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COMPARISON OF TWO MACHINE LEARNING MODELS FOR PREDICTING 

VOLUMETRIC ERRORS FROM ON-THE-FLY R-TEST TYPE DEVICE DATA  

AND VIRTUAL END POINT CONSTRAINTS 

On-the-fly virtual end-point constraints consists in moving all five axes of the machine tool while nominally 

maintaining the coincidence of a sensing head centre point with a master ball centre attached to the workpiece 

table. The sensing head detects the deviations from the nominal coincidence as a 3D volumetric error vector. More 

than one ball can be so measured, and a fixed length ball bar is also measured for detecting isotropic scaling effects. 

Initial processing of data using the SAMBA (scale and master ball artefact) method eliminates setup errors and 

provides estimates of inter- and intra-axis errors as well as volumetric error vectors. Two ML models are trained 

and compared, Neural Network (NN) and eXtreme Gradient Boosting (XGBoost), to find the most suitable model 
and the required amount of training data to predict volumetric errors of a five-axis machine tool with 

wCBXfZY(S)t topology based on axis commands. The results show that NN marginally outperforms XGBoost 

and a kinematic model with ratios of prediction error over volumetric error norms of 0.12, 0.13 and 0.14, 

respectively. 

1. INTRODUCTION 

To avoid complexity and the requirement for expert knowledge, a growing number of 

researchers are applying machine learning (ML) methods to predict volumetric errors (VEs). 

Nguyen et al. [1, 2] used a dataset of 150 samples, collected by Li et al. [3] using an API 

Radian-20 laser tracker along with an active target (AT), consisting of X, Y, and Z axis 

positions, and A and C rotation angles as inputs with the corresponding VEs used as outputs 

for a large five-axis gantry tilting head machine tool. In [1], Nguyen et al. trained a three-

layer artificial neural network using 70% of the dataset (105 samples), and validated the 
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performance of the model using the remaining 30% of the dataset (45 samples) resulting in a 

0.95 coefficient of correlation of the validation set. Subsequently in [2], the authors trained 

linear, Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Artificial Neural 

Networks (ANNs) with Single, MultiOutput and Chained MultiOutput regression using 120 

training data and tested their performances using 30 testing data. They found that the SVR 

with Single regression model had the best VEs predictive performance with an RMSE of 0.032 

mm, which is a 27% improvement over the polynomial technique. Wan et al. [4] used a laser 

tracker to measure the nominal positions of sixty and thirty randomly selected fiducial points, 

respectively. They then trained a Gaussian process regression based (GPR-based) model 

using nominal positions as input, and VEs as outputs. The performance of the model was then 

tested with a new dataset of twenty randomly selected positions. The mean VE is 0.16 mm, 

and the mean prediction error is 0.02 mm with all prediction errors being below 0.05 mm. 

Guo et al. [5] used a laser tracker to collect VEs from a two-turntable five-axis CNC machine 

tool as output, position information, temperature, and spindle motor current as input. The 

researchers trained ACO-BPN (ant colony algorithm-based back propagation neural network), 

GA-BPN (Genetic Algorithm with Back Propagation Network), PPR (Project Pursuit 

Regression) and a fusion model that combined the aforementioned three models. After 

comparing their performances, the residual errors of the fusion model were reported to be 

consistently smaller than 2 μm, indicating its higher precision in predicting and compensating 

VEs compared to those three models. Ngoc et al. used Capball, an R-test type device with 

five non-contact precision capacitive proximity sensors, to measure raw translational 

volumetric deviations over 132 hours (528 cycles) to train a Stacked Long Short Term 

Memory (LSTM) model for predicting geometric error [6]. They concluded that the Stacked 

LSTM model using the Adam optimizer showed superior performance, predicting up to 93% 

of the main geometric error (EXX1) when compared to other optimizers. Additionally, they 

used the model to predict thermally induced VEs [7]. To test the model's performance, they 

measured raw volumetric deviations over 40 hours (160 cycles). The best prediction error of 

the SLSTM model for the long process was 2.2 µm of RMSE (98.8% fit to experimental 

measurements), while in the short test process it was 1.8 µm of RMSE (91.6% fit to 

experimental measurements). The worst case prediction error by the model was 7.5 µm of 

RMSE (fit of 69.2%). Liu et al. [8] used the laser interferometer Renishaw XL80 to measure 

the positioning errors of the X-, Y- and Z-axes. The thermal errors were then decomposed 

from these measurements. Temperatures, angular and translational errors of the spindle 

system, feed rate and rotational speed as inputs, to predict thermal errors with a Multivariate 

Linear Regression Analysis-based model. The study achieved a maximum fitting accuracy of 

95% using the polynomial model to fit the positioning error data of the linear axes. 

The dataset in the abovementioned studies, were from previous references or based on 

a limit amount. The main contribution of this paper is (1) to collect a large amount of data in 

a short time using on-the-fly virtual end-point constraints method, (2) to propose a process of 

matching programming point and Capball reading and (3) to find the most suitable ML model 

and the required amount of training data. Experimental procedure is explained in Section 2, 

structure and hyperparameters of the used machine learning model is explained in Section 3. 

Followed by results explained in Section 4, and finally draws the conclusion in Section 5. 
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2. EXPERIMENTAL PROCEDURE 

2.1. EXPERIMENTAL SETUP 

Translational volumetric error vectors (VEs) are collected using an in-house developed 

device named Capball during a SAMBA (scale and master ball artefact) test conducted on a 

Mitsui-Seiki HU40-T five-axis horizontal machine tool with a wCBXfZY(S)t topology 

(Fig. 1), which is similar as the one in [7]. A fixed length, magnetically and kinematically 

held, double ball bar, and a RUMBA (reconfigurable uncalibrated master ball artefacts) of 

four ceramic balls Ø12.7 with different nominal lengths of 102, 128, 153 and 172 mm are 

installed on the machine pallet.  The Capball [9], which is an R-test type device with five non-

contact capacitive sensors, is mounted in the tool holder.  

 

Fig. 1. Scale and master balls artefact (SAMBA) ready for collecting data by the Capball on a wCBXfZY(S)t machine; 

shown for b = 0°, c = 0° 

During the experiment, the on-the-fly [10] virtual end-point constraints consists in 

moving all five axes of the machine tool while nominally keeping the center point of the 

sensing head coincide with the centre of a master ball, attached to the workpiece table, with 

the B-axis moving in the range from –90 to +90 in 0.2-degree increments (Fig. 2), and the C-

axis moving in the range –360 to +360 in 0.1 or 0.2 degree increments (Fig. 2). This process 

was named chase-the-ball originally in [11]. To avoid collision, at some angles, the Capball 

moves away from the chased master ball and the Capball approaches again to chase the master 

ball until the ball moves to the next indexation. In addition, to detect scaling effects, a fixed 

length ball bar is also measured. The five sensor voltage readings from the Capball are 

recorded (Fig. 3 – Fig. 6), converted to mm and combined to produce the translational VEs.  
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Fig. 2. (bi, ci) pairs of training set and testing set 

                     

       

                                      

 

Fig. 3. Raw data of Ball 3 
 

Fig. 4. Raw data of Ball 4 

 

Fig. 5. Raw data of Ball 5 

 

Fig. 6. Raw data of Ball 6 
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2.2. DATA PROCESSING 

In this study, the sudden VEs spikes, showed in the red ovals in Fig. 3 – Fig. 6, are 

removed as we will make no attempt at predicting them. 

On-the-fly measurement is performed in order to reduce test time. To avoid collisions, 

the entire measurement process of each master ball is divided into several segments. At the 

beginning and end of each phase, the machine dwells for 0.3 s, which causes the data to flat 

line to easily associate the data with the machine motion and so automate the data processing. 

To match each programming point with the corresponding recorded voltage, a process is 

developed to calculate the number of sample points between each programming position.  

To realize a smooth movement between each programming point, the whole experiment 

is conducted based on a programmed G-code using G93 command. According to the F value 

in the G-code, the time used from one programming point to the next is calculated with 

Equation (1),  

𝑡𝑖 =
1

𝐹𝑖+1

∙ 60 (𝑖 = 1, 2, 3, … , (𝑘 − 1)) (1) 

where 𝑘 represents the total number of programming points; 𝐹𝑖+1 is the F value to complete 

the movement from the 𝑖𝑡ℎ programming point to the (𝑖 + 1)𝑡ℎ programming point in the 

unit of min/motion unit; 𝑡𝑖  is the corresponding time of the movement from the 𝑖𝑡ℎ 

programming position to the (𝑖 + 1)𝑡ℎ.  

Then, the theoretical number of data samples collected by the Capball during each 

movement is obtained by Equation (2) 

𝑛𝑝𝑐𝑎𝑙𝑖
= 𝑡𝑖 ∙ 1000  (𝑖 = 1, 2, 3, … , (𝑘 − 1)) (2) 

where 𝑛𝑝𝑐𝑎𝑙𝑖
is each calculated number of sample points from the 𝑖th programming point to 

the  (𝑖 + 1)th programming point, with 1000 being the used sampling rate in Hz. 

 

Fig. 7. Difference between calculated number of sample points and the actual number of sample points 
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However, there is a difference between the total calculated number of sample points and 

the actual number of sample points (Fig. 7), a general process consisting of four steps is 

developed to adjust the difference. The pseudocode is listed below: 

Step1: Calculate the ratio 𝑟 using Equation (3) of the actual number of sample points 

and the calculated one, and then, rounding the result to an integer based on the “𝑟𝑜𝑢𝑛𝑑𝑛” 

function (Equation (3)) in Matlab.  

𝑟 = 𝑟𝑜𝑢𝑛𝑑𝑛 (
𝑛𝑝𝑐𝑎𝑝𝑏𝑎𝑙𝑙

∑ 𝑛𝑝𝑐𝑎𝑙𝑖

𝑘−1
𝑖=1

, 0) (𝑖 = 1, 2, 3, … , (𝑘 − 1)) (3) 

where 𝑛𝑝𝑐𝑎𝑝𝑏𝑎𝑙𝑙 is the actual number of sample points, and 𝑛𝑝𝑐𝑎𝑙𝑖
 is the calculated number of 

sample points between each programming point. 

Step 2: Obtain the difference (𝛿) between actual number of sample points and the 

calculated one multiply by the ratio calculated in Equation (4). 

𝛿 = 𝑛𝑝𝑐𝑎𝑝𝑏𝑎𝑙𝑙 − ∑ 𝑛𝑝𝑐𝑎𝑙𝑖

𝑘−1

𝑖=1

∙ 𝑟 (𝑖 = 1, 2, 3, … , (𝑘 − 1)) (4) 

Step 3: Calculate the quotient (Equation (5)) and remainder (Equation (6). 

𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 = 𝑓𝑙𝑜𝑜𝑟 (
𝛿

𝑘
) (5) 

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑚𝑜𝑑(𝛿, 𝑘) (6) 

Step 4: Adjust the calculated number of sample points based on Equation (7)  and 

Equation (8). 

𝑛𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑖
=  𝑛𝑝𝑐𝑎𝑙𝑖

 ∙ 𝑟 + 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 (𝑖 = 1, 2, 3, … , (𝑘 − 1)) (7) 

𝑛𝑝𝑎𝑑𝑗𝑢𝑠𝑡(1: 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟, 1) = (𝑛𝑝𝑎𝑑𝑗𝑢𝑠𝑡(1: 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟, 1)) + 1 (8)  

If 𝑣𝑗  is the recorded voltage correspond to the 𝑖𝑡ℎ  programming point, 

𝑣𝑗+𝑛𝑝𝑎𝑑𝑗𝑢𝑠𝑡1
𝑤𝑖𝑙𝑙 𝑏𝑒 the recorded voltage correspond to the (𝑖 + 1)𝑡ℎ programming point.  

Finally, the program developed in [9] is used to convert voltages (Fig. 3 - Fig. 6) after 

removing the outliers (spikes highlighted in red ovals in Fig. 3 - Fig. 6, with abnormal voltage 

changes greater than 5%)  to the raw VE of each programming point. The machine kinematic 

error model and measurement model [12] are then applied to compute the translational 

volumetric error vectors and the kinematic error parameters. 

The approximate ratio of 7:1 is used to split the data into training set and testing set. To 

ensure the (bi, ci) pairs of the testing set are different from those in the training set, we select 

8346 samples (from Ball 3, 5, and 6) plus four samples of scale bar used for training and 1170 

samples (from Ball 4) for testing. The (bi, ci) pairs of testing set in orange are different from 

(bi, ci) pairs of training set in blue (Fig. 2).  
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2. STRUCTURE AND HYPERPARAMETERS OF THE USED 

 MACHINE LEARNING MODEL 

3.1. NEURAL NETWORK 

A three-layer Neural Network (NN) is used (Fig. 8). In the first hidden layer, 512 

neurons, with the activation of ‘relu’ is implemented. In the second hidden layer, eight 

neurons and “relu” is applied. As a regression problem, the last layer uses ‘linear’ activation, 

and three neurons are used to output volumetric errors in the X, Y, and Z directions. We use 

1000 epochs and batch size is eight. To train the NN model efficiently, a reduced learning 

rate strategy and early stop are used.  When the loss (value of “mean_squared_error”) does 

not change for 30 epochs, the learning rate will be reduced until the value reaches to 1e-6, 

and after 50 epochs’ non changeable loss, the training process will stop. All the parameters 

(Table 1) mentioned is determined by “Talos”, the simplest and most powerful available 

method for hyperparameter optimization with Keras. The details of each hyperparameter can 

be found in [13]. 

 

 

Fig. 8. Structure of Neural Network (adapted from [14])  
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Table 1. Hyper-parameters of NN 

Number of layers  Three 

 Number of neurons Activation 

First hidden layer 512 “relu” 

Second hidden layer 8 “relu” 

The third layer 3 “linear” 

batch_size 8 

epochs 1000 

optimizer “Adam” 

learning_rate 1e-4 

minmum learning_rate 1e-6 

loss “mean_squared_error” 

 

3.2. EXTREME GRADIENT BOOSTING 

A Gridsearch Cross-Validation (CV) and Bayes search CV are applied and compared to 

determine the hyperparameters (Table 2) in eXtreme Gradient Boost (XGBoost). The details 

of each hyperparameter can be found in [15]. 

Table 2. Hyper-parameter in XGBoost 

max_depth 5 

learning_rate 0.12 

objective ‘reg:squarederror’ 

n_estimators 1250 

booster ‘gbtree’ 

colsample_bytree 0.8 

subsample 0.8 

3.3. MODEL PERFORMANCE ASSESSMENT CRITERIA 

To assess the performance of the proposed models, four metrics are employed: root 

mean square error (RMSE) [16], mean absolute error (MAE) [16], fitting [7]  and prediction 

error norm ratio with respect to the norm of the VEs (PENRVEs). They are calculated using 

Equations (9) , (10) , (11)  and (12) , where  𝑛  is the number of observations, �̂�  are the 

predicted values, 𝑦  are the true target values, and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum and 

minimum values of the true target value respectively. 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
(9) 

𝑀𝐴𝐸 =
∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
(10) 
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𝑓𝑖𝑡𝑡𝑖𝑛𝑔(%) = (1 −
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

) × 100 (11) 

𝑃𝐸𝑁𝑅𝑉𝐸𝑠 =  
‖𝒆‖

‖𝑉𝐸𝑠‖
(12) 

where ‖𝒆‖ and ‖𝑉𝐸𝑠‖ are the norm of prediction error and norm of VEs, respectively. 

4. RESULTS AND DISCUSSIONS 

4.1. COMPARISON OF PREDICTIVE PERFORMANCE USING DIFFERENT AMOUNT OF TRAINING 

DATA BEFORE CORRECTION FOR EX(0B)C 

The kinematic model (green line with circles) consistently achieves the lowest RMSE 

(Fig. 9), MAE (Fig. 10), and the highest fitting (Fig. 11) in the X and Y directions, 

demonstrating its stability across varying training sizes in those two directions. However, a 

noticeable performance improvement in the NN model (orange line with triangles) is observed 

in the Z direction when the training samples exceed 265, where it outperforms both kinematic 

model and XGBoost (blue line with squares). XGBoost has the highest variability and always 

performs the worst. 

In the X direction, increasing the training size tends to reduce the RMSE, MAE and 

increase fitting for all three models initially. As the training size continues to increase, RMSE, 

MAE and fitting of kinematic model and NN converge to relatively stable values, while those 

of XGBoost remain volatile.  

In the Y direction, training with more data does not improve the performance of all three 

models.  

In the Z direction, as the size of the training dataset increases, RMSE, MAE of NN 

decrease and fitting of NN increases and finally outperforms the kinematic model and 

XGBoost.  

 

 

Fig. 9. RMSE of NN, XGBoost and kinematic model trained with different training size 
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Fig. 10. MAE of NN, XGBoost and kinematic model trained with different training size 

For an overall assessment of the performance of each model, average prediction error 

norm ratios with respect to the norm of the VEs (𝑃𝐸𝑁𝑅𝑉𝐸𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) are calculated and plotted in Fig. 

12. The 𝑃𝐸𝑁𝑅𝑉𝐸𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of the kinematic model (green line with circles) and NN (orange line with 

triangles) decreases initially when training data increases from 70 to 135 and 265 respectively, 

after then they fluctuate. For NN, when training data increases to 8350, it reaches its best 

performance with the lowest 𝑃𝐸𝑁𝑅𝑉𝐸𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   of 0.05. While the 𝑃𝐸𝑁𝑅𝑉𝐸𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of XGBoost (blue line 

with squares) has the largest variability and is always the largest. With respect to 𝑃𝐸𝑁𝑅𝑉𝐸𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

NN outperforms the kinematic model and XGBoost from a training dataset size of 2091. 

 

 

Fig. 11. Fitting of NN, XGBoost and kinematic model trained with different training size 

 

Fig. 12. Average prediction error norm ratio with respect to the norm of the VEs of NN, XGBoost  
and kinematic model trained with different training size 
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4.2. COMPARISON OF PREDICTIVE PERFORMANCE USING DIFFERENT AMOUNT OF TRAINING 

DATA AFTER CORRECTION FOR EX(0B)C 

The tested machine tool has a large and dominant EX(0B)C inter-axis geometric error, 

which may have a significant impact on the performance of the various model performance. 

In this section, the models are trained using data that have been corrected by removing the 

volumetric effects of EX(0B)C. Fig. 13, Fig. 14 and Fig. 15 illustrate RMSE, MAE and fitting, 

respectively, of the kinematic, NN and XGBoost models based on different amount of training 

data after correction for EX(0B)C. 

In the X direction, the kinematic model (green line with circles) performs the best with 

the overall lowest RMSE, MAE and the highest fitting. In this direction, the performance of 

all three models improves rapidly initially, and perform differently afterwards. For the 

kinematic model, it remains relatively stable with minor variations. The performance of 

XGBoost continuous to improve with the increase of training size, but fluctuates slightly. NN 

worsens (higher RMSE and MAE, lower fitting) until training size reaches 4177, after which 

it improves again. 

In the Y direction, the performances of all three models show a slight decreasing trend 

with the increase of the training data, whereas XGBoost performs the worst.  

Kinematic model performs the worst in the Z direction with the overall largest RMSE, 

MAE and the smallest fitting. There is a sharp improvement of NN initially, and it fluctuates 

afterwards.  

 

 

Fig. 13. RMSE of kinematic model, NN and XGBoost based on different training size after correction for EX(0B)C 

 

 
Fig. 14. MAE of kinematic model, NN and XGBoost based on different training size after correction for EX(0B)C 
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Fig. 15. Fitting of kinematic model, NN and XGBoost based on different training size after correction for EX(0B)C 

Since no model performs always better than the others in all directions, average 

prediction error norm ratio with respect to the norm of the VEs (𝑃𝐸𝑁𝑅𝑉𝐸𝑠) is calculated and 

plotted in Fig. 16 to provide with an overall performance of each model. NN is sensitive to 

the number of training dataset, and has an overall drop tendency till the training size decrease 

to 2091. While, training size does not have a big impact on the performance of the kinematic 

model. When training size becomes larger than 265, the performance of NN starts to 

outperform both the kinematic model and XGBoost. When the training data increases to 2091, 

the average prediction error norm ratio of NN is the smallest. 

 

Fig. 16. Average prediction error norm ratio with respect to the norm of the VEs of NN, XGBoost and kinematic model 

based on different training size after correction for EX(0B)C 

According to the results based on assessment criteria: RMSE (Fig. 17), MAE (Fig. 18), 

and fitting (Fig. 19), in the Z direction, NN trained with 2091 samples (three master balls with 

1916 (bi, ci) pairs plus one scale bar) performs the best with the lowest RMSE, MAE and the 

highest fitting, while being the worst in the X direction. XGBoost performs the worst in the Y 

direction. However, according to the fitting results, the performance of all three models are 

very close to each other, especially in the X and Y directions. 

In addition, we plotted average prediction error norm ratio of NN, XGBoost and 

kinematic model (Fig. 20). The result shows that, when 2091 training samples are used, NN 

outperforms XGBoost and the kinematic model with ratios of prediction error over volumetric 

error norms of 0.12, 0.13 and 0.14, respectively. 
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Fig. 17. RMSE of NN, XGBoost and kinematic 

model using 2091 training samples (three master 
balls with 1916 (bi, ci) pairs plus one scale bar) after 

correction for EX(0B)C 

Fig. 18. MAE of NN, XGBoost and kinematic 

model using 2091 training samples (three master 
balls with 1916 (bi, ci) pairs plus one scale bar) after 

correction for EX(0B)C 

  

Fig. 19. Fitting of NN, XGBoost and kinematic model 
using 2091 training samples (three master balls with 

1916 (bi, ci) pairs plus one scale bar) after correction for 

EX(0B)C 

Fig. 20. Average prediction error norm ratio of NN, 
XGBoost and kinematic model using 2091 training 

samples (three master balls with 1916 (bi, ci) pairs plus 

one scale bar) after correction for EX(0B)C 

5. CONCLUSIONS AND FUTURE WORK 

5.1. CONCLUSIONS 

In this study, we collect experimental data using an R-test type device with on-the-fly 

data gathering. Two ML models are trained and compared: Neural Network (NN) and 

eXtreme Gradient Boosting (XGBoost), to predict volumetric errors of a five-axis machine 

tool with wCBXfZY(S)t topology based on axis commands. The results show that by using 

2091 training samples (three master balls with 1916 (bi, ci) pairs plus one scale bar), NN 

outperforms XGBoost and is comparable to a kinematic model (with the machine error 

parameters of EA(0Z)B, EC(0X)B, EX(0B)C, EA(0B)C, EB(0X)C, EB(0X)Z, EA(0Z)Y, 

EC(0X)Y, EXX, EYY and EZZ) with ratios of prediction error norms over volumetric error 

norms of 0.12, 0.13 and 0.14, respectively. It is found that the number of training samples has 

an impact on the performance of both NN and XGBoost.   

This study contributes to the general knowledge by demonstrating that ML models, 

particularly NN, can achieve comparable accuracy to physics-based models when provided 



26  M. Zeng et al./Journal of Machine Engineering, 2025, Vol. 25, No. 2, 13–27  

 

with sufficient training data. It also reveals that the performance of NN is sensitive to the 

amount of training data, which provides insight for future model selection and planning of 

training size. For example, if it is difficult to collect large amounts of data due to time, cost 

or machine constraints, we could reduce the training samples to 526, as the ratio of prediction 

error over volumetric error norms only drops by about 1% compared to 2091 training samples. 

These findings suggest that the data-driven approach can serve as practical, adaptive 

alternatives to traditional error modelling methods, especially when machine error parameters 

are difficult to identify or vary over time.  

5.2. FUTURE WORK 

NN performs better than the kinematic model, but not significantly. In the next project, 

we will study more features other than axis commands such as axis motion sense and also 

enriching the path complexity to improve the performance of ML models.  

Moreover, only two ML models (NN and XGBoost) are evaluated in this study, 

because of their capability of handling nonlinear data. In the future, we plan to apply the 

concept of "meta-learning” or “double-loop” to compare a broader range of machine learning 

models, including support vector machines (SVM), with the aim of finding better-performing 

models.  
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