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GEAR WEAR MECHANISMS, MONITORING TECHNIQUES AND THEIR 

POTENTIAL USE IN GEAR PREDICTIVE MAINTENANCE 

In order to ensure the undisturbed operation of gear transmissions, avoid their unplanned downtimes and secondary 

damage to them, their condition needs to be monitored and their failures need to be diagnosed. Currently, there is 
no commercial and universal diagnostic system for predictive analysis of gear wear. There are also no limit values 

of wear indicators defining individual causes of wear. The article presents problems related to various mechanisms 

of gear wear. Different methods of monitoring the condition of the gear are presented. They are presented. Thermal 

methods, analysis of wear residues, and measurements and analysis of vibrations and acoustic emissions are 

described. The usefulness of these techniques for predictive maintenance of gear movement is indicated. It is 

proposed to extend gear diagnostics by using machine learning methods to detect their faults, and in particular 

critical states of gear wear. 

1. INTRODUCTION 

In order to ensure the high availability of machines and mechanical devices, one should 

see to that the response to incipient machine faults is the quickest possible. Thus the early 

detection of the initiation of faults is of key importance for the early planning and execution 

of repair actions [1]. This helps to minimize downtimes and increase the availability of the 

machines. Modern gears in high-performance equipment, especially in the manufacturing and 

power industries, must meet high requirements as regards their rated load, working properties 

and operating stability. The assurance of the undisturbed operation of gears and the avoidance 

of unplanned downtimes and secondary damage to gears require the monitoring of their 

condition and the diagnosis of their faults [2]. 

Currently, there is no commercial, universal, and at the same time comprehensive 

diagnostic system available for sale that would allow for connecting any type of measuring 

sensors measuring various physical quantities, and then, based on the synthesis of the received 
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processed measurement signals, performing predictive analysis of the gear. Therefore, each 

time a measurement system must be built and algorithms for signal conditioning and 

synthesizing measurement results must be developed, and ultimately for diagnosing the 

condition of the gear. In addition, there are no limit values defining the individual causes and 

methods of gear wear, which is a significant scientific gap for issues related to predictive 

maintenance.  

The paper presents problems related to various mechanisms of gear wear. Various 

methods currently used to monitor the condition of the gear and their advantages and 

limitations are presented. Some guidelines for predictive maintenance of the gear are 

presented. The potential application of machine learning methods in the diagnosis of gears, 

together with the possibilities of detecting their faults, is indicated. 

2. GEAR WEAR MECHANISMS 

The wear mechanism of a tribological couple formed by the surfaces of interacting gear 

wheels is determined by many factors, including the relative motion (e.g. rolling or sliding) 

of the contact surfaces, the rubbing speed, the load acting on the contact surface, the hardness 

and roughness of the surfaces and the lubrication [3]. In gear transmissions the above factors 

result in various tooth profile wear mechanisms. Wear is accompanied by material loss. 

Various types of tooth wear, including abrasive wear, fatigue wear and adhesive wear (Fig. 1), 

are distinguished. 

 

Fig. 1. Three wear mechanisms [1] 

Generally, three stages occur in the process of material wear, i.e. running-in wear, steady 

wear and catastrophic wear. Figure 2 shows changes in wear rate in each of the stages. 

The running-in stage occurs in the initial period of the interaction between the contact 

surfaces during which the peaks of surface asperities deform and diminish. The geometry of 



M. Stembalski et. al./Journal of Machine Engineering, 2025, Vol. 25, No. 2, 43–63  45 

 

the surfaces changes and the material structure undergoes texturing towards the contact. As 

the peaks of asperities are continuously removed, the direct contact between the sliding 

surfaces increases whereby the surface pressures decrease and the rate of wear drops 

markedly. 

Friction characteristics, including the coefficient of friction, the degree of wear and the 

temperature, on average have constant values in the stage of steady wear. The surface 

geometry on the micro level is continuously and stably reproduced, as evidenced by constant 

average roughness values. 

The beginning of the stage of catastrophic wear becomes visible after a rapid rise in the 

level of friction. The factors which trigger this phenomenon are: the overheating of the contact 

surfaces, the exceedance of the material’s fatigue strength due to overloading, insufficient 

lubrication, etc. From the wear process assessment point of view is essential to reveal the 

beginning of this stage so as to be able to respond on time to the gear operation issue. The 

terminology relating to the wear of and damage to teeth in gears, particularly in steel gear 

wheels, is contained in international standard ISO 10825-1:2022 [4]. 

 

Fig. 2. Change in degree of wear in each stage of wear 

2.1. ABRASIVE WEAR 

Abrasive wear is a critical kind of wear in the lubricated mechanisms of machinery [5]. 

This type of wear usually occurs due to the sliding contact between hard material particles 

and the soft surfaces. Abrasive wear can be divided into two subclasses: two-body abrasion 

and three-body abrasion [6]. In the former case a single surface with harder microasperities 

cuts into or scrapes a soft surface. This usually happens in insufficient lubrication conditions 

or in the case of excessively large surface microasperities (a rough surface) when the oil film 

does not separate the interacting surfaces. Solutions preventing this kind of wear comprise 

lubrication with higher viscosity oil and contact surface hardening. 

Three-body abrasion is caused by the hard particles of impurities which during 

lubrication get between the interacting surfaces. The source of the particles can be dirt in the 

lubricating medium or abrasive impurities arising during wear. These particles deposit on one 

of the contact surfaces and make scratches or grooves on the interacting surface during the 

relative motion of the surfaces. The effect of this type of wear can be minimized through oil 

filtration. 
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The teeth of gears are subjected to sliding motion along the tooth profile, except for the 

pitch line area in which the relative rubbing speeds of the driving and driven gear teeth are 

equal to zero. For comparison, the maximum rubbing speeds occur at the tooth root/tip 

contact. Abrasive wear in a gear usually occurs in the running-in period during which a 

smoothing effect due to the removal of the peaks of surface asperities is observed. In the 

steady wear stage abrasive wear in the form of scratches and parallel grooves can be clearly 

seen at the tips and roots of teeth. This is due to the highest rubbing speeds, intensifying 

abrasive wear, which occur in these regions. Examples of abrasive wear on gears are shown 

in Fig. 3. 

 
Fig. 3. Traces of excessive wear in form of grooves in gear wheel surface [7] 

2.2. FATIGUE WEAR (PITTING) 

Surface fatigue often occurs in cyclically mechanically loaded rolling contacts. The 

main consequence of this mechanism is pitting. Wear of this type usually begins with dents 

made by particles in the contact surfaces. The dents cause an increase in local stresses on the 

surfaces. The repeated loads acting on the contact surfaces lead to material degradation and 

pitting. 

Fatigue spots usually appear in the initial period of tooth work and then usually 

disappear as a result of the grinding in of the active surfaces. The spots appear in the vicinity 

of the pitch diameter and do not pose a significant danger. In the tooth root region, where the 

highest surface pressures prevail, pitting in the form of craters on the active surfaces appears. 

The craters often merge into larger bands, resulting in considerable pits with sharp edges. As 

the inter-tooth contact surface decreases, pitting increases, leading to the total destruction 

(breaking) of the tooth. 

Depending on the location of the initial fatigue source, surface fatigue can be divided 

into two types: subsurface fatigue and fatigue initiated on the tooth’s surface [3]. Subsurface 

fatigue occurs when a full lubricating film is present and there is no metallic contact between 

the interacting surfaces. Due to concentrated local stresses, microcracks are first generated 

under the surface of the metal and then spread onto the surface causing its damage (pitting). 

This kind of fatigue is usually mild and seldom leads to a machine failure, and it can be 

avoided by using mechanical components made of hard materials. 
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Fatigue initiated on the surface is a frequent cause of machine faults. This type of wear 

is often accompanied by a reduction in oil film thickness, which leads to mixed lubrication. 

In such conditions the metallic surfaces often come into direct contact and microasperities are 

removed from them. Because of the cyclic loads the surface condition deteriorates and 

microcracks appear in the asperities on the contact surfaces. Subsequently the cracks 

propagate into the metal and pits appear on the interacting surfaces. 

Surface fatigue in the form of pitting usually occurs on the tooth’s flank around the pitch 

diameter. This is probably due to a reduction in oil film thickness on the pitch line where 

mixed lubrication usually occurs. Depending on their size, pits can be divided into (initial) 

micropits and macropits/spallings. Figure 4 show an example of fatigue pits on a gear wheel. 

 

Fig. 4. Traces of fatigue wear in form of pitting and spalling on gear wheel surface [7] 

2.3. ADHESIVE WEAR 

Adhesive wear is characterized by the transfer of surface materials within a tribological 

couple. Adhesion occurs when the lubrication is inadequate (i.e. when mixed or boundary 

lubrication conditions occur) and direct interaction between microasperities takes place. 

Under heavy loading or extreme temperatures the microasperities located in the place where 

contact occurs undergo microwelding, forming agglomerates which soon disintegrate due to 

the relative motion of the contact surfaces. During this process metal transfer takes place in 

each individual point of the contact [8]. 

At the running-in stage mild adhesive wear occurs in gear systems, but it is usually 

invisible to the naked eye. Adhesion intensifies to a moderate state when a noticeable amount 

of the original tool marks is removed. In cases when material is continuously removed from 

the tooth’s surface, adhesive wear is classified as serious. It is known as scuffing and is usually 

observed at the contact between the addendum and the dedendum [5]. The cause of scuffing 

on the surface of teeth in gears is the abrupt interlocking of the microasperities of the 

interacting surfaces when the oil film is too thin relative to the height of the microasperities. 

Wear of this kind is intensified in the case of an insufficient inter-tooth clearance, an improper 

method of assembly, misalignment of the teeth or non-parallelism of the gear axles. This kind 

of wear can significantly change the involute tooth profile and worsen gear performance. 
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Therefore such measures as proper running in and the selection of a lubricant of proper 

viscosity are indispensable to prevent adhesive wear. Exemplary adhesive wear traces in the 

form of scuffing are shown in Fig. 5. 

 

Fig. 5. Traces of adhesive wear in form of scuffing on surface of tooth roots and tips [7] 

The occurrence of serious adhesive wear (scuffing) upsets the thermal and mechanical 

balance, whereby the wear process proceeds rapidly or its intensity is very high. In such 

conditions a large quantity of heat is generated, depending on the load value and the relative 

velocity of the surfaces of the interacting teeth. The amount of generated heat increases as the 

meshing frequency increases and the action of microasperities intensifies. 

2.4. OTHER TYPES OF WEAR 

Corrosive wear occurs as a deterioration of the gear tooth surface, as shown in Fig. 6. It 

is caused primarily by chemical or electrochemical reactions with active ingredients in the 

lubricant. Mild corrosive wear in gears is usually induced by lubricant additives that are 

designed to prevent damage from scuffing. These are additives that protect against extreme 

contact pressures. 

 

Fig. 6. Corrosive damage to tooth surfaces [3] 
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The wear phenomena discussed above comprise the major wear mechanisms of 

machinery, which are likely to be responsible individually or collectively for more than 95% 

of the wear occurring in today's machinery [3]. However, there are many other wear 

mechanisms that occur during the service life of gear units, such as erosion, impact chipping, 

polishing, fretting, scaling, cavitation, and electrical discharge. These mechanisms are 

different from the major wear mechanisms discussed above, but because of their lower 

incidence, they will not be discussed in detail. 

3. GEAR WEAR MONITORING TECHNIQUES 

The aim of monitoring gear wear is to determine the current degree of wear in order to 

prevent failures of machine components [9]. In the operating conditions it is difficult to 

directly measure the wear of gears without stopping the operation of the machine. 

Furthermore, this could adversely affect the state of the contact and its lubrication. In 

industrial applications it is more advantageous to nondestructively monitor gear wear during 

machine operation. 

Nondestructive methods of assessing wear are based on the interrelation between the 

physical phenomena accompanying wear and the degree of wear. These physical phenomena 

include the release of heat, the release of wear particles, vibrations and acoustic emission [10]. 

Hence the conventional nondestructive technologies of wear monitoring include thermal 

measurements, an analysis of wear particles [11] and techniques based on vibration signals 

and acoustic emission. 

Various sensors can be used to monitor the condition of gears. Typical sensors for 

monitoring gear condition include accelerometers for measuring vibration, acoustic emission 

sensors, wear debris sensor for measuring the amount of material removed from the gear tooth 

surface, thermocouples for measuring oil temperature, microphone for measuring noise, 

torque sensor for measuring torque fluctuations, etc. [12]. The selection of the sensor depends 

on constraints such as accuracy, cost, location, size, frequency range, amplitude range, and 

operating and environmental conditions. However, the most important parameter in sensor 

selection is the ability of the sensor to effectively capture small changes in the condition of 

the gear teeth. According to the literature, vibration, acoustic emission and wear debris 

sensors are most effective in capturing changes in the gear teeth and are most commonly used 

for monitoring gear condition [12]. The following are the methods of analyzing the condition 

of the gear based on the above-mentioned sensors. 

3.1. THERMAL MEASUREMENTS 

In mechanical systems during the friction and wear of their components heat is generated 

and the temperature changes. It is essential to measure and control the temperature to avoid 

the adverse effect of overheating on the tooth profile, leading to the intensification of gear 

wear. In the case of contact pairs one can measure the nominal temperature (the average 

volumetric temperature) and the flash temperature. The former refers to equilibrium 
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temperature reflecting the average temperature of the interacting surfaces, while the latter is 

defined as a local rapid rise in temperature in the points of contact between the asperities of 

the meshing gear wheels during their operation. 

The nominal temperature measurement is conducted on the macro level and comprises 

the heat generated by the tribological couple, the heat transferred by the flank surfaces of the 

teeth, the lubrication and the environment, and also the heat generated by other system 

components, such as bearings and the motor [13]. Conventionally this kind of temperature is 

measured by means of thermocouples brought into direct contact with the gear wheel 

immediately after the machine is stopped. Currently also noncontact methods using thermal 

imaging cameras [14] or pyrometers are available. Thanks to these methods the measurements 

can be conducted in real time. On the inter-tooth contact surfaces the nominal temperature is 

close to that at the tooth root and outside the meshing zone is uniform during gear operation. 

The flash temperature refers to a rise in temperature on the tooth surface below the pitch 

circle during meshing [14]. It is difficult to measure the flash temperature directly and so most 

often analytical thermomechanical models are used to estimate it. A major limitation in the 

use of the method based on gear teeth temperature measurement for assessing the wear of 

gear wheels is the unclear (quantitative) relationship between temperature values and wear 

intensity. The temperature of a gear significantly increases when its wear is already serious, 

whereby the time for deciding on preventive maintenance procedures is considerably limited. 

3.2. WEAR DEBRIS ANALYSIS 

Wear debris or particles are defined as a surface material which is torn off during the 

friction process and contains comprehensive information about the condition of the contact 

surfaces [15]. These particles are found in the lubricating medium and are direct evidence of 

the occurrence of wear. The aim of an analysis of wear debris is to determine the condition of 

the interacting surfaces by examining the features of the debris. 

A wear debris analysis [16] consists of three stage: the collection of debris, the extraction 

of features and the interpretation of the wear mechanism. First debris are collected from the 

lubricating medium. This can be done using the conventional methods (e.g. filtering) for 

collecting physical debris. The advantage of these methods is that a larger number of physical 

features, such as the amount and density of wear particles and their size distribution, colour 

and chemical constituents can be extracted in the second stage [16]. However, this is quite a 

laborious task. Also advanced methods of acquiring information about wear debris during 

gear operation, are available. For example, one can use image processing techniques to 

acquire information about the shape of debris without the necessity of isolating them from the 

lubricating medium. Another example is the optical technique based on the principle of light 

extinction by impurities. Various sensors used to monitor wear debris in oil are shown in 

Fig. 7. The third stage of the analysis consists in classifying the wear types and identifying 

the degree of wear. In order to extract the features of the debris, one must have a 

comprehensive understanding of the various wear mechanisms and the tribological 

characteristics corresponding to them. For this purpose one can use the tribological standards 

for interpreting wear [17]. 
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Fig. 7. Sensors used for monitoring wear debris in oil in maritime equipment [16] 

A wear debris analysis can be performed as the machine is running or one can collect 

wear debris for analysis when the machine is at rest. The former analysis is more productive, 

but less precise because of the unstable motion of the impurities, which leads to unclear 

results, especially in the case of image analysis methods. The latter analysis is usually used 

in laboratory conditions and requires a wide range of experiments. In this way one can obtain 

more accurate results, but the task is more complex, time-consuming and labour-intensive. 

3.3 VIBRATION ANALYSIS 

Vibration analysis is the most popular and most commonly used technique for 

monitoring the health of rotating machines. It is also called a feature extraction technique 

[18]. Vibration-based signal processing techniques can be divided into two main groups: time-

statistical analyses and time-frequency analyses (Fig. 8). Each of the groups is divided into 

subgroups. 

Vibration signals are widely used to diagnose gear faults [19–22]. The signals are 

generated mainly due a transmission error [23]. This error is defined as a difference in angular 

displacement between the meshing pairs of gear wheels and it is practically unavoidable, even 

in the case of perfect tooth profiles. Transmission errors can be induced by geometric errors, 

tooth deflection effects and dynamic effects. Gear wear contributes to changes in vibration 

signal characteristics because of the modification of the profiles of the teeth and a change in 

the geometric transmission error. Hence vibration analysis methods are often used to monitor 

the wear of gears. But first initial processing, consisting in filtering, order tracking, 

synchronous averaging over time, etc., must be carried out before the signal can be further 

processed using time-statistical methods or time-frequency methods [24]. 
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Fig. 8. Classification of techniques and indicators used in analysis of gear vibration [11] 

3.3.1. TIME METHODS 

Statistical vibration signal parameters in the time domain are usually considered as 

reference points in gear wear monitoring studies. They are usually acquired directly from 

typical diagnostic investigations of machine faults, but they are not necessarily correlated 

with the gear wear phenomenon. For instance, the trend of raw vibration RMS values shows 

some fluctuations at the stage of moderate wear stage, whereas a large increase is observed 

only at a later period of operation when serious gear wear occurs. 

Time-statistical analysis is one of the conventional methods used to detect failures of 

rotating machines and monitor their health. It is based on the statistical measurement of 

vibration energy. There are five different processing subgroups belonging to this category of 

analysis: raw signal, time synchronous average signal, residual signal, difference signal and 

band-pass mesh signal. The indicators used to assess gear condition are determined on the 

basis of these signals. Figure 8 shows the time signal processing flow for the techniques of 

extracting the particular condition indicators. The principles of determining the indicators can 

be found in, i.a., [18, 24].  

It has been found that most failures of gears are caused by a several wear mechanisms, 

such as abrasive wear, pitting, micropitting, chipping, scratching, spalling, cracking and 

fracturing [25, 26]. The above mentioned indicators can be useful for monitoring gears and 

identifying various faults. This is presented in Table 1. 
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Fig. 9. Flow of processing time signals for techniques of extracting condition indicators [11] 

Table 1. Condition indicators for monitoring gears in time domain and corresponding faults [27] 

Condition indicator Kind of fault 

RMS, Delta RMS General advancement of damage 

Kurtosis K Tooth breakage, wear 

Crest factor CF Impulse vibration caused by tooth breakage 

Energy ratio ER High wear (of more than one tooth in gear) 

Energy operator EO Seizing, serious pitting 

Residual signal indicator FM0, 

Indicator FM4 

Wear, seizing, pitting and tooth bending caused by crack at tooth root (serious 

faults) 

Indicator NA4 Advancing damage 

Indicator SLF Noncoaxiality 

Indicator SI Gear rack quality 

Indicators M6A, M8A Surface damage 

Indicator NB4 Local tooth damage 

3.3.2. TIME-FREQUENCY METHODS 

Time-frequency analysis is commonly used to detect gear faults. Gearbox vibration 

consists of three components: a sinusoidal component caused by cyclic loading changing over 

time, a wide-band impulse component caused by tooth impacts, and accidental disturbances. 

In a functional gearbox the sinusoidal component predominates. The trend indicated by 

sinusoidal components is more visible in the frequency domain, whereas the trends indicated 

by wide-band impulse components are more visible in the time domain. Time-frequency 

analysis techniques are used to capture both kinds of trends [26]. Among these techniques 

one can distinguish four different vibration signal processing subgroups: the short-time 

Fourier transform (STFT), the Winger-Ville distribution (WVD), the wavelet transform and 

the determination of the NP4 indicator [18]. 
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The short-time Fourier transform is a tool for extracting information about how signal 

spectrum changes over time from an aperiodic signal, making it possible to simultaneously 

observe the signal’s properties in both the time domain and the frequency domain. In this 

method a signal slice to be analysed is divided into segments, each of which is independently 

subjected to spectral analysis. This is a useful technique of detecting gear faults by examining 

the energy distribution signal in the time-frequency domain. 

The Winger-Ville distribution is very useful for analysing, detecting and diagnosing 

gearbox faults [29]. It makes it possible to detect gearbox faults through the visual inspection 

of different patterns on WVD plots generated by various types of faults. In particular, it 

supplies information about the location of and degree of damage to gear teeth. An exemplary 

distribution plot for a helicopter’s transmission with a broken gear wheel is shown in Fig. 10. 

 

Fig.10. Winger-Ville distribution plot for helicopter’s transmission with broken gear wheel [28] 

Moreover, the wavelet transform is used to analyse gearbox vibration signals. It uses a 

certain class of real and complex nonstationary basis functions (wavelets) which can be 

independently extended and shifted along the time axis. The advantage of this method is that 

it makes it possible to analyse the frequency without losing essential information about the 

time domain. The so-called smooth wavelets have been found to be particularly useful for 

detecting gear failures. 

Also the NP4 parameter [30], determined through kurtosis and the Winger-Ville 

distribution, is used to detect gear faults. No signal of the faulty gear wheel and that of the 

functional gear wheel need to be compared to calculate NP4 [31]. This means that NP4 is a 

useful method of detecting faults without tracing the history of transmission  vibration. NP4 

can be defined as a normalized power signal kurtosis. Parameter NP4 is particularly useful 

for indicating a failure of a single gear tooth. Its usefulness for detecting faults deteriorates as 

the degree of damage to many gear teeth increases. 

Vibration analysis is a good tool for detecting faults and inadmissible machine operating 

conditions at an early stage as it involves the use of spectral analysis and correlation analysis, 

which make the diagnosis of gear faults possible despite the high dynamics of the process 

taking place in gear transmissions. However, a fault in a machine cannot be detected using 

vibration analysis before the degree of damage affects the machine’s vibration characteristic 

[32]. The classical vibration analysis can be used, especially for detecting cracks and their 
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propagation in rotating shafts and gear wheels, only at relatively short pre-failure forecasting 

times. The early detection of cracks in shaft and gear wheels is possible owing to the 

acquisition and analysis of acoustic emissions. High-frequency vibrations caused by changes 

in the material structure provide the basis for the early detection of cracks and their 

propagation. 

3.4. ACOUSTIC EMISSION ANALYSIS 

The measurement and analysis of acoustic emission (AE) are highly useful for the 

nondestructive testing of gears [34-37]. Through them one can track the buildup of cracks in 

the structure of the material under external strains or internal stresses. The method is based 

on the monitoring of mechanical energy released in the form of elastic waves accompanying 

the cracking of the structure of a material subjected to stresses. Using this method one can not 

only continuously monitor the propagation of cracks, but also predict macrofaults [37]. An 

AE signal is generated by the various parts of operating machines, including transmissions, 

bearings, electromagnetic brakes and motors. In order to limit interference and avoid signal 

damping on the boundaries of the meshing surfaces during acoustic emission transmission, 

AE sensors are installed possibly closest to the source (i.e. to the interacting gear meshing 

surfaces). 

The most probable source of acoustic emission through the meshing surfaces is the 

stochastic inter-tooth contact between asperities. It has been found [38] that rolling contact 

generates transient AE components at the meshing frequency, whereas sliding contact 

generates a continuous wave form in the gear AE signals. Thanks to the AE signal, initial 

subsurface cracks can be detected earlier, i.e. before pitting occurs, than when the vibration 

signal is used. The AE signal and the vibration signal combined can be used to better 

distinguish uniform wear in the case of other types of gear faults (e.g. missing teeth, backlash 

and bearing defects). Artificial neural networks can be used for this purpose. 

In order to detect gear wheel faults in transmissions through AE analysis, the signal path 

should be as short as possible [32]. This eliminates such interference as the impact of ball 

bearings and other machine parts and highlights useful information about the faults. On a gear 

test rig AE sensors were installed on the transmission housing and additionally on the ends of 

the rotating shafts to detect faults at an early stage as well as to locate them and determine 

which components have been affected (Fig. 11). As the acoustic emissions of the rolling 

bearings and those of other components are superimposed, it is not enough to take into account 

only the number and intensify of the emissions [32]. It is also necessary to evaluate the short-

duration excitation in the frequency domain using wavelet analysis. In comparison with FFT, 

wavelet analysis offers a higher resolution in the time domain, especially for high-frequency 

events. The initiation and propagation of a crack at the tooth root are reflected in early changes 

in the wavelet diagram, which are periodic with rotational speed. Propagating pitting exhibits 

a different behaviour. The two different kinds of damage develop characteristically during the 

operation life of a gear wheel. 

One should bear in mind that the difficulty in diagnosing transmission health on the 

basis of AE measurements consists in determining the characteristic AE parameters in such a 
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way that the registered signals are correlated with a given destructive phenomenon. This 

makes it necessary to carry out time-consuming laboratory tests. 

 

Fig. 11. Arrangement of AE sensors on gearbox [32] 

3.5. ADVANTAGES AND DISADVANTAGES OF USING DIFFERENT PARAMETERS TO MONITOR THE 

CONDITION OF THE GEARBOX 

Table 2 shows the advantages and disadvantages of using different parameters to 

monitor the gear condition. Their comparison shows that most of the information related to 

the gear dynamics contains the vibration signal. It is also quite sensitive to most types of gear 

tooth degradation. The vibration sensor is also cost-effective and convenient to use. 

4. GEAR PREDICTIVE MAINTENANCE 

Machinery Health Management is a comprehensive system which in real time supplies 

measurement data and performs analyses, whereby it becomes possible to monitor industrial 

machinery and maintain it in good condition. The predictive maintenance of machines has 

become a significant part of the life cycle of components in modern industries. It is 

implemented to identify types of faults, assess their effect on the functioning of machinery 

and predict the latter’s health or residual life. Depending on the kind of machine or 

mechanism, this requires the use of different measuring and signal processing techniques. In 

the case of gears, the appropriate techniques require the classification of faults, the 
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development of fault prediction models, the extraction of information about faults from the 

recorded raw signals and the selection of the best condition indicators for the different kinds 

of gear faults [39, 40]. 

Various techniques can be used in a comprehensive gear predictive maintenance 

programme (see Sect. 3). The key element of most of such programmes is vibration 

monitoring. However, it cannot supply all the information needed for effective predictive 

maintenance. This technique is limited to the monitoring of mechanical condition and it does 

not cover other critical parameters needed to maintain the reliability and productivity of 

machines [41]. Therefore a comprehensive predictive maintenance programme must include 

other monitoring and diagnostic techniques which cover not only vibration monitoring, but 

also thermography, tribology, process parameters, visual inspection, acoustic emission and 

other nondestructive testing methods [41, 42]. 

Table 2. Advantages and disadvantages of using different parameters for gear condition monitoring [12] 

Monitored 

parameter 

Advantages Disadvantages 

Temperature Easy to use 

Expert knowledge is not essential for signal 
analysis 

Possible use of non-contact measurement 

techniques 

Unclear relationship between temperature 

values and wear intensity  
Significant temperature increase only in the 

severe wear phase  

No possibility to measure flash temperature  

Wear debris Easy to use 

Expert knowledge is not essential for signal 

analysis 

Gives a strong correlation with physical 

damage on the gear tooth surface 

Can’t be useful to detect all kind of fault, for 

example, crack 

Hard to use in some gear applications where 

grease is used instead of oil for lubrication 

Sensor data may be affected by the 

degradation of other mechanical components 

inside a gearbox 

Expensive compared to vibration and acoustic 

emission sensor 

Unable to distinguish between different kinds 
of failure modes 

Vibration Vibration signal can be better correlated with 

gear dynamics 

Responsive to gear tooth degradation 

Possible to detect the type, location of the 

defect, and defective component in a gearbox 

Easily amenable to wireless capturing of the 

vibration signal 

Cost-effective compared to wear debris and 

acoustic emission sensor 

Expert knowledge is required for extracting 

the health indicators from the signal 

The signal may be affected by structural 

resonance and mechanical background noise 

Direction dependent 

Acoustic emission Very good signal-to-noise ratio 

Not affected by the structural resonance and 

other kinds of noises 
Largely independent of direction 

Good sensitivity to incipient fault 

Compared to the vibration sensor, acquisition 

hardware and associated accessories are very 

costly for acoustic emission sensor 
Need to acquire at a higher sampling rate 

Expert and domain knowledge is essential for 

better correlation of AE signal with gear 

dynamics 

The signal is significantly affected by 

electromagnetic interference 

Signal analysis needs high computational 

requirement compared to the vibration sensor 
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Gear predictive maintenance has several advantages [43]: 

• reduces unplanned downtimes, 

• helps to identify a gear fault or condition to avoid high repair costs, 

• reduces planned downtimes by reducing the number of inspections and premature 

repairs. 

In order to implement gear predictive maintenance procedures, one must define critical 

wear states and select assessment indicators most sensitive to changes in these states. For the 

identification and prediction of gear faults one can use artificial neural network and machine 

[44] and deep learning procedures [22]. In industrial conditions the acquisition of appropriate 

information about gears can be facilitated by dedicated measuring systems or Internet-of-

Things (IoT) devices which thanks to the use of cloud data processing can be easily integrated 

with procedures which use artificial intelligence. 

5. MACHINE LEARNING METHODS IN GEAR DIAGNOSIS 

Machine learning methods, which thanks to appropriate algorithms are capable of data 

learning [45], are a great help in the analysis of large amounts of signal measurement data. In 

the field of diagnostics such methods constitute effective tools for identifying the technical 

condition of gears, classifying the types of faults and detecting anomalies in gear operation. 

Machine learning methods are most often divided into three groups: 

• supervised learning, 

• unsupervised learning, 

• reinforcement learning. 

The supervised learning methods are applicable in a situation when the training data on 

which the algorithm learns contain labels, i.e. information about the object state the training 

data relate to. The algorithms belonging to this group are used in regression and classification 

problems. Examples of the methods are: support vector machine [46–48], naive Bayes 

classifier [47, 49], decision trees [48, 50] and artificial neural networks [51-54]. 

The unsupervised learning methods use training data without labels, i.e. without 

information about the object state for which they were recorded. These methods usually need 

a greater amount of training data in order for the algorithm itself to recognize the interrelations 

and dependences existing in the data. The algorithms in this group are applicable to the 

clustering of cases and the recognition of anomalies in the recorded data. Examples here are: 

local density evaluation algorithms [55], the k-means cluster analysis algorithm [56, 57] and 

the autoencoder-based deep neural network [57-61]. 

In the case of the reinforcement learning methods (probably most seldom used) the 

algorithm is trained by awarding a reward or a penalty, depending on whether a right or wrong 

decision was taken. Machine learning consists in striving to maximize the award function. 

Examples of such solutions in gear diagnosis are provided in papers [62, 63]. 

The quality of obtainable results greatly depends on the quality of the input data, i.e. on 

the proper processing of raw measurement data. Although the choice of operations used in 

data preparation is an individual matter, several stages in data processing can be distinguished, 

such as: data precleaning, data segmentation, feature extraction, feature normalization and 
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scaling, labelling and division depending on the intended use. Data precleaning entails 

incorrect data removal, noise filtration and the synchronization and smoothing of data coming 

from different sources. Segmentation can be required because of data division into time 

windows of specified width. Feature extraction is connected with the determination of 

characteristic (for a given signal) indicators, called time features, frequency features and 

transformation features, depending on the way of determining them. This can be followed by 

data normalization and scaling, as it is known that some methods perform better when the 

data are of similar scale. Labelling applies solely to supervised machine learning and its 

purpose is to assign labels (classification tasks) or numerical values (regression tasks). 

Finally, data are divided into sets for model training, testing and validation according to the 

defined proportions. Only data processed in this way can be effectively used. 

6. SUMMARY 

The large number of publications on gear condition assessment, of which only a fraction 

have been cited here, shows that the problem is still topical and is investigated in many 

research centres. The paper presents the most commonly used methods of gear condition 

analysis. They are characterized by varying degrees of usefulness and complexity. It seems 

that due to the relatively high simplicity of the measurement itself, the most commonly used 

methods are vibration analysis, which allow for the detection of various gear faults, but 

require the use of advanced mathematical tools. In turn, conducting an acoustic emission 

analysis requires extensive experience in setting the measurement threshold parameters, but 

provides the most sensitive diagnostic signal, allowing for the detection of gear faults in the 

early phase of wear development. However, using these methods for predictive maintenance 

of gears would require having reference values for specific indicators, which would be related 

to the permissible wear. In practice, it would be necessary to conduct experimental tests in 

specific operating conditions of the gear and in this way determine the critical reference 

values. 

In the further part of the work, it was suggested to extend the diagnostics of gears with 

the use of machine learning methods. Their implementation, however, is associated with the 

process of teaching the diagnostic system and providing extensive readings of the gear states 

with permissible and limit wear. For this purpose, signals from vibration, acoustic emission, 

temperature and wear residue sensors installed on the gear could be used. The combination 

of a larger number of different types of sensors gives a greater probability of correct diagnosis 

of the gear state and detection of critical wear state. 

Numerical models are becoming increasingly important in predicting the evolution of 

wear on gear tooth surfaces, most often using the basic or modified Archard abrasive wear 

model [64,65] that takes into account the normal force in tooth contact, the sliding length and 

the hardness of the softer surface of the contacting teeth. Newer approaches, included in the 

comprehensive contact fatigue wear model [44], take into account, in addition to the influence 

of load conditions and tooth surface hardness, also lubrication conditions, initial surface 

roughness and residual stresses. It is worth noting that the Archard wear model is the most 

widely used model for various materials, such as plastics and steel [66]. Modeling modern 
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gears with tooth surfaces machined using special methods or covered with protective coatings 

requires the use of completely new wear models. These include multilayer and coating wear 

models. However, the available literature is very sparsely represented. 

Modern measuring tools are also used in the studies of the mechanisms of the 

interaction of gear wear with fatigue, in which a scanning electron microscope was used to 

observe the tooth surface [66]. They showed that, under different lubrication conditions, the 

distribution of durability under the influence of the interaction of wear with fatigue follows 

a logarithmic-normal distribution. In the case of the study of the wear of gears with 

multilayer coatings, completely new parameters are introduced, for example permeability 

[67], which is determined on the basis of specific hardness measurements. 

The benefits of using advanced gear diagnostics methods provide benefits in both 

preventive and predictive maintenance. In industrial conditions, this is of great importance 

for installations operating in continuous mode, whose failure or unplanned downtime is 

associated with large financial losses. 
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