FENG Y., HONG Z., GAO Y., LU R., WANG Y., TAN J., 2019, Optimization of Variable Blank Holder Force 

in Deep Drawing Based on Support Vector Regression Model and Trust Region, The International Journal of 

Advanced Manufacturing Technology, 105, 4265–4278. 

[12] WANG H., CHEN L., YE F., WANG J., 2018, A Multi-Hierarchical Successive Optimization Method for 

Reduction of Spring-Back in Autoclave Forming, Composite Structures, 188, 143–158. 

[13] CINAR Z., ASMAEL M., ZEESHAN Q., SAFAEI B., 2021, Effect of Springback on A6061 Sheet Metal 

Bending: A Review, Journal Kejuruteraan, 33/1, 13–26. 

[14] YUE Z., QI J., ZHAO X., BADREDDINE H., GAO J., CHU X., 2018, Springback Prediction of Aluminum Alloy 
Sheet Under Changing Loading Paths with Consideration of the Influence of Kinematic Hardening and Ductile 

Damage, Metals, 8/11, 950. 

[15] TSENG A.A., JEN K.P., CHEN T.C., KONDETIMMAMHALLI R., MURTY Y.V., 1995, Forming Properties 

and Springback Evaluation of Copper Beryllium Sheets, Metallurgical and Materials Transactions A, 26, 2111–

2121. 

[16] PANDIT A., DAS S., DAS S.K., 2020, Investigation on Spring-Back Effect of Galvanized Iron Sheet, Reason-A 

Technical Journal, 81–93, https://doi.org/10.21843/reas/2020/81-93/209274. 

[17] ADAY A.J., 2019, Analysis of Springback Behaviour in Steel and Aluminum Sheets Using FEM, Ann. de Chim. 

Sci. des Materiaux, 43/2, 95–98. 

[18] TEJYAN S., KUMAR N., RAVI R.K., SINGH V., GANGIL B., 2024, Analysis of Spring Back Effect for AA6061 

Alloy Sheet Using Finite Element Analysis, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr. 
2024.05.122. 

[19] WANG X.Z., MASOOD S.H., NG D., DAWWAS O., 2011, A Study of Springback of Sheet Metal Formed Parts 

Using ANSYS, Advanced Materials Research, 291, 381–384. 

[20] ZHANG Z., ZHENG C., LIU J., ZHONG Y., 2024, Springback Research of Tubular Structure Under Lateral 

Compression Using Explicit and Implicit FEA Method, Journal of Physics, Conference Series, 2820, 1, 012061. 

[21] ABDULHASAN M.Q., 2019, Design of Flexible Tool for the Evaluation of Plate Springback, Doctoral 

dissertation, Ministry of Higher Education, Al-Nahrain University, https://doi.org/10.13140/RG.2.2.36133. 

37604. 

[22] JOSEPH C.D., 2003, Experimental Measurement and Finite Element Simulation of Springback in Stamping 

Aluminum Alloy Sheets for Auto-Body Panel Application, Mississippi State University, Engineering, Materials 

Science, Corpus ID: 5980229. 



E. Abdullah and A. Jalil /Journal of Machine Engineering, 2025, Vol. 25, No. 1, 79-101     101 

 

[23] PRAKASH S., ETHIER C.R., 2001, Requirements for Mesh Resolution in 3D Computational Hemodynamics, J. 

Biomech. Eng., 123/2, 134–144. 

[24] ADRIAN A.F., 2022, Automation and Validation of Big Data Generation via Simulation Pipeline for Flexible 

Assemblies, Master's thesis, The Ohio State University. 

[25] DEZELAK M., PAHOLE I., FICKO M., BREZOCNIK M., 2012, Machine Learning for the Improvement of 

Springback Modelling, Advances in Production Engineering & Management, 7/1,17–26, 

https://doi.org/10.14743/apem2012.1.127. 

[26] JAMLI M.R., FARID N.M., 2019, The Sustainability of Neural Network Applications Within Finite Element 

Analysis in Sheet Metal Forming: A Review, Measurement, 138, 446–460. 

[27] KUMAR P., 2024, A Study on the Extraction of Geometrical Parameters from Flexible Mechanical Components 
and Assemblies and Their Impact on Performance: a Machine Learning Approach, Master's thesis, Arizona State 

University. 

[28] ABDULLAH E., JALIL A., 2024, Critical Spring Back Characteristics in Aluminum, Copper, and Pure Steel: 

Experimental Analysis, Proc. IMechE Part B, J. Engineering Manufacture, 231/4, 675–689. 

[29] CHANDRASEKARAN P., MANONMANI K., 2015, A Review on Springback Effect in Sheet Metal Forming 

Process, Int. Conf. Syst. Sci. Control Commun. Eng. Technol., 43–49, Engineering, Materials Science, Corpus 

ID: 51691117.  
 


