

Journal of Machine Engineering, 2025, Vol. 25

ISSN 1895-7595 (Print) ISSN 2391-8071 (Online)

Received: 20 April 2025 / Accepted: 15 August 2025 / Published online: 21 August 2025

optical character recognition,

assistive technology,

braille translation,

real time data processing

Yogita DUBEY1*, Vijay WATH1,

Yadhnesh VYAWAHARE1, Vaishnavi DEOGADE1,

Gagan LOYA1, Akash PRATAPE1,

Darshana CHHATANI1

AN INTEGRATED OCR-BASED ASSISTIVE SYSTEM FOR VISUALLY

IMPAIRED INDIVIDUALS WITH ENHANCED ACCESSIBILITY

Mainstream technologies for assisting specially-abled individuals have evolved in both printed and digital

mediums. This research paper presents a study on a system designed to assist specially-abled individuals using

Optical Character Recognition (OCR). It also explores modern-day solutions for real-time data accessibility. The

OCR system is integrated with a wide range of hardware to enhance accessibility and convenience. The hardware

includes keyboards, displays, buzzers, controllers, actuators, and more. For real-time data access, a web server is

provided for manual data input, which is then processed and recognized using the software. The input data can be

digital, manually typed, or in the form of various file types. Additionally, a webcam is set up to capture and process

data from the surroundings for recognition. The software extends its functionality to handwritten notes and other

forms of data. It can differentiate between numerals, alphabets, and symbols. The recognized data is then translated

into the required Braille format, specifically arrays corresponding to each letter. The translated data is subsequently

transmitted to the hardware for appropriate feedback. This research paper also includes a comparative analysis of

three widely recognized OCR models – EasyOCR, Pytesseract, and SuryaOCR. The analysis evaluates various

performance aspects, including speed, processing time, accuracy, complexity, dependencies, error rate, and error-

handling capacity.

1. INTRODUCTION

Assistive technology has revolutionized accessibility for individuals with visual

impairments, enabling them to interact with printed and digital materials more effectively.

Assistive technology has significantly transformed accessibility for individuals with visual

impairments, enabling them to interact with printed and digital materials in various ways [1].

The system is designed to process text inputs from multiple sources, including uploaded

documents, typed text, and captured images. OCR technology is employed to extract, process,

1 Department of Electronics and Telecommunication Engineering, Yeshwantaro Chavan College of Engineering, Nagpur,

India
* E-mail: yogeetakdubey@yahoo.co.in

https://doi.org/10.36897/jme/209567

6 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

and convert both handwritten and printed text into a physical Braille format for individuals

who are blind or visually impaired. Over the years, several OCR models have been proposed

and refined, including lexicon-free deep learning-based OCR techniques [2] and sequence-

to-sequence learning approaches [3]. An event-driven control system ensures smooth and

efficient user interactions, such as menu navigation, text input, and selection confirmation.

A buzzer, vibrations from the Braille module, and visual alerts on the OLED screen provide

real-time feedback to users.

A key aspect of this study is the evaluation of three OCR models, EasyOCR, Pytesseract,

and SuryaOCR, across different scenarios. The assessment offers a comprehensive

comparative analysis, focusing on their recognition of printed and handwritten text across

various font styles, sizes, orientations, and noise levels. Previous studies have explored

efficient and scalable text recognition frameworks [4], transformer-based OCR methods [5],

and post-processing pipelines leveraging natural language processing to enhance OCR

accuracy [6].

Factors considered in the evaluation include the models' ability to handle complex

distortions and low-quality images, as well as their accuracy in text recognition and

multilingual support. To ensure a robust evaluation, various OCR benchmarking tools and

methodologies have been reviewed. Character-level and word-level evaluation frameworks

have been proposed to systematically assess OCR performance [7]. Previous research has also

examined automatic end-to-end evaluation for scene text OCR [8]. Additionally, open-source

OCR evaluation tools [9] and comprehensive surveys on OCR evaluation metrics provide

further insights into the effectiveness of different recognition approaches [10].

A comprehensive survey on emerging assistive technologies is presented in [11], [12].

Recently, the integration of Internet of Things (IoT) technologies has led to the development

of refreshable OCR-Braille solutions, enabling real-time text detection and Braille translation

[13]. The deep learning-based approach named Fly-LeNet is proposed in [14] that converts

Braille images into multilingual texts, enhancing accessibility for visually impaired

individuals. This study focuses on developing and evaluating a unified assistive system that

integrates optical character recognition (OCR), Braille translation, and wireless

communication to provide immediate text accessibility. By combining hardware components

such as an OLED display, a camera module, tactile buttons, a buzzer, and a keyboard interface,

the system ensures a user-friendly and interactive experience. Additionally, a web-based

wireless server allows users to submit text remotely, expanding accessibility beyond physical

interactions.

2. METHOD

The methodology employed for assistive system for visually impaired person is shown

in Fig. 1. When the system is started, it runs a boot sequence that sets up various libraries, and

all the GPIO peripherals are initialized. An LED indicator connected to GPIO blinks when

the boot sequence is running and turns off when the boot sequence is completed, indicating

that the system is ready. For image processing and hardware communication time, board,

busio, and PIL are used. We have used the Adafruit SSD 1306 128×64 pixels OLED display,

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 7

which is I2C-based. Additionally, there are 3 functions for user inputs and wireless

Communication. There are 5 buttons for up, down, ok, back, and next. Each button has a

specific debounce time to remove noise from signals. A buzzer is also connected to give

auditory responses when buttons are pressed to increase intuitive interaction. The main

interface of the system is shown by the OLED display. The script dynamically creates menu

items and moves the cursor based on button presses. The menu contains 3 options. Camera,

Wireless, and Keyboard. The system has a retry mechanism that tries to connect to the

peripheral with 1 second to tackle potential errors in I2C communication. This approach to

error handling guarantees dependable and consistent display functionality. The system enters

a non-blocking infinite loop that pauses for 100 milliseconds in each iteration. This

mechanism ensures system responsiveness while reducing CPU usage. This combination of

feedback mechanism makes it suitable for research as well as practical applications. The

custom tactile input modules used for user interaction and feedback are shown in Fig. 2.

Figure 2(a) and 2(b) shows the braille modules in different angles and Fig. 2(c) shows the

conversion of text. These modules were designed for intuitive operation and tested for

integration with the complete system.

Fig. 1. Basic Flow Diagram

The camera functionality is executed as flow shown in Fig. 3. As the user selects the

camera option, the Picamera2 library for capturing images and the gpiozero library for GPIO

management are initialized. Also, the indicator LED is turned on, and 'Click Picture' is shown

on the OLED screen to indicate the initialization of the camera sensor. To take a picture, the

user needs to press OK. This triggers a utility function that takes and saves the image in a

8 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

specific file path. After taking an image, the OLED screen displays 'Picture taken' for better

user understandability. After taking an image, the system extracts the text from the image.

While this is happening, the OLED shows 'Loading,' and the indicator LED starts blinking to

indicate the ongoing process. The OCR (Optical Character Recognition) process is carried

out by invoking the OCR Model. The validity of the extracted text is then checked. If no text

is detected, the OLED screen shows 'No text found' to notify the user. Otherwise, the extracted

text is sent to the decoder assembly controller linked to the Raspberry Pi through the I2C bus.

The custom braille modules activate the Braille display, enabling users to read the entered

text through touch Throughout the entire process, the system stays responsive to user

interaction. Pressing the button_back at any time stops the camera operation and brings the

user back to the main menu. The Picamera2 module is appropriately halted once the process

wraps up, ensuring effective resource management.

(a) (b) (c)

Fig. 2. Braille Modules and conversion of text

The functionality of the keyboard is shown in Fig. 4. The system utilizes the evdev

library to capture keystroke events from an external USB keyboard. The procedure starts by

scanning all existing input devices. This involves iterating through device paths, identifying

devices with names that suggest they are keyboards (like those containing “kbd” or “keyboard”

keywords), and confirming that the device is capable of key events (EV_KEY). Once a

keyboard is successfully identified, the device is returned for further engagement. Once a

keyboard is identified, the OLED display indicates “Keyboard Ready” while the indicator

LED lights up, signalling that the system is set to accept text input. Users see the prompt

“Type below” on the display.

As the user types, every keystroke event is captured and processed. The system manages

typical text input functions: alphanumeric characters are added to the input string, pressing

the spacebar inserts a space, and pressing backspace removes the last character if there is one.

The OLED display updates in real-time to show the user's current input. When the Enter key

is pressed, the system displays “LOADING...” as the entered text is sent to the decoder

assembly controller connected to the Raspberry Pi via the I2C bus. The custom braille

modules then activate the Braille display, allowing users to read the entered text by touch.

The system incorporates features for user control and error management. If the button

back is pressed during the input phase, the keyboard reading operation halts, and the system

reverts to the main menu. Furthermore, if no keyboard is found, the OLED screen shows a

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 9

“Connect Keyboard” message to assist the user in troubleshooting the hardware connection.

The design prioritizes accessibility and user-friendliness for individuals with visual

impairments. The combination of real-time OLED notifications, responsive keyboard input,

and tactile Braille output creates a smooth interface for text entry and Braille translation.

The functionality of the wireless server is depicted in Fig. 5. It is developed using Flask,

offering a web-based interface for text submission, PDF handling, and image-to-text

translation, integrated with a Braille display system. The server operates on a Raspberry Pi

with a specific IP address, enabling clients to connect wirelessly and provide text, PDF

documents, or images for conversion to Braille. Initially, the application sets up an upload

directory and configures the OLED display to show a welcome message. It then establishes

routes to manage different requests, offering immediate feedback to users via the OLED

display. The server supports several key functionalities given below.

Fig. 3. Camera Flow Diagram

10 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

• Text Processing: Users can submit text through a POST request to the /process_text

endpoint. The OLED screen shows the entered text, which is then transmitted to the

decoder assembly controller connected to the Raspberry Pi via the I2C bus.

Fig. 4. Keyboard Flow

• PDF Processing: Users can upload PDF documents at the /process_pdf endpoint. The

server employs the fitz library (PyMuPDF) to extract text from each page. Navigation

through the pages is facilitated by hardware buttons, and selected content activates custom

Braille modules, allowing users to read the text by touch through the Braille display.

• Image Processing: The /process_image endpoint allows users to submit image files,

where OCR is applied for text extraction, and the detected text is displayed on the OLED

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 11

screen. If text is found, it is sent to the decoder assembly controller connected to the

Raspberry Pi via the I2C bus.

• Server Shutdown: The server can be shut down via the /shutdown endpoint, which halts

the server completely.

• To evaluate the performance of three OCR models–EasyOCR, Pytesseract, and

SuryaOCR–controlled experiments were conducted using diverse image datasets

containing printed and handwritten text in various fonts, sizes, orientations, and noise

levels. The evaluation was performed under uniform conditions to ensure a fair

comparison.

Fig. 5. Wireless Server Flow

12 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

2.1. EVALUATION CRITERIA

• Accuracy Assessment: The analysis of recognition accuracy was conducted using ground-

truth datasets alongside manually validated transcriptions. Three tiers of accuracy were

taken into account. Character-level accuracy focused on misrecognized, substituted, or

absent characters. Word-level accuracy evaluated the successful identification of

complete words, including spacing and common compound word challenges. Sentence-

level accuracy examined punctuation, capitalization, grammar integrity, and logical

coherence in the output. The font sizes in the test images varied from 6 pt. to 48 pt.,

encompassing both machine-printed and handwritten texts, using an assortment of

typefaces such as serif, sans-serif, and cursive styles.

• Processing Speed: OCR models were evaluated on a dataset of 500 images that included

various resolutions and content types. This comprised 200 standard A4 documents at 300

DPI, 150 low-resolution images at 72 DPI (compressed JPEGs), 100 high-resolution

images at 600 DPI (TIFF and PNG formats), and 50 handwritten pages. The average

processing speed (milliseconds per image) was determined for each group of resolutions.

It was noted that while performance showed significant enhancement from 72 DPI to 300

DPI, the transition from 300 to 600 DPI resulted in only slight improvements. At 72 DPI,

recognition accuracy declined by as much as 35%, particularly in images featuring small

fonts, artifacts, or high compression levels.

• Multilingual & Script Support: The models underwent evaluation across 10 languages,

which included English, French, Chinese, Japanese, Korean, Hindi, Tamil, Telugu,

Bengali, and Arabic. The focus was on recognition accuracy for each script, especially in

cases where ligatures, diacritics, or non-Latin character sets added complexity. The tests

encompassed documents in single languages as well as mixed-language content within

the same image. The decline in performance for multilingual inputs was more pronounced

in scripts with intricate typography (e.g., Indic and East Asian languages), especially

when font sizes fell below 10 pt.

• Noise and Distortion Handling: OCR models were exposed to a broad spectrum of visual

noise and geometric distortions. Gaussian blur was applied with sigma values ranging

from 1.0 to 3.5 to mimic various degrees of focus loss. Salt-and-pepper noise was

introduced at 2%, 5%, and 10% pixel corruption levels, while Gaussian noise was applied

with standard deviations of 5, 15, and 30 grayscale units. Compression artifacts were

evaluated using JPEG images with quality levels decreased to 30%, 50%, and 70%,

simulating real-world degradation seen in screenshots and low-quality scans. Geometric

distortions included text rotated from ±5° to ±45°, perspective warps with corner offsets

up to 20%, and curved baselines created using sine wave transformations with amplitudes

between 5 and 25 pixels. Background complexity was also added using images that

contained stamps, watermarks, gradients, and low-contrast text regions with contrast

ratios as low as 3:1. Some examples included occlusions or overlapping graphics that

obscured 20–40% of the text.

• Datasets Used: The evaluation was executed using publicly available and open-source

datasets. For printed text, datasets such as ICDAR 2013, ICDAR 2015, and SynthText

were utilized. Scene text recognition was assessed using IIIT-5K, SVT, and COCO-Text.

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 13

Handwriting recognition drew from the IAM Handwriting Database for English cursive

writing. For multilingual and Indic scripts, datasets like MLT (Multi-Lingual Text),

BanglaWriting and UNLV-ISRI were employed. These datasets encompassed a wide

array of image conditions including varying font styles, scripts, resolutions, distortions,

and real-world complexities to facilitate thorough evaluation across diverse scenarios.

2.2. PERFORMANCE METRICS

To quantify OCR efficiency, the following mathematical performance metrics were

used.

• Character Error Rate (CER) CER evaluates character-level recognition accuracy [8] given

by CER = 𝑆+𝐼+𝐷
𝑁

, where, S is substitutions (incorrectly recognized characters), I is

insertions (extra characters added incorrectly), D is deletions (missing characters) and N

is total characters in the ground truth. Lower CER values indicate higher accuracy.

• Word Error Rate (WER): WER measures errors at the word level given by WER = 𝑆+𝐼+𝐷
𝑊

,

where, S is substitutions (incorrectly recognized words), I is insertions (extra words added

incorrectly), D is deletions (missing words) and W is the total words in the ground truth.

A lower WER indicates better word recognition.

• Processing Time (T): The average processing time per image was calculated as T= 𝑇𝑇𝑜𝑡𝑎𝑙

𝑁𝑖𝑚𝑎𝑔𝑒𝑠
,

where, 𝑇𝑡𝑜𝑡𝑎𝑙 is the total processing time across all images, 𝑁𝑖𝑚𝑎𝑔𝑒𝑠 is the number of images

processed. Processing time was measured under CPU execution (single-threaded and

multi-threaded runs) and GPU acceleration (for models supporting CUDA-based

inference).

2.3. IMPLEMENTATION & TESTING ENVIRONMENT

In order to guarantee consistent and replicable outcomes, every OCR model was

evaluated in a regulated computing setting featuring these specifications: Hardware setting of

CPU (BCM2712), GPU (Broadcom VideoCore VII), RAM (8Gb LPDDR4) and storage of

128 GB sd Card. Software setting of operating system (Debian based Rasberry pi os(64Bit)),

Python with OpenCV, NumPy, Tesseract-OCR, PyTorch, Easy-Ocr, Surya Git Repository

2.4. DATASET USED FOR TESTING

In order to perform a thorough assessment, the OCR tools were evaluated using a varied

dataset that included printed text (various fonts and sizes), handwritten samples (cursive and

block letters), mixed text documents (scanned books, invoices, business cards), multilingual

text (Latin, Chinese, Arabic, Devanagari, Tamil scripts) and low-quality images (blurred,

rotated, and noisy text). Every model was assessed under the same conditions to ensure a fair

comparison of their performance.

14 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

2.5. MODEL-SPECIFIC CONSIDERATIONS

Three models with following specifications were evaluated.

• EasyOCR model is based on deep learning (CNN + LSTM using PyTorch) which delivers

high accuracy for printed text and moderate performance for handwritten text and offers

rapid inference, particularly on CUDA-capable GPUs. But faces challenges with extreme

noise and overlapping text and has limited capabilities in optimizing structured

documents (tables, invoices)

• Pytesseract (Tesseract OCR) is a conventional OCR model (incorporates LSTM from

Tesseract 4.0 onward) and is most effective for dealing with structured documents

(invoices, forms, books). But this model has difficulty with handwriting and necessitates

significant preprocessing and slower compared to EasyOCR due to a character-

segmentation methodology. It is not optimized for GPU use, relying solely on CPU for

processing.

• SuryaOCR is an advanced AI-based OCR system utilizing Transformer-based

recognition and optimized for multilingual text, with a focus on Indic scripts. It has high

capabilities in s in handling noise and recognizing handwritten text and employs deep

learning techniques for denoising and correcting errors. It is compatible with CUDA and

TensorRT for real-time OCR processing.

3. RESULTS AND DISCUSSION

The models underwent testing using a varied collection of documents, which comprised

both printed and handwritten text across different languages, font sizes, and degrees of noise

and distortion. The findings are evaluated based on criteria such as accuracy, processing speed,

integration simplicity, support for multiple languages, and noise management. We have used

timeIt a python library we have used timeIt python library which gets the execution time of

code snippets. Fig. 6(a) shows final assembled prototype of the assistive system for visually

impaired users.

(a) (b)

Fig. 6 Final Assembly with test bemch

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 15

The layout includes six custom tactile input modules, INMP441Mic, an OLED display

for visual feedback and associated control circuitry mounted on a black acrylic panel.

Contributor names are engraved for documentation and presentation purposes. This complete

hardware integration was used during testing and demonstration phases. Figure 6(b) shows

Test Bench, the setup integrates a Raspberry Pi with a camera module and a breadboard

containing control buttons and module array control pins (represented by LEDs). It was used

to evaluate OCR performance under diverse input conditions, aiding in real-time testing and

validation of the system.

3.1. ACCURACY

The CER and WER analysis of the proposed method using SuryaOCR, EasyOCR, and

Pytesseract shown in Fig. 7 shows that SuryaOCR achieved the highest accuracy, particularly

excelling in complex document processing due to its transformer-based recognition and

advanced deep learning denoising techniques. It exhibited exceptional performance in

recognizing multilingual text and extracting handwritten content, significantly surpassing the

other two models. For printed text, a CER of 1.5% and a WER of 2.3% were recorded, while

for handwritten data, a CER of 5.8% and a WER of 7.5% were observed. EasyOCR performed

well for printed text, especially in recognizing multiple languages, but exhibited moderate

effectiveness with handwritten content. It struggled with extreme distortions and low-

resolution images. For printed text, a CER of 3.2% and a WER of 5.1% were recorded,

whereas for handwritten data, a CER of 14.4% and a WER of 15.7% were found. Pytesseract

produced consistent results for structured text, such as invoices, tables, and scanned

documents, but was less effective in noisy environments. Compared to SuryaOCR and

EasyOCR, it faced challenges in contextual text extraction and required preprocessing for

optimal performance. For printed text, a CER of 4.8% and a WER of 6.7% were detected,

while for handwritten data, a CER of 18.2% and a WER of 21.3% were observed.

Fig. 7. Character Error Rate (CER) and Word Error Rate (WER) Analysis

16 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

3.2. PROCESSING SPEED

The comparative analysis of average processing time per frame is presented in Table 1.

EasyOCR and Pytesseract demonstrated the fastest text recognition speeds, primarily due to

their lightweight architectures. The utilization of CUDA enhanced EasyOCR's speed, making

it well-suited for real-time applications. In contrast, SuryaOCR was slower than EasyOCR as

it employed deep learning-based error correction, which reduced processing speed but

significantly improved text recognition accuracy. Pytesseract had the slowest processing

speed due to the absence of GPU acceleration. EasyOCR maintained higher speeds, while

SuryaOCR balanced speed and accuracy, making it a strong choice for AI-enhanced OCR.

The average processing time for SuryaOCR was 170 ms on CPU and 75 ms on GPU.

EasyOCR was comparatively faster, with an average processing time of 140 ms on CPU and

60 ms on GPU. Pytesseract was the slowest, with an average processing time of 200 ms on

CPU. The average processing time for Chowdhary et al [1] model for CPU is 160 ms while

for GPU is 80 ms, For Li et al [2] model is 200 ms and 80ms respectively. In case of Namysl

et al [3] and Mehta et al [6] model for CPU and GPU is 150 ms, 70 ms and 190 ms and 85 ms

respectively. For handwritten text the average processing time for SuryaOCR, EasyOCR,

Pytesseract, Chowdhary, Li et al, Namysl, Mehta model is 250 ms, 280 ms, 360 ms, 310 ms ,

330 ms, 280 ms and 300 ms respectively. While, for high resolution image the average

processing time for SuryaOCR , EasyOCR, Pytesseract, Chowdhary et al [1], Li et al [2],

Namysl et al [3], and Mehta [6] model is 410 ms, 380 ms, 500 ms, 450 ms , 470 ms, 420 ms

and 440 ms respectively.

Table 1. Average Processing Time per Image in milliseconds (ms)

Model CPU (A4 Page)
GPU (A4

Page

Handwritten

Text

High-Resolution

Image

SuryaOCR 170 75 250 410

EasyOCR 140 60 280 380

Pytesseract 200 N/A 360 500

Chowdhary et al [1] 160 80 310 450

Li et al [2] 200 90 330 470

Namysl

et al [3]
150 70 290 420

Mehta

et al [6]
190 85 300 440

3.3. INTEGRATION SIMPLICITY

The evaluation of ease of use is summarized in Table 2. Pytesseract and EasyOCR

received the highest scores for ease of installation due to their lightweight characteristics and

low dependency needs, making them well-suited for rapid integration into Python

environments. While Pytesseract functions as a wrapper for Tesseract-OCR and necessitates

additional pre-processing steps to improve accuracy, such as noise reduction and

thresholding, it does slightly increase the development effort involved. On the other hand,

EasyOCR is delivered with pre-trained language models and requires minimal setup, striking

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 17

a balance between usability and performance. SuryaOCR has a more complex installation

process because of its deep learning framework and additional requirements, yet it offers

REST API support and modular deployment, making it appropriate for scalable enterprise-

level applications. Chowdhary et al [1] is simple to install and provides moderate

customization options via REST API. Li et al [2] features a complicated installation process

due to its TensorFlow dependencies but offers extensive customization and tuning

possibilities through Python APIs. Namysl et al [3] is easy to configure and grants moderate

customization with API support. Conversely, Mehta et al [6] necessitates integration with

natural language processing components, resulting in a more complex setup process, although

it provides significant flexibility through it’s a PI.

Table 2. Integration Complexity (Scale of 1 to 5, Lower is Easier)

Model Ease of Installation API Support Customization

SuryaOCR 4 Yes High

EasyOCR 2 Yes Moderate

Pytesseract 1 No API Low

Chowdhary et al [1] 2 Yes Moderate

Li et al [2] 4 Yes High

Namysl et al [3] 2 Yes Moderate

Mehta et al [6] 3 Yes High

3.4. MULTILINGUAL & SCRIPT SUPPORT

The multilingual and script support accuracy comparison is presented in Fig. 8.

SuryaOCR demonstrated the highest multilingual accuracy, particularly for Indic and non-

Latin scripts, leveraging transformer-based recognition techniques. Its accuracy for English,

Hindi, and Japanese was 98.5%, 94.5%, and 95.2%, respectively. EasyOCR performed well

across 80+ languages, though it required fine-tuning for less common scripts. It achieved

96.7%, 89.3%, and 90.7% accuracy for English, Hindi, and Japanese, respectively.

Pytesseract supported 100+ languages, but required specific training data for optimal

recognition. It had the lowest accuracy among the three, with 94.2%, 85.6%, and 87.3% for

English, Hindi, and Japanese. Other models also demonstrated varying levels of multilingual

OCR capabilities. Chowdhary et al. [1] model exhibited moderate accuracy levels, achieving

94% in English, 86% in Hindi, and 88% in Japanese. While effective for standard printed text,

it faced challenges with handwritten content and complex scripts. Li et al. [2] model leveraged

deep learning-based OCR techniques, achieving 97% in English, 92% in Hindi, and 94% in

Japanese. Its strong performance was attributed to advanced text normalization techniques

and a well-trained transformer-based model, making it highly effective for multilingual

applications. Namysl et al. [3] model showed relatively lower accuracy, scoring 93% in

English, 85% in Hindi, and 87% in Japanese. It struggled with noisy inputs and script

variations but remained a viable option for structured text recognition. Mehta et al. [6] model

incorporated NLP-based post-processing, enhancing its recognition capabilities. It achieved

18 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

96% in English, 90% in Hindi, and 92% in Japanese, making it a competitive choice for

multilingual OCR tasks.

Fig. 8. Multilingual accuracy (%) across key Languages

3.5. HANDLING NOISE AND DISTORTION

Figure 9 shows the comparison of reduction in accuracy for noisy and distorted images.

SuryaOCR was best in handling noise environments by utilizing advanced deep learning noise

reduction methods which improved recognition accuracy. EasyOCR has difficulties with

distortions but delivered good performance on images with minor noise. Pytesseract needed

significant tuning steps such as thresholding and binarization to effectively deal with noisy

images.

The accuracy reduction of SuryaOCR for blurry text, Rotated text, Low-contrast Image,

Text on Complex Backgrounds was 3.5%, 4.2%, 5.1% and 6.8% respectively. EasyOCR with

accuracy reduction for blurry text, Rotated text, Low-contrast image, Text on Complex

Backgrounds was 7.1%, 8.3%, 9.7%, 11.5% respectively. Pytesseract with accuracy reduction

for blurry text, Rotated text, Low-contrast image, Text on Complex Backgrounds was 10.2%,

12.8%, 15.3%, 18.7% respectively. Chowdhary et al [1] with accuracy reduction for blurry

text, Rotated text, Low-contrast image, Text on Complex Backgrounds was 6.5%, 7.8%,

9.2%, 11.0% respectively. Li et al [2] with accuracy reduction for blurry text, Rotated text,

Low-contrast image, Text on Complex Backgrounds was 4.5%, 5.2%, 6.3%, 7.9%

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 19

respectively. Namysl et al [3] with accuracy reduction for blurry text, Rotated text, Low-

contrast image, Text on Complex Backgrounds was 7.0%, 8.5%, 10.1%, 12.3% respectively.

Mehta et al [6] with accuracy reduction for blurry text, Rotated text, Low-contrast image,

Text on Complex Backgrounds was 5.2%, 6.3%, 7.1%, 8.7% respectively.

Fig. 9. Accuracy Reduction (%) on Noisy & Distorted Images

4. CONCLUSION AND FUTURE WORK

This research introduces a thorough approach to building an OCR-based assistive

system designed to improve accessibility for individuals with visual impairments. By merging

software intelligence with hardware feedback mechanisms, we enable users to interpret

printed, handwritten, and digital text using tactile and auditory outputs. The system features

an array of hardware elements, such as an OLED display, tactile buttons, a camera module,

USB keyboard input, and a collection of custom Braille modules operated by electro-

mechanical solenoids. These components are effectively coordinated by a Raspberry Pi

processing unit and a locally hosted wireless web server, facilitating both manual and remote

input. The software aspect of the system is built with dual operation modes–offline (local

processing) and online (Wi-Fi-enabled AI-based processing). This allows the solution to

adapt to situations where internet connectivity is limited or unavailable. We rigorously

evaluated the OCR capability using three advanced models–SuryaOCR, EasyOCR, and

Pytesseract–across diverse datasets that included multilingual printed and handwritten text.

20 Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25

Performance metrics such as Character Error Rate (CER), Word Error Rate (WER),

processing time, and support for multiple languages were utilized for comparison. SuryaOCR

proved to be the most accurate and adept at managing noisy, distorted, and multilingual inputs,

despite its more complex setup. EasyOCR offered a good balance between speed and ease of

use, while Pytesseract delivered reliable performance on structured text but faced challenges

with handwriting and noise. These results provide valuable insights into the appropriateness

of different OCR systems for a range of real-world accessibility requirements. From a

usability standpoint, the system delivers immediate responses through visual indicators

(OLED), auditory alerts (buzzer or speaker), and tactile feedback (Braille). The user interface

was crafted to be intuitive and responsive, even without visual guidance. Nonetheless, we

recognize that actual usability testing with end-users–especially those with visual

impairments–is still required and represents an essential next phase in confirming the

practicality and inclusivity of our solution.

The existing prototype utilizes electro-mechanical solenoids for Braille cell activation,

which, while functional, are known for being power-intensive and bulky. This impacts the

overall portability and energy efficiency of the device. Consequently, a key focus for future

versions will be to investigate alternative actuation technologies, such as shape-memory

alloys (SMA), piezoelectric actuators, or magnetic/electrostatic microactuators, which could

lower power demands and allow for a more compact, wearable design. Additionally, we plan

to integrate sophisticated AI-driven post-processing methods (e.g., natural language

correction and semantic analysis) to enhance OCR precision, particularly for intricate

handwritten or multilingual texts.

Looking forward, we aspire to transform this platform into a more modular, open-source

toolkit that can be implemented in educational and public settings, particularly in underserved

communities. Our ultimate goal is to help bridge the digital divide by enabling individuals

with visual impairments to access, engage with, and contribute to digital content, especially

in STEM fields where accessibility resources are still limited. The insights and framework

provided in this research establish a foundation for future advancements in intelligent assistive

technologies.

REFERENCES

[1] CHAUDHARY K., BALI R., 2021, EASTER: Efficient and Scalable Text Recognizer, Proceedings of the 34th

Canadian Conference on Artificial Intelligence, https://arxiv.org/abs/2008.07839.

[2] LI M., LV T., CHEN J., CUI L., LU Y., FLORENCIO D., ZHANG C., LI Z., WEI F., 2023, TrOCR:

Transformer-Based Optical Character Recognition with Pre-Trained Models, Proceedings of the AAAI

Conference on Artificial Intelligence, 37/11, 13094–13102, https://doi.org/10.1609/aaai.v37i11.26538.

[3] NAMYSL M., KONYA I., 2019, Efficient, Lexicon-Free OCR Using Deep Learning, Proceedings of the 15th

International Conference on Document Analysis and Recognition (ICDAR), 339–344,

https://doi.org/10.1109/ICDAR.2019.00055.

[4] ISLAM N., ISLAM Z., NOOR N., 2017, A Survey on Optical Character Recognition System, Journal of

Information and Communication Technology, 10/2, 97–123,

https://doi.org/10.48550/arXiv.1710.05703.
[5] SAHU D.K., SUKHWANI M., 2015, Sequence to Sequence Learning for Optical Character, arXiv:1511.04176,

https://doi.org/10.48550/arXiv.1511.04176.

[6] RAKSHIT A., MEHTA S., DASGUPTA A., 2023, A Novel Pipeline for Improving Optical Character

Recognition Through Post-Processing Using Natural Language Processing, Proceedings of the IEEE Guwahati

https://doi.org/10.48550/arXiv.1710.05703
https://doi.org/10.48550/arXiv.1710.05703

Y. Dubey et al./Journal of Machine Engineering, 2025, Vol. 25 21

Subsection Conference (IEEE GCON), 1–6,

https://doi.org/10.48550/arXiv.2307.04245.

[7] LEE H.-S., YOON Y., JANG P.-H., CHOI C., 2019, PopEval: A Character-Level Approach to End-To-End

Evaluation Compatible with Word-Level Benchmark Dataset, Proceedings of the 15th International Conference

on Document Analysis and Recognition (ICDAR), 1211–1216,

https://doi.org/10.48550/arXiv.1908.11060.

[8] HWANG M.-Y., SHI Y., RAMCHANDANI A., PANG G., KRISHNAN P., KABELA L., SEIDE F., DATTA

S., LIU J., 2023, DISGO: Automatic End-To-End Evaluation for Scene Text OCR,

https://doi.org/10.48550/arXiv.2308.13173.

[9] CARRASCO R.C., 2014, An Open-Source OCR Evaluation Tool, Proceedings of the First International

Conference on Digital Access to Textual Cultural Heritage (DATeCH), 53–58,

https://doi.org/10.1145/2595188.2595221.

[10] NEUDECKER C., BAIERER K., GERBER M., CLAUSNER C., ANTONACOPOULOS A.,

PLETSCHACHER S., 2021, A Survey of OCR Evaluation Tools and Metrics, Proceedings of the 6th

International Workshop on Historical Document Imaging and Processing (HIP), 35–40,

https://doi.org/10.1145/3476887.3476888.

[11] LAVRIC A., BEGUNI C., ZADOBRISCHI E., CAILEAN A.M., AVATAMANIEI S.A., 2024, A

Comprehensive Survey on Emerging Assistive Technologies for Visually Impaired Persons: Lighting the Path

with Visible Light Communications and Artificial Intelligence Innovations, Sensors, 24/15, 4834,

https://doi.org/10.3390/s24154834.

[12] KATHIRIA P., MANKAD S.H., PATEL J., KAPADIA M., LAKDAWALA N., 2024, Assistive Systems for

Visually Impaired People: a Survey on Current Requirements and Advancements, Neurocomputing, 606, 128284,

https://doi.org/10.1016/j.neucom.2024.128284.

[13] REDDY K.K., BADAM R., ALAM S., SHUAIB M., 2024, IoT-Driven Accessibility: a Refreshable OCR-Braille

Solution for Visually Impaired and Deaf-Blind Users Through WSN, J. Econ. Technol., 2, 128–137, 2024.

https://doi.org/10.1016/j.ject.2024.04.007.

[14] Al-Salman A., AlSalman A., 2024, Fly-LeNet: a Deep Learning-Based Framework for Converting Multilingual

Braille Images, Heliyon, 10/4, https://doi.org/10.1016/j.heliyon.2024.e26155.

https://doi.org/10.48550/arXiv.2307.04245
https://doi.org/10.48550/arXiv.2307.04245
https://doi.org/10.48550/arXiv.1908.11060
https://doi.org/10.48550/arXiv.1908.11060
https://doi.org/10.1145/2595188.2595221
https://doi.org/10.1145/3476887.3476888
https://doi.org/10.1016/j.ject.2024.04.007
https://doi.org/10.1016/j.heliyon.2024.e26155

