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BRIDGING CLASSICAL QUALITY TOOLS AND INDUSTRY 4.0: A DATA-

DRIVEN FRAMEWORK FOR INTELLIGENT PROCESS CONTROL 

This paper initiates a study that would help bridge the classical quality methodologies with the up-to-the-minute 

digital drift of Industry 4.0 technologies. To address this, the study proposes the development of a hybrid 

framework for implementing classical quality methodologies, namely Six Sigma and Total Quality Management, 

together with Quality 4.0 tools involving Artificial Intelligence, Internet of Things, and big data analytics. The 

study implements an enriched AI-based Statistical Process Control system applicable to the real shop floor of an 

automotive manufacturer after conducting a systematic literature review to identify any existing models. The 

proposed system, over twelve months, brought about a 32% defect rate reduction. This study closes the loop of the 

constant feedback that is necessary for coupling heritage quality management with intelligent technologies to 

ensure the continuous proactive, adaptive, data-driven control needed for a way towards smart, resilient 

manufacturing ecosystems. 

1. INTRODUCTION 

Customer confidence remains the backbone of the global manufacturing industry, 

particularly in the current digitally-enhanced and global-scale market, where operational 

excellence and product quality are critical determinants of business survival and 

competitiveness [1]. The cost of poor quality–including rework, scrap, warranty claims, and 

customer dissatisfaction–has been reported to account for up to 20–30% of a company’s total 

revenue [2]. Accordingly, defect detection, prevention, and continuous improvement have 

remained core research and industrial focus areas over the past decades. 

The historical progression of quality management has evolved in distinct phases. In 

Quality 1.0, inspection and defect identification were prioritized post-production. Quality 2.0 

introduced Statistical Process Control (SPC) to monitor and reduce process variation [3]. 

Quality 3.0 brought holistic approaches such as Total Quality Management (TQM), Six 
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Sigma, and ISO-based quality management systems to encourage systemic continuous 

improvement across all levels of an organization [3]. Though not adequate to bring the issues 

to an ultimate light at the production stage, the other key limitations of the old approaches are 

that they don’t have the capability to make real-time predictions and, when actually 

applicable, are confined to either the product or process view [4]. Such limitations restrict 

their relevance in modern manufacturing systems, which have attained a high level of 

complexity through the intertwinement of different sources of variation. 

The rise of Industry 4.0 reflects a change in the game of how manufacturing firms 

function. In principle, the integration of cyber-physical systems, the Industrial Internet of 

Things, Artificial Intelligence (AI), Digital Twins, and big data analytics fosters levels of 

transparency, traceability, and real-time decision-making that were previously unknown  

[5, 6]. Within the digital environment, Quality 4.0 comes to the picture as the evolution of all 

former quality system approaches. Q4.0 tries to insert smartness and automation inside the 

quality management practice, pushing for predictive analysis, adaptive control, and near-zero-

defect manufacturing [6]. While these promises have been made, effective adoption of Q4.0 

has barriers that are significantly high. It is particularly challenging for SMEs to adopt Q4.0, 

as there is no digital infrastructure at large, no standardization, high implementation cost, and 

skills gaps in the workforce [3, 4]. Studies by Ghobakhloo and Ching (2019) and Amaral and 

Peças (2020) also indicate misalignment between maturity models in the I4.0/Q4.0 theoretical 

bases and SME practicality, since they cling to old equipment and have low levels of 

automation. This, in turn, makes the general implementation process even more difficult, due 

to change resistance and a lack of leadership commitment [7]. 

Another crucial limitation is the availability and quality. Large volumes of high-quality 

contextualized and labelled datasets are a prime requisite of almost all AI and ML applications 

[8]. Real-world manufacturing environments witness high variability in data quality and 

quantity, lack standardization, and suffer from a lack of data contextualization on a large scale 

[9]. As a result, AI models appear to perform well when nurtured in labs of ideal 

acclimatization but fare poorly when deployed in real industrial settings [10]. 

To overcome the persistent challenges of integrating digital technologies into legacy 

quality systems, this study introduces a novel hybrid framework that synergizes the 

methodological rigor of traditional quality approaches—such as Six Sigma, Total Quality 

Management, and SPC–with the real-time monitoring, predictive analytics, and automation 

capabilities enabled by Quality 4.0 technologies [11]. 

A mixed-methods research design shall be used that includes a systematic literature 

review to be followed by an empirical case study to take place within a global automotive 

assembly facility. The AI-enhanced SPC system proposed shall be embedded within the 

continuous improvement cycles that will facilitate real-time anomaly detection along with 

decision support and feedback mechanisms across production processes [12]. The case study 

was for a twelve-month implementation period, which revealed a 32% reduction in defect 

rates; thus, it proved the theory that the integration of classical quality systems with digital 

enablers produces much better outcomes than the sum of the individual performances of each 

would hint at. 

This work contributes to both theory and practice by showing how legacy quality 

systems can be updated for quality assurance in the new Industry 4.0 technologies and 
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systems. It does this without the need for a major overhaul [13]. It also pre- sent a structured 

roadmap more specifically designed for small and medium-sized enterprises (SMEs) that 

typically have few resources and little infrastructure support for any type of transformation 

[3]. 

The remainder of this paper is structured as follows: Section 2 presents a detailed review 

of literature on traditional and digital quality approaches; Section 3 introduces the research 

design and case study methodology; Section 4 reports the case study findings; Section 5 

proposes a practical framework for Q4.0 implementation; and Section 6 summarizes the 

conclusions and offers suggestions for future research directions. 

2. LITERATURE REVIEW 

The evolution of quality management has been closely tied to the broader 

transformations occurring across successive industrial revolutions. Historically, quality 

assurance began as a reactive activity with the sole purpose of identifying and removing 

defective products at the end of production lines. Over time, this reactive model gave way to 

more structured and systematic approaches that focused on defect prevention, continuous 

improvement, and ultimately, real-time data-driven quality management [3]. 

2.1. EVOLUTION OF QUALITY MANAGEMENT METHODOLOGIES 

The first phase of Quality 1.0 meant that there was a check on the quality of the final 

product. It was very difficult for manufacturers to spot the defects and non-conformities until 

the final product was made. Though this was just a beginning, it proved to be labor-intensive, 

costly, and ineffective in stopping repeated process issues from happening in the future [4]. 

This was where Quality 2.0 evolved, and SPC was introduced. By embedding statistical 

tools such as control charts into production lines, manufacturers were able to monitor process 

variation and proactively manage production quality [4]. Despite its success in reducing 

process variability, Quality 2.0 was largely limited to local process optimization rather than 

integrated system-wide quality control. 

The introduction of Quality 3.0 represented a paradigm shift from process control 

toward a company-wide philosophy of continuous improvement and customer focus. 

Frameworks such as TQM, Six Sigma, and ISO 9000 standards promoted quality as an 

organizational value involving leadership commitment, cross-functional collaboration, and 

structured problem-solving methodologies [14]. However, traditional TQM approaches 

remained manual, document-intensive, and largely disconnected from the increasingly 

digitalized production environments. 

In response to the emerging demands of global supply chains and complex 

manufacturing systems, Quality 4.0 has emerged as an extension of Industry 4.0 principles. 

Quality 4.0 leverages advanced digital technologies – such as Internet of Things (IoT), 

Artificial Intelligence, Digital Twins, Big Data analytics, and Blockchain – to transition from 

reactive quality assurance to real-time, predictive, and autonomous quality systems [1]. 
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Figure 1 presents the historical development of quality paradigms from the traditional 

inspection-based approaches to the use of data for achieving self-optimizing ecosystems in 

Quality 4.0. Trends in this shift are increasing real-time process monitoring, autonomous 

decision-making, and continuous learning. While the legacy systems gave the basic 

foundations of quality management, a shift has occurred with the use of Quality 4.0 

technologies implemented predictive and adaptive-control applications for all supply chain.  

 
Fig. 1. Evolution of quality management paradigms: from inspection-based Quality 1.0 to intelligent, data-driven 

Quality 4.0 systems 

 

As illustrated in Fig. 1, each evolutionary phase reflects a shift toward increasing levels 

of process integration, data utilization, and real-time decision-making capabilities. While 

traditional methods provided structured, continuous improvement, Quality 4.0 uniquely 

integrates digital technologies to enable autonomous, adaptive quality control across complex 

industrial environments. 

2.2. CORE TECHNOLOGIES ENABLING QUALITY 4.0 

The execution of Quality 4.0 relies on the efficient assimilation of several emerging 

technologies. These enablers have broadened the operational powers of quality systems to 

embrace data monitoring on a continuous basis, predictive analytics, and decentralized 

decision-making. Below is Table 1 that summarizes these key technologies and their 

representative applications in an industrial context. 

Internet of Things (IoT): IoT devices and sensors provide the foundational layer for real-

time monitoring of critical production parameters, including temperature, vibration, torque, 

and pressure. Devices and sensors under IoT form the base that will be used to monitor some 

critical parameters in a real-time environment for the production process. These parameters 

include temperature, vibration, torque, and pressure [6]. Data from these devices enables 

process traceability and early detection of potential failures.  It is data from these devices that 

will make process traceability possible and enable detection to be done earlier, where there is 

a potential failure [15]. 

Digital Twins: This involves offering dynamic, real-time virtual models of production 

assets and systems. Mayr (n.d.) further explains that simulating and optimizing production 

scenarios before execution offers an opportunity for the manufacturer to reduce downtime, 

improve equipment utilization, and mitigate risks [16]. 

Artificial Intelligence and Machine Learning: The patterns and minor aspects of normal 

operations are discovered by AI and ML algorithms for predictive quality management [4]. 

These being learning systems, in due course, with the availability of fresh data, gradually 
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enhance their ability to predict. Hence, this is best suited for high-mix and low-volume 

manufacturing setups [17, 18]. 

Blockchain for Traceability and Trust: A record that cannot be changed, showing 

whether data on quality and events in the certification has relevance to extremely complicated 

supply chains [10]. This is important to keep documentation on supplier compliance, quality 

of audits, and product certification tamper-proof. 

Table 1 emphasizes how the transformation toward Quality 4.0 introduces a step change 

in operational capabilities through advanced connectivity, predictive analytics, and cyber-

physical integration. Nevertheless, the adoption of Quality 4.0 remains constrained by 

technological maturity and organizational readiness. 

Table 1. Historical evolution of quality management paradigms 

Generation Description Focus Limitations 

Quality 1.0 Final inspection Reactive, defect 

detection 

No prevention, costly 

Quality 2.0 Statistical process 

control 

Process monitoring, 

SPC 

Limited integration 

Quality 3.0 TQM, Six Sigma Company-wide quality 

culture 

Disconnected, manual 

Quality 4.0 AI, IoT, Blockchain Predictive, autonomous 

control 

High barriers, data 

issues 

2.3. CORE TECHNOLOGIES ENABLING QUALITY 4.0 

The convergence of advanced technologies underpins the operational capabilities of 

Quality 4.0. These core technologies are summarized in Table 2. 

Internet of Things (IoT): The backbone of Quality 4.0 is built upon the widespread 

deployment of IoT-enabled sensors and devices throughout the manufacturing ecosystem. 

These sensors monitor critical process variables such as temperature, pressure, vibration, and 

torque to detect early signs of abnormal behaviour and initiate corrective actions without 

human intervention [1]. IoT technologies provide the infrastructure for real-time data 

acquisition, contextualization, and integration across previously disconnected systems. 

Digital Twins: Digital Twin technology represents a significant advancement in 

simulation and process optimization. A Digital Twin is a virtual replica of a physical asset, 

system, or process, dynamically updated through live data from the production environment 

(Mayr, n.d.). By leveraging real-time data, Digital Twins allow manufacturers to predict 

system behaviour under varying conditions, conduct scenario analyses, and optimize process 

parameters prior to actual implementation, thereby reducing downtime and operational risks. 

Artificial Intelligence and Machine Learning: artificial intelligence and machine 

learning algorithms play a pivotal role in enabling predictive and prescriptive analytics in 

Quality 4.0. These technologies provide the capability to automatically detect subtle process 

anomalies, classify defects, and predict failure modes based on historical and real-time data 

[2]. Unlike traditional rule-based systems, AI can continuously learn and improve its 

diagnostic accuracy over time, making it highly suitable for high-variability, low-volume 

production environments. 
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Blockchain for Traceability and Trust: A technology that offers immutable records of 

quality data and certification events across complex supply chains, thus documentation 

supplier compliance, quality audits, and product certifications inseparably associated and 

articulated with a supply chain remain tamper-proof [3]. 

The mix marks shift from alone waiting to see right against to join in with the data right 

quality set up. The use of Quality 4.0 needs these together to make real-time guesses on 

problems, the best way for work and keep getting better. 

Table 2 gives a quick look at the main enabling technologies within Quality 4.0 and 

shows their basic roles and typical use cases in industrial settings. 

Table 2. Key enabling technologies and their applications within Quality 4.0. 

Technology Role in Quality 4.0 Example Application 

IoT Continuous data monitoring Machine health monitoring 

Digital Twins Simulation and optimization Virtual commissioning 

AI & ML Anomaly detection, predictive maintenance Defect prediction 

Blockchain Secure, traceable quality data Supplier certification 

The integrated application of these technologies supports organizations in their moves 

from simple, manual, and isolated quality control functions to holistic, data-centric 

ecosystems that can nurture near-zero defect production strategies. As shown in Table 1, 

Quality 4.0 is a critical evolution in the approach to manufacturing quality assurance that 

relates to responsiveness, scalability, and traceability. 

3. RESEARCH METHODOLOGY: A MIXED-METHODS APPROACH FOR 

VALIDATING QUALITY 4.0 INTEGRATION 

This section presents the research methodology followed in this study, including the 

overall research design, literature review procedure, case study approach, and data analysis 

process. Further details on each stage are discussed in the following subsections. 

3.1. RESEARCH DESIGN 

The research adopts a mixed-methods approach to explore how classical quality 

methodologies can be integrated with emerging Quality 4.0 technologies. The study builds on 

previous conceptual work by expanding it through empirical validation using real-world 

industrial data [11]. The methodology has two primary steps: (i) a systematic literature review 

and (ii) an industrial case study. Such a sequence helps maintain not only the theoretical rigor 

but also the validation of the proposal in practice. 

Under the PRISMA guidelines, a systematic hunting was carried over three big scientific 

databases: Web of Science, Scopus, and IEEE Xplore. It aimed to spot relevant peer-reviewed 

articles printed between 2020 and 2025 that talked about the link of old quality tools, like Six 

Sigma, SPC, and TQM, with new Industry 4.0 technologies under Quality 4.0. 
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The search string included combinations of keywords such as “Quality 4.0”, “traditional 

quality methods”, “Industry 4.0”, “IoT”, “AI”, and “case study”. A total of 498 records were 

initially retrieved. After duplicate removal and screening, 85 articles were selected for 

detailed review. The process of identification, screening, and inclusion is summarized  

in Fig. 2. 

     

Fig. 2. PRISMA flow diagram illustrating the systematic process of article selection, from initial identification  

to final inclusion in the literature review 

Most of the excluded articles, as depicted by the PRISMA flowchart, were filtered out 

at the screening and eligibility stages because of general lack of relevance or methodological 

detail. A final corpus of 85 peer-reviewed articles, therefore, formed a comprehensive basis 

for meeting the imperative need to analyse current trends in research, to identify 

methodological gaps, and to lay a sound theoretical foundation for the empirical stage of this 

study. 

3.2. CASE STUDY IMPLEMENTATION 

The second phase involved a longitudinal case study lasting 12 months in a global 

automotive manufacturing plant, specifically focusing on assessing the application of 

traditional quality tools in an AI-enhanced SPC system applied to an assembly line. 

Data has been collected by sensors, which are connected through the Internet and 

installed at the assembly line. More than 10,000 process data points per day were generated 

by these sensors, capturing the variables related to machine utilization, temperature, vibration, 

and production cycle times. The data were sent over a secured connection to a central system. 

The system uses machine learning clustering algorithms for pattern recognition, 

deviation classification, and predicting potential process failures [4]. The resulting predictive 
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insights that are used to make decisions by providing early warning signals to the operators 

and supervisors so that corrective action can be taken before the defect occurs represent an 

implementation step in the extended practice-based Quality 4.0 SPC tradition. 

3.3. DATA ANALYSIS AND VALIDATION 

Algorithm 1: Isolation Forest for Anomaly Detection 

Input: Sensor data from IoT devices (X), number of estimators (n), contamination  

level (c) 

Step 1: Normalize and preprocess data 

Step 2: Fit Isolation Forest model: model = IsolationForest(n_estimators=n, 

contamination=c) 

Step 3: Predict anomalies: y_pred = model.predict(X) 

Step 4: Evaluate performance using precision, recall, and F1-score 

Evaluation Metrics: Performance metrics include: Precision = 91.2%, Recall = 88.7%, 

F1-score = 89.9%. A confusion matrix was also calculated to analyse classification 

performance. 

Real-time data acquisition was integrated with predictive analytics for quality 

monitoring [20]. The performance metrics are defect rate reduction, mean time between 

failures (MTBF), and the accuracy of anomaly detection. 

The study measured the effectiveness of the AI-SPC system in reducing defects and 

improving process stability. Results demonstrated a 32% reduction in product defect rates, 

proving as well the added value of integrating classical methods of quality with technologies 

of Quality 4.0. 

This structured two-stage methodology gives a sturdy framework to address the research 

aims and also to give insight into removing the practical barriers, as have been found in prior 

research regarding the adoption of Quality 4.0, such as the scarcity of data and lack of 

standardization, as well as implementation challenges in a complex manufacturing 

environment [3]. 

4. RESULTS AND DISCUSSION 

4.1. IMPACT ASSESSMENT OF HYBRID QUALITY 4.0 INTEGRATION 

To assess the tangible outcomes of integrating Quality 4.0 technologies with traditional 

quality management practices, Figure 3 presents a comparative analysis of two critical 

performance indicators: the defect rate and the average response time to corrective actions. 

The analysis contrasts result from a conventional quality control setup with those obtained 

from a hybrid system implemented in the industrial case study. Figure 3 proves the hybrid 

model’s significant success in the quality outcomes. It was specific: there was a 32% decrease 

in the defect rate over the baseline of the traditional, while the speed of the corrective actions 

taken was better by 15%. 
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Fig. 3. Comparative performance between traditional and hybrid Quality 4.0 approaches 

Results that prove added value for Quality 4.0 technologies: 

• Under a machine learning algorithm, the Six Sigma DMAIC cycle shifts to a predictive 

root cause analysis and proactive defect prevention.  

• This combination of real-time monitoring and automatic alerts eliminates process 

deviation and delays in response, since operator response delay can be fatal. 

The chart shows that not only does the hybrid method outperform the conventional 

method in terms of accuracy and timeliness, but it also brings agile decision-making to the 

table based on data. Such improvements are most needed in high-variability manufacturing 

environments since stability of the process and quick intervention can both have a direct 

impact on the quality of the product.  

To contextualize these results within the existing literature, Sony et al. (2020) [11] 

reported a 22% defect reduction using AI-augmented SPC systems, and Tortorella et al. 

(2021) [13] achieved a 25% improvement through a Lean-AI hybrid approach. Our proposed 

model surpasses these benchmarks with a 32% defect reduction and a 15% faster corrective 

response, reinforcing its practical effectiveness. 

These results prove right the view that hybrid quality frameworks should help and make 

legacy systems better, not fully take their place. By mixing together solid quality ways with 

digital skills, makers can measure well and keep on getting better at how well they work. 

4.2. ANNUAL PUBLICATION TRENDS AND COUNTRY CONTRIBUTIONS 

To understand the scholarly evolution and geographic distribution of research in the 

domain of Quality 4.0, a bibliometric analysis was conducted on articles retrieved from the 

Web of Science database (2020–2025). The figures below illustrate the temporal publication 

growth and the country that is most actively contributing to the field. As illustrated in Fig. 4, 

the study interest in Quality 4.0 has shot up a lot over the last five years. The year 2024 saw 

the most publications with 6,850 more, coming after 2023 and 2022, which shows a rise in 
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the global pledge to work smart technologies into the quality management systems. This trend 

links to the speed-up of the digital transformation efforts in response to post-pandemic 

industrial resilience needs. 

 

Fig. 4. Annual Evolution of Scientific Publications on Quality 4.0 

Figure 5 shows where contributions come from. The People’s Republic of China has 

6,977 publications, and the United States has 6,323, so those two countries lead. After them, 

it’s England with 1,987 publications, Germany with 1,772 publications, and India with 1,748 

publications.  

This spread shows that the research reflects global relevance and strategic importance 

since Quality 4.0 research is pursued by countries with developed and those with emerging 

industrial economies. 

This bibliometric proof doesn’t just show the academic momentum of the issue but also 

helps spot leading contributors and likely collaborative hubs for future research efforts. 

Figures 4a and 4b were generated based on a bibliometric extraction performed by the 

authors from the Web of Science database, covering the period 2020–2025. Data was exported 

to Excel and visualized accordingly. 

 

Fig. 5. Geographical Distribution of Quality 4.0 Publications by Country 

3260

6850

5537
5022

3913

2669

0

1000

2000

3000

4000

5000

6000

7000

8000

2025 2024 2023 2022 2021 2020



S. Lahmine and B. Fatima /Journal of Machine Engineering, 2025, Vol. 25  15 

 

5. FRAMEWORK FOR INTEGRATION 

In response to the growing complexity of digital transformation in quality management, 

this study proposes a Quality 4.0 Maturity Model structured around three key dimensions: 

Technology, Process, and People. Based on empirical insights from recent literature [14][9]. 

This integrative framework supports industrial organizations in aligning classical quality tools 

with the capabilities of Industry 4.0 technologies. 

5.1. QUALITY 4.0 MATURITY MODEL 

The proposed model reflects the interdependence between three foundational pillars of 

Quality 4.0 implementation: 

• Technology: This dimension captures the digital readiness of an organization, 

including the deployment of IoT-enabled devices, AI-driven analytics, cloud-based 

platforms, and real-time data systems. Studies show that digital infrastructure 

maturity is a prerequisite for enabling predictive quality control [5]. 

• Process: Quality management processes – such as PDCA, DMAIC, or SPC – must 

evolve from reactive to adaptive formats. Real-time feedback loops and automation 

of corrective actions allow faster, data-driven interventions [6]. 

• People: The human factor remains a critical success element. The literature 

emphasizes the importance of data literacy, cross-functional collaboration, and 

organizational change readiness[7], 23]. Without sufficient investment in training 

and culture, digital initiatives are likely to face resistance and limited impact. 

5.2. IMPLEMENTATION ROADMAP 

Based on the maturity model, a three-step roadmap is proposed to support progressive 

Quality 4.0 integration: 

1. Audit Current Systems Organizations should begin with a self-assessment of current 

quality tools, IT infrastructure, and workforce capabilities. Several studies 

recommend diagnostic audits as an essential step to define gaps and prioritize 

investment areas[8].  

2. Pilot IoT-Enhanced SPC Systems A controlled pilot, such as real-time SPC enhanced 

with IoT and ML, is suggested to validate feasibility. Pilot studies reduce risks and 

allow the organization to build experience incrementally [9]. 

3. Scale Through Cloud-Based Platforms Successful pilots can be scaled enterprise-

wide using cloud platforms that centralize quality data and analytics. Research 

confirms that cloud integration supports consistency, traceability, and AI deployment 

at scale [20, 26]. 

This phased roadmap mirrors the incremental implementation strategies discussed in 

recent Quality 4.0 frameworks and is especially suited for SMEs with limited digital  

maturity [7]. 
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6. CONCLUSION AND FUTURE WORK 

This study proves that Quality 4.0 should not displace the classical quality management 

methodologies, but rather, it should enhance them through intelligent, data-driven 

capabilities. Tools such as IoT, AI, and cloud-based analytics would help shift from the 

existing concept of proactive to predictive and even autonomous quality control. Though the 

use of such traditional approaches, i.e., TQM, Lean, Six Sigma, and SPC, is not imperative, 

they, based on the degree of integration with this technology, would continue to be relevant 

core principles. 

Results prove that mixes of traditional ways with Quality 4.0 supporters can give 

measurable betterment. A check showed a 32% drop in faults and a 15% enhancement in 

fixing times when AI and IoT joined with regular SPC and Six Sigma methods. 

To support the successful transition to Quality 4.0, this article proposes a maturity model 

structured around three pillars: Technology, Process, and People. An incremental 

implementation roadmap was also outlined to help organizations, especially SMEs, adopt 

these innovations progressively, with minimal disruption to existing operations. 

Future research directions: 

The study has developed a general framework that can be applied across different 

sectors. Thus, the future research opportunities include but are not limited to the following: 

• The adoption of Quality 4.0 in different sectors and the level to which it needs to be 

customized in the deeply regulated sectors of health, aerospace, and pharma manufacturing. 

• The potential for scalability of the use of Quality 4.0 among small and medium-sized 

enterprises, where low readiness to adopt digital technologies and financial constraints are the 

main barriers. 

• Development of quantitative benchmarking frameworks for assessing maturity levels 

and the impact of Quality 4.0 in different operational environments. 

Future studies can address these areas, building upon the theoretical and practical 

foundations laid by this research to enable more inclusive and sector-tailored implementations 

of Quality 4.0.  
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