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CLOSED-LOOP CONTROL OF EXTRUSION-BASED BIOPRINTING THROUGH 

REAL-TIME COMPUTER VISION  

Bioprinting is the technology that combines the use of living matter and biomaterials to manufacture biological 
models, tissues, and structures layer by layer for applications in regenerative medicine, drug testing, and tissue 

engineering. Among bioprinting techniques, extrusion-based methods are the most widely used because of their 

relative simplicity, affordability, and ability to handle as wide range of biomaterials, including those with high 

viscosities. However, achieving consistent print quality remains a challenge, as the rheological properties of 

bioinks are highly variable and sensitive to environmental factors such as temperature. A critical aspect of print 

quality is maintaining a consistent and predictable line width, as pre-programmed trajectories and design fidelity 

rely on this parameter being well controlled. This work introduces a closed-loop control system for Extrusion-

Based Bioprinting (EBB), utilizing real-time computer vision. The system employs a camera that is placed to 

monitor the line width immediately after extrusion, enabling real-time feedback to adjust the feedrate of the 

extrusion mechanism. This approach ensures consistent line widths across a wide range of materials and 

conditions, addressing the variability that traditionally hampers EBB. The method was validated using a Pluronic 
hydrogel, achieving closed-loop control over a wide range of target line widths. These findings demonstrate the 

potential for automated, robust bioprinting with improved reproducibility and precision, advancing the reliability 

of this technology for biomedical applications. 

1. INTRODUCTION 

Bioprinting, also referred to as Additive Biomanufacturing, is a revolutionary process 

combining biology and engineering to fabricate three-dimensional tissue-like structures. This 

is achieved by depositing bioinks layer by layer, often containing living cells, to replicate the 

architecture and functionality of natural tissues and organs. These bioinks are categorized into 

two types: cell-based bioinks, consisting solely of living cells, and hydrogel-based bioinks, 

which combine hydrogels with embedded cells. Applications of bioprinting span regenerative 
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medicine, where it is used to create tissue constructs for transplantation or to repair damaged 

organs; drug testing, providing highly accurate 3D tissue and organ models to test drug 

efficacy and safety; and biological research, enabling the study of disease mechanisms, tissue 

development, and cellular interactions in a controlled environment. 

Bioprinting technologies are classified into three major approaches [1]: 

• Extrusion-Based Bioprinting (EBB): This method uses syringe-like extruders to 

deposit bioink filaments through a nozzle. EBB accommodates a wide range of 

bioinks with high cell densities, making it ideal for complex tissue structures. 

Pneumatic systems are the most common due to their simplicity and sterile operation. 

However, precise geometric accuracy remains challenging due to the interplay of 

pressure, bioink flow, and filament shape (Fig. 1). 

• Droplet-Based Bioprinting (DBB): Mimicking inkjet printers, DBB ejects bioink 

droplets using electrical, thermal, or acoustic energy. This technique excels in high-

resolution printing, particularly for creating thin tissue layers and vascular networks, 

but is limited by the range of compatible bioinks. 

• Light-Based Bioprinting (LBB): LBB utilizes laser energy for precise 

photopolymerization or bioink transfer, achieving high cell viability for intricate 

structures. However, its specialized bioinks and equipment can limit broader 

adoption. 

Among these approaches, EBB is the most widely adopted due to its versatility and 

adaptability to various materials [2]. 

 

 

Fig. 1. Extrusion-based Bioprinting principal material actuation systems [3] 

Overcoming challenges in EBB is pivotal for advancing its industrial and clinical 

applications. Key challenges involve managing filament shape during extrusion while 

balancing material properties, cell viability and printing parameters. Two critical dualities 

exemplify these challenges: (i) stiff hydrogels offer structural integrity but compromise cell 

viability, whereas softer hydrogels enhance viability at the cost of structural support; (ii) 

smaller needle diameters improve precision but increase shear stress, which reduces cell 

viability. Furthermore, spatial resolution, a fundamental factor, dictates deposition accuracy 

and influences both mechanical properties and the overall quality of bioprinted constructs [4]. 
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Closed-loop control is crucial in EBB to address the variability in bioink composition 

and process complexity. Achieving consistent extrusion and deposition is hindered by bioink 

heterogeneity and environmental factors such as temperature fluctuations and dynamic flow. 

Open-loop systems, commonly used in current bioprinting hardware, lack real-time 

monitoring and adaptive control capabilities, leading to reduced fidelity in printed structures. 

Incorporating closed-loop systems ensures high fidelity in bioprinted constructs [5]. 

Innovations such as computer vision and Machine Learning (ML) offer promising 

solutions for real-time visual analysis and adaptive control. However, these advancements 

come with challenges, including higher computational requirements, resolution limitations, 

and environmental sensitivities [6]. 

This research addresses persistent challenges in EBB, particularly the inconsistencies in 

print quality due to the variability in bioink properties and environmental factors. While prior 

work has explored control and monitoring of output geometry, a need remains for a robust, 

adaptive system. To address this issue, this work introduces a closed-loop control system 

employing real-time computer vision. 

2. ALGORITHM STATE OF THE ART  

2.1. COMPUTER VISION FOR REAL-TIME APPLICATIONS 

In the field of EBB, Computer Vision (CV) systems have become essential to enhance 

the manufacturing process through effective in situ monitoring. This technology enables 

continuous observation and analysis of the bioprinting environment, ensuring that production 

adheres to high standards of quality and precision. 

Various specialized imaging sensors are used in these systems, each offering unique 

advantages and specific limitations that influence their application: 

• Visible light cameras are relatively affordable and provide a wide field of view, 

allowing operators to monitor large areas. However, they are primarily limited to 

capturing two-dimensional surface information and have only modest resolution, 

which may not suffice for detailed assessments. 

• Laser displacement scanners excel at creating accurate mapping of surface contours, 

but they may struggle with transparent materials, where laser beams may refract or 

scatter, leading to inaccurate measurements. 

• Optical Coherence Tomography (OCT) can penetrate surfaces and identify internal 

defects, such as air bubbles or inconsistencies within the material. However, its high 

cost and narrow field of view can make widespread adoption in bioprinting 

applications challenging. 

Recent advancements in bioprinting have underscored the significant role of integrated 

camera systems in monitoring extrusion processes and detecting anomalies in printed 

structures. The following topics group significant advancements in this field: 

• Quality control and error mitigation: Armstrong et al. [7] employed integrated 

process monitoring and control strategies to measure feature errors in bioprinted 
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grids. This approach utilized optical images captured by a coaxial camera, which were 

subsequently processed to extract geometric data and derive defect patterns for 

monitoring. Moreover, the control strategy intelligently updated extrusion parameters 

in the G-code, enhancing accuracy in subsequent layers. 

• Structural analysis and trajectory optimization: Gugliandolo et al. [8] demonstrated 

the effectiveness of optical imaging in bioprinting. By processing images from a 

coaxial camera, they identified structural defects and established a systematic 

approach for monitoring and control. This methodology not only led to improved 

anomaly detection but also provided insights into how extrusion parameters affect 

construct quality. 

• Advanced monitoring techniques: Traditional camera systems often face limitations 

in resolution due to suboptimal positioning at large distances or oblique angles from 

the extrusion nozzle. Sergis et al. [9] addressed these challenges by designing a 3D 

bioprinting hardware prototype with an advanced camera system mounted on a 

transparent glass platform. This setup improves visibility and data capture, enabling 

high-resolution monitoring of bioink flow and filament formation. This innovation 

enhances the detection of structural anomalies and deepens understanding of how 

extrusion parameters influence construct quality. 

2.2. CONTROL SYSTEMS AND ADDITIVE MANUFACTURING APPLICATIONS 

Control theory is a multidisciplinary field that addresses the behaviour of dynamic 

systems and the design of mechanisms to regulate their behaviour to achieve desired 

outcomes. In the context of control systems, a fundamental distinction exists between open-

loop control and closed-loop control [10]. Open-loop control systems operate without 

feedback. They execute a set of predefined actions without accounting for the current state of 

the system. While straightforward to implement and suitable for systems with predictable 

behaviour, they lack robustness against external disturbances or model inaccuracies. Closed-

loop control systems, on the other hand, utilize feedback to continuously adjust the system’s 

actions based on the difference between the desired and actual outcomes. This feedback 

mechanism, often implemented through algorithms like Proportional-Integral-Derivative 

(PID) control, enhances system stability and adaptability, making it indispensable in 

applications requiring precision. 

Closed-loop control systems leverage a variety of advanced algorithms to maintain 

precision and adapt to dynamic conditions. Below is an overview of the major control 

strategies in additive manufacturing: 

• Proportional-Integral-Derivative (PID) control: This widely used method maintains 

system stability by adjusting system parameters based on proportional, integral, and 

derivative terms of error magnitude. It is effective in applications such as temperature 

regulation, extrusion consistency, and motion control [11]. 

• Internal Model Control (IMC): It is a control strategy that incorporates an explicit 

model to predict system responses within the controller design. By leveraging the 
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internal model, IMC ensures better tracking of reference inputs in additive 

manufacturing, such as maintaining consistent filament geometry [12]. 

• Model Predictive Control (MPC): By leveraging a predictive model, MPC optimizes 

system behavior over a defined future horizon. It is highly effective in managing 

constrained systems, such as ensuring consistent extrusion while avoiding pressure 

or thermal limits [13]. 

2.2.1. CONTROL SYSTEMS IN ADDITIVE MANUFACTURING 

These studies address challenges in extrusion closed-loop control within additive 

manufacturing, particularly for processes requiring high precision and adaptability: 

• Liu et al. [14] proposed a closed-loop quality control system for fused filament 

fabrication that combines image-based defect detection with a tailored Proportional–

Derivative (PD) control mechanism. Their system employs real-time image 

acquisition and classification to assess defect severity and adjust key process 

parameters. 

• Tian et al. [15, 16] introduced a closed-loop strategy ensuring strand width uniformity 

using machine vision technology. A camera captures sequential strand images, which 

are processed to measure and adjust strand width in real time. Among the evaluated 

methods, the Smith PID controller delivered the most consistent results. 

• Brion et al. [17] trained a neural network for real-time error detection and correction 

in diverse geometries and materials, integrating it with closed-loop control to 

optimize performance. 

• Tamir et al. [18] used ML models with fuzzy logic to fine-tune 3D printing 

parameters, achieving improved structural properties through dynamic adjustments 

to extrusion and print speeds. 

• Roach et al. [19] proposed a closed-loop system combining Invertible Neural 

Networks (INNs) and in situ vision for defect detection and rapid correction of 

extrusion parameters. 

• Ma et al. [20] developed a monitoring system for silicone additive manufacturing 

using a laser sensor for iterative optimization. Although effective for substrate-bound 

strands, spatial strand optimization remains an area for future improvement. 

2.3. CONTROL SYSTEMS FOR EXTRUSION-BASED BIOPRINTING 

Extrusion-Based Bioprinting Process Model 

The mathematical expression of the physical model for the extrusion-based bioprinting 

process is presented in Eq. 1 [21]: 

2𝑅𝑝 = 𝑤 = 𝐷2√
1

332 ⋅ 𝜂 ⋅ 𝐿 ⋅ 𝑣𝑝

⋅ (
4𝑛

3𝑛
+ 1) ⋅ ∆𝑃 (1) 
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Where 𝑤 is the line width, ∆𝑃 is the extrusion pressure 𝑣𝑝 is the printing feedrate, 𝐿 is the 

length of the nozzle, 𝐷 is the diameter or size of the nozzle, and 𝜂 is the apparent viscosity.  

Derived from this equation, two main mechanisms to control the output geometry can 

be identified: (i) through extrusion pressure and (ii) through feedrate. Furthermore, it can be 

deduced that the relation between width and pressure or feedrate is non-linear. This section 

presents an overview of recently proposed control systems designed for EBB. 

Open-Loop Control Systems 

As previously discussed, open-loop control systems are straightforward and rely on 

predefined inputs without incorporating feedback. In bioprinting setups, this simplicity makes 

them widely used. Several recent studies highlight the application of open-loop control in 

optimizing parameters and improving outcomes in EBB: Trucco et al. [21] utilized an 

analytical model based on hydrogel rheology to predict filament width, achieving enhanced 

printing accuracy through a power-law model validated experimentally. Arjoca et al. [22] 

employed statistical regression to optimize extrusion speed and predict filament diameter 

using non-Newtonian hydrodynamic principles. Arduengo et al. [23] combined ML with 

automated image analysis to guide parameter selection, demonstrating the potential of open-

loop systems. 

Closed-Loop Control Systems 

The implementation of fully integrated closed-loop control systems in EBB remains 

limited. However, recent advancements in extrusion-based additive manufacturing provide 

promising insights into the potential applications of such systems for bioprinting [24]. Recent 

works have explored closed-loop approaches: Wenger et al. [25] developed a PID-based 

closed-loop control system for pneumatic extrusion. The system integrates a flow sensor to 

measure ink flow in real time, dynamically adjusting extrusion pressure. This method 

maintains consistent flow rates that adjust to varying conditions. Kelly et al. [26] recently 

introduced an Artificial Intelligence (AI) driven closed-loop bioprinting platform designed 

for real-time quality assessment and error correction. A custom bioprinter equipped with an 

integrated camera leverages convolutional neural networks to classify extrusion quality in 

various printing scenarios. Using real and synthetic training data, the system dynamically 

adjusts extrusion parameters to address errors, achieving correction of over- and under-

extrusion issues in bioinks like alginate and collagen. 

3. MATERIALS AND METHODS 

This section provides a comprehensive description of the bioprinting setup, 

experimental protocol, and software framework used to achieve precise material extrusion. It 

outlines the components of the custom-built bioprinter, the methodologies employed to ensure 

consistent performance, and the algorithms driving the feedback loop and tuning for optimal 

operation. 
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3.1. SETUP AND MATERIALS 

The bioprinting setup is a custom prototype built for precise material extrusion, featuring 

centralized electronic control for seamless integration of components. Key components 

include (Fig. 2): 

 

Fig. 2. Image of the experimental setup shows the bioprinting stage at the center, with the syringe mounted on the 

printhead and the camera pointing to the printing zone. The printing substrate is fixed to the buildplate, and additional 

lighting ensures clear image capture 

• Bioprinter stage: The bioprinter is a Cartesian machine built in-house, featuring 

buildplate movement driven by Parker MX80LS linear motors. These motors enable 

140mm XY travel with 0.1 µm encoder resolution and ±3 µm of positional accuracy. 

The Z-axis controls the syringe vertically, while an MC405 motion controller (Trio 

Motion Technology) with an ARM11 processor manages all axes. 

• Pressure controller: Pneumatic control within the syringe is handled by a Nordson 

Ultimus V pressure controller, offering a resolution of 1 mbar, ±140 mbar accuracy 

a maximum pressure of 5 bar. This system supports electronic control of dispense 

time and pressure settings via a serial interface. 

• Printing area: The bioprinter operates in a microbiological safety hood, which 

minimizes contamination risks. The printing area includes a substrate fixed to the 

buildplate and a calibration reference fabricated using Rigid 10K Resin with a 

Formlabs Form 3+ Stereolitography (SLA) 3D printer. 

• Bioink: The hydrogel material used is Pluronic F-127 (Merck, P2443-250G), chosen 

for its temperature-sensitive properties. It is prepared by dissolving the polymer at a 

25% w/v concentration in deionized water at 4 °C. Blue food coloring is added for 

improved visibility, and air bubbles are removed through centrifugation. Although 

non-cell-laden bioinks are used here, the system is compatible with living cell-laden 

formulations. 

• Syringe and needle: Bioink is extruded using a 3cc syringe (Nordson, P/N: 7366044) 

connected to the pressure controller via an adapter (Nordson, P/N: 7012341). The 
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stainless steel needle used has an inner diameter of 0.41 mm, an outer diameter of 

0.72 mm, and a length of 38.1 mm (Nordson, P/N: 7018266). 

• Camera: A Dino-Lite microscopic camera (P/N: AM7915MZTL) is mounted to 

monitor the needle’s movement and material deposition. Its alignment ensures 

detailed visualization of the filament during extrusion. Used at a resolution of 1280 x 

960 pixels per frame, representing 6.5 µm per pixel at the applied field of view. 

• PC: All electronic components, including the bioprinter stage, the pressure controller 

and the camera are controlled by a C++ program running on a PC (12th Gen Intel 

Core i5-12500H and 16 GB RAM), which hosts all real-time processing. Interface 

with the bioprinter stage is ensured through an ethernet connection and the C++ API 

provided by the manufacturer [27]. The camera is connected through USB and 

controlled using the open-source library OpenCV [28], which was also used for image 

treatment in the developed computer vision algorithm. The pressure controller is 

connected to the PC through a Serial-to-USB adapter, and code was written to 

communicate based on the manufacturer’s serial protocol [29]. 

3.2 EXPERIMENTAL PROTOCOL AND SOFTWARE 

The experimental protocol and software are integral to maintaining precise control of 

the printed line width through an automated feedback loop. The setup operates as follows: 

1. Parameter setup: Several parameters are set manually, including the pneumatic 

pressure, printing height, and an initial feedrate. The target width is defined as a 

function of time or distance and preloaded into the control software. 

2. Material purging: Material purging ensures consistent material flow by eliminating air 

bubbles and blockages, reducing inconsistencies in the extrusion process. 

3. Calibration: A calibration phase uses a reference dot with a known size placed under 

the camera. The software calculates the scale for converting pixel dimensions to 

millimeters, ensuring accurate width measurements. 

4. Positioning and extrusion start: The needle is positioned at the starting point of the 

substrate, and extrusion begins. Once the camera captures a stable reading of the line 

width, the feedback control loop is activated, dynamically adjusting the feedrate to 

maintain the desired line width. 

5. Feedback loop: During operation, the program processes each frame captured by the 

camera to measure the extruded line’s width. An IMC controller dynamically adjusts 

the printer’s feedrate based on these measurements to maintain the target width, while 

validation filters out erratic measurements.  

6. Data logging and monitoring: The program logs critical data, including timestamps, 

measured and targeted width and feedrate, exporting them into a file for analysis. 

7. End condition: When the needle reaches the end of the substrate, the extrusion and 

movement stop, completing the printing cycle. 

The software (a C++ program) is hosted on the PC and orchestrates the entire process. 

It manages both the preparation steps and the real-time processing pipeline, which includes 

frame acquisition from the camera, execution of the computer vision algorithm, and 
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computation of the response according to the selected control architecture (open-loop or 

closed-loop). The program then communicates the updated speed to the bioprinting stage for 

immediate application. The software runs a single-loop structure, ensuring efficient and 

consistent operation during the feedback control phase. The effective sampling frequency was 

9.0 Hz, with an accuracy of ±2.8 Hz at 95% confidence, based on variation in elapsed time 

under stable conditions. This frequency is limited mostly by the camera latency (~105 ms) to 

retrieve each frame. 

3.3 CONTROLLER DESIGN 

The controller uses an IMC architecture hosted inside the C++ program (digital 

implementation), with a model that predicts output feedrate based on input target width. The 

output feedrate is the sum of this prediction and a Proportional-Integral response which 

ensures convergence of target and measured width (Eq. 2): 

𝑣𝑝(𝑡) = 𝑣𝑝𝑟𝑒𝑑(𝑤𝑐(𝑡))+ 𝐾𝑝(t) ⋅ 𝑒(𝑡) + 𝐾𝑖(t)∫ 𝑒(𝑡) 𝑑𝑡, 𝑒(𝑡) = 𝑤𝑐(𝑡) − 𝑤(𝑡) (2) 

where 𝑤𝑐(𝑡), 𝑤(𝑡) are the target and measured width at time t, 𝑣𝑝𝑟𝑒𝑑(𝑤𝑐(𝑡)) is the feedrate 

predicted by the internal model based on the target width, 𝑣𝑝(𝑡)is the output feedrate, 𝑒(𝑡) is 

the error and 𝐾𝑝(𝑡), 𝐾𝑖(𝑡) are the proportional and integral gains, respectively. They are 

computed as a function of the system’s sensitivity to maximize time responsiveness without 

leading to instabilities for every target width, given the non-linearity of the system. 

Feedrate Prediction Internal Model 

The internal model predicts feedrate based on target width. It is computed interpolating 

five points (feedrate vs. width) measured in a calibration pass. The obtained curve depends 

on the material rheological properties and the extrusion pressure. 

Gain Scheduling 

The gain of the controller is adjusted depending on the system’s sensitivity at each 

operational point. The slope of the internal model is used as a prediction of the sensitivity 

(Eq. 3): 

𝐾𝑖(𝑡) = 𝑘 ⋅
𝑑

𝑑𝑤𝑐
𝑣𝑝𝑟𝑒𝑑(𝑤𝑐(𝑡)), 𝐾𝑝(𝑡) = 𝐾𝑖(𝑡) ⋅ 0.1 (3) 

𝐾𝑖 being proportional to the sensitivity by a constant 𝑘 and 𝐾𝑖 and 𝐾𝑝 keeping a constant ratio 

of 10 to 1. 

Validation Criteria 

Before applying the computed response, the controller validates measurements to filter 

out anomalies from air bubbles or extrusion discontinuities. The algorithm ensures spatial 

coherence by analyzing boundary positions identified through computer vision. Significant 

deviations invalidate the measurement, leveraging the detection algorithm's stochastic outputs 

when no line is present. If validation fails, the controller maintains its current state to prevent 

erroneous corrections. 
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3.4. OPEN-LOOP MACHINE LEARNING BASED CONTROL SYSTEM 

Along with this IMC closed-loop system, a novel open-loop ML based approach has 

also been tested for comparison. Based on a beforehand training in an open-loop context [23], 

a width manifold is created (Fig. 3).  

The intersection between a hyperplane and the manifold represents the possible 

parameters sets meeting the target width. The remaining choices can then be sorted based on 

the repeatability and quality metrics proposed in [23]. Training the ML model can be time 

consuming, but the prediction is done in real-time (0.5 ms on average over 10k runs). The 

inverse model prescribing the process parameters is an optimization problem on the manifold 

built in the previous step for a given target width. 

 

Fig. 3. Width manifold in function of the speed and pressure. Green points are the data used for training the ML model 

where red points are for validating the model. The gray hyperplane is an example of a 0.8 mm target width where the 

intersection with the manifold corresponds to the possible process parameters meeting this target 

For a given target width, the model can propose a set of process parameters within 6 ms 

on average (over 10k runs for different target width from 0.16 mm to 1.59 mm). 

3.5. COMPUTER VISION ALGORITHM 

The algorithm analyzes a strip of the camera’s captured frame to identify the printed 

line’s width through (Fig. 4):  

 

Fig. 4. Frame showing the selected ROI and the obtained clustering of the pixels after black and white conversion 
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• Profile reduction: Reduces the Region Of Interest (ROI) into a 1D intensity profile 

by averaging pixel values across rows. 

• Black and white filtering: Combines the saturation channel with the inverted red 

channel to isolate the line’s contour. The resulting profile is smoothed to reduce noise. 

• K-means clustering segmentation: Segments the smoothed profile into foreground 

and background regions, identifying the largest contiguous region as the line width. 

The accuracy of the computer vision system was evaluated to be ±21 µm at 95% 

confidence (standard deviation of around 10 µm), based on the analysis of noise when 

measuring a constant width. 

4. RESULTS 

Frequency response of the extrusion system  
The system was fed with oscillatory input (feedrate, centred at 5 mm/s with 3 mm/s 

amplitude), and the output oscillations (width) were analysed using FFT analysis for 

amplitude gain and phase shift. This allowed for the empirical construction of the system’s 

Bode diagram, which clarifies its behaviour and characteristics (Fig. 5): 

  

Fig. 5. Bode diagram of the extrusion system. On the left, gain as a function of frequency. Estimated asymptotic trend is 

showed as a dotted line with a slope of –20 dB/decade, hinting a behaviour of a first-order low-pass filter with a cut-off 

frequency of 0.8 Hz. On the right, phase shift as a function of frequency, asymptotic to the left at –180° as the relation 

between feedrate and width is inverse, and decaying, hinting that the system presents lag, estimated at 0.37 seconds 

The given Bode diagram suggests that the system behaves as a first-order low-pass 

system with a constant time delay. This conclusion is based on the following observations: 

• The gain plot exhibits a nearly constant value at low frequencies (–14 dB), followed 

by a roll-off at higher frequencies. The roll-off slope is -20 dB/decade, which is 

characteristic of a single-pole system. The cut-off frequency, defined by the -3 dB 

drop from the low-frequency gain, is estimated at 0.8 Hz, indicating the dominant 

pole location.  
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• The phase plot shows a linear decrease with frequency, which is a strong indicator of 

a constant time delay in the system. The estimated slope suggests a time delay of 0.37 

± 0.01 seconds (95% confidence using the Cramér–Rao lower bound for phase 

estimation in Gaussian noise). Also, the phase shift asymptotic to the left seems to be 

–180°. This is due to the inverse relation between feedrate and width. 

Step response of the controlled extrusion system  
The step response of the system was assessed through a series of incremental reductions 

in the target width. The initial target width was set to 1.5 mm, followed by successive 

decreases, with each step allowing for the measurement of the convergence time. This 

convergence time is defined as the interval between the application of a new target width and 

the moment when the measured width stabilizes within a 5% tolerance range of the target, as 

depicted by the blue shaded regions in (Fig. 6). At least three tests were carried out for each 

target width, representing here the most significant one (i.e. highest response time). 

The results indicate that the system effectively reaches all target widths within the range 

of [0.4, 1.5] mm between 0.9 ± 0.1 and 1.6 ± 0.1 seconds (accuracy based on the system’s 

sampling frequency). The predicted feedrates derived from the internal model do not 

immediately yield the desired width, as evidenced by the initial decrease in width, which is 

highlighted by the red curves in Fig. 6 showing transient response and overshoot. 

Nevertheless, the integral control actions facilitate convergence thereafter. In convergence, 

the width was found to vary with a mean standard deviation of 16 µm, increasing at a mean 

rate of 18 µm per mm in target width as the system becomes more sensitive to changes in 

speed.  

   

Fig. 6. Evolution in time of the width (red/green) when applying a step in the target width (blue, 5% tolerance band in 

shaded blue). The signal turns green once it enters the convergence band, showing a convergence time ranging between 

0.9 and 1.6 seconds. Negative initial overshoot is mainly due to internal model inaccuracies and lag 

On the other hand, the open-loop ML based approach does not show any width 

oscillation. The predicted speed for a new target width is applied instantaneously and seen in 

the following cycle of the control system. This approach, based on a data-driven inverse 

model, directly proposes an optimal set of process parameters for a target width. The response 
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time for any width change is therefore the same and depends only on the optimization process 

when querying the manifold. 

5. CONCLUSION 

This paper introduces a novel approach for a closed-loop control system for EBB that 

integrates real-time computer vision with an IMC controller to ensure a consistent and robust 

output width, along with an open-loop ML based system which ensures an instantaneous and 

well-tuned response. The system operates at a high sampling rate of approximately 9.0 Hz, 

achieving an error of less than 5% within 2 seconds for the closed-loop approach. Its 

flexibility, accommodating widths from 0.4 mm to 1.5 mm, ensures stability across the entire 

range despite the inherent non-linearity of the process. This demonstrates significant 

improvements in responsiveness with respect to previous studies, as those presented by Tian 

et al. [15, 16] and Brion et al. [17]. Given the susceptibility of EBB to perturbations (knowing 

that error accumulates layer by layer), this closed-loop approach significantly outperforms 

open-loop systems, as demonstrated in Fig. 7. 

 

Fig. 7. Comparison of closed-loop control vs open-loop control. The open-loop system is subject to variations in the 

printing height due to substrate wrapping, which is a position-dependant perturbation, consistent through the presented 

tests. The closed-loop system is able to correct for this perturbation 

The open-loop ML approach clearly improves the system responsiveness, providing an 

instantaneous direct response, but lacks resilience to unknown perturbation, noise or any event 

not planned during the training phase of the model. Therefore, future work will focus in 

implementing the ML based model as an internal model for IMC, thus providing a quick 

response without oscillation as well as robustness against perturbations. 

Designed to meet the stringent requirements of bioprinting, the system ensures non-

contact operation and maintains sterility, making it well-suited for biomedical applications. 

Furthermore, the methodology presented in this work is highly adaptable and can be extended 
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to other additive manufacturing techniques that demand precise material deposition and real-

time process control.  

Applied currently to single-strand Pluronic extrusion, future work will explore its 

extension to multilayer constructs, cell-laden bioinks, and a broader range of printable 

materials, with the aim of validating performance under more complex and biologically 

representative printing conditions. 
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