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WAVELET DECOMPOSITION OF CLOSE-TO-PROCESS ACCELERATION 

SIGNALS FOR WEAR MONITORING  

Highly automated and unmanned manufacturing requires process monitoring and in-process control to prevent 

damage to the workpiece or machine tool due to tool failure. The positioning of sensors close to the process is 

crucial to the success of such monitoring. One way of achieving this in machining applications is to equip 

toolholders with sensor systems. The Institute of Production Engineering and Photonic Technologies (IFT) has 

developed a sensory tool holder based on MEMS acceleration sensors that measures radial vibrations. The sensory 

tool holder system can be used to monitor production processes such as milling, drilling or tapping. In order to 

effectively use the signals from the sensory tool holder system for closed-loop control, it is necessary to convert 

these signals into characteristic values. This paper shows that wavelet decomposition of process-related 

acceleration signals is suitable for generating such a characteristic value for wear monitoring of end mills. Long-

term roughing and finishing data from a real production process were analysed for this purpose.  

1. INTRODUCTION 

The machining of complex parts, unpredictable part defects and spontaneously 

increasing tool wear create difficult conditions for the implementation of automated 

manufacturing. This is often combined with high tooling costs and high financial risks in case 

of failure. Sensors in tooling systems are a suitable means of monitoring, supervising and 

controlling machining operations. Tooling systems with sensing capabilities are being 

developed to provide a reliable and fast method of gaining deep insight into the machining 

process [1]. This provides real-time information about the ongoing process or enables 

automatic stops and adjustments to the machining operation. 

Tool condition monitoring is typically based on sensory characteristic features extracted 

using signal processing techniques such as statistics, Fourier and wavelet transform [2]. 

Wavelet transform and decomposition for feature extraction has been used in a wide range of 
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condition monitoring applications [3]. In machining applications, in addition to tool condition 

monitoring [5], it has been successfully used to monitor machining stability [4]. 

Fang et al. [6] used Daubechies wavelets (Db8) to analyse cutting vibration signals in 

turning of Inconel 718 and showed that the average energy of the wavelet coefficients can be 

used to evaluate tool edge wear. Feature extraction and pattern recognition of chip shape 

typology was achieved by [7] using wavelet decomposition of a force signal from turning of 

AISI 1045 carbon steel. In [8], Daubechies wavelets (Db3) were used to decompose cutting 

force signals collected during milling of titanium alloy Ti-6Al-4V at variable cutting speeds 

from 80 to 360 m/min. The use of a wavelet coefficient is presented to be suitable for 

monitoring cutting stability and tool wear. In [9], tool condition is monitored using vibration 

and acoustic emission signals during high-speed milling of Ti-6Al-4V. The results show that 

wavelets and machine learning algorithms can be used to classify tool conditions. However, 

all of these studies were carried out using stationary measuring tools. Bending moment signals 

from a multi-sensor tool holder were used by Schuster et al. [10] to detect machining 

instabilities during milling. Reliable chatter detection was achieved by analysing the mean 

signal energy corresponding to the high frequency coefficients of a discrete wavelet 

transform. Xie et al. [11] used a standard tool holder equipped with an acceleration sensor 

and Haar wavelets to decompose the measured vibration signal in 3 levels. It was stated that 

the energies of different frequency bands from the wavelet decomposition were suitable as 

features for tool condition monitoring. 

In this paper, wavelet decomposition was done to analyse acceleration measurement 

data from the face milling of a screw support surface on a connecting rod in a series production 

process. A sensor-integrated tool holder developed by Bleicher et al. [12] was used to 

automatically collect these close-to-process data. The collected data are analysed in a post-

process analysis. It can be revealed that wavelet decomposition is suitable for generating 

characteristic values to determine the tool wear condition of end mills in a series production 

process.  

2. MATERIALS WAVELET ANALYSIS 

Wavelet transform is a mathematical technique for analysing time series signals or 

images. It decomposes the signal into detail components and scale components at different 

scales. The detail components are accommodated in the wavelet coefficients. The scale 

component can be interpreted as a smooth version of the signal at the different scales. The 

decomposition can be performed using any family of wavelet functions. There are many types 

of wavelets - Haar wavelets, Daubechies wavelets, Coiflets wavelets and more. For a detailed 

description of wavelet transform see [13, 14]. 

The classical discrete wavelet transform (DWT) requires that the length of the signal be 

expressed as 𝑁 = 2𝑘  for 𝑘 ∈ {1,2,3, . . . }. In contrast to the DWT, the maximum overlap 

discrete wavelet transform (MODWT) can be applied to the signal of any length N. Both types 

of wavelet transform, DWT and MODWT, are energy preserving [13]: 

‖𝑋‖2 = ∑ ‖𝑊𝑗̃‖
2

+ ‖𝑉𝐽0
̃ ‖

2𝐽0
𝑗=1  (1) 
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where ‖𝑋‖2 = ∑ 𝑋𝑖
2𝑁−1

𝑖=0  is the energy of the signal, 𝑊𝑗̃ are wavelet coefficients at level j and 𝑉𝐽0
̃  

is the scale coefficient at level 𝐽0. Based on this equation the sample variance of the signal 

𝜎𝑋
2 can be decomposed [13]: 
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 with 𝑋̅  as a sample mean. Define 
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for 𝑗 = 1, . . . , 𝐽0 as an indicator of the variance of the wavelet coefficients at level j. This 

measure shows a contribution of the variance at level j to the variance of the signal. Niaki et 

al. [15] show that, among other features, the variance of the wavelet coefficients is a possible 

characteristic of tool wear. 

From a practical point of view, the inputs to the wavelet transform are the signal, the 

wavelet function and the maximum decomposition level 𝐽0. The computation of the MODWT 

is done using the R package wavelets [16]. In general, the optimal choice of wavelet function 

and maximum decomposition level are difficult to find. Fugal [17] notes that a trial-and-error 

method is usually useful to find the best mother wavelet. Teti et al. [18] also state that different 

researchers have chosen different wavelets and decomposition levels in the past, but there is 

no clear explanation as to why the particular wavelet was selected. Niaki et al. [15] show that 

the Daubechies3 (Db3) and Daubechies4 (Db4) wavelet decompositions produce 

characteristic values that correlate with tool wear. 

3. EXPERIMENTAL SETUP 

For the investigations, a 4-axis CNC milling centre (Makino a61nx) for connecting rod 

manufacturing was equipped with the ICOtronic system [19]. A schematic design of the 

sensory toolholders in use is shown in Fig. 1. It is an HSK-A63 toolholder with a 20 mm 

diameter hydraulic chuck developed by Bleicher et al. [12] and is equipped with a ± 50 g 

MEMS acceleration sensor for measuring radial acceleration positioned in the axis of rotation. 

The measured radial acceleration is sampled at 9.6 kHz and can be continuously streamed for 

8 h. The digitised signal is sent via Bluetooth Low Energy to a transceiver unit located in the 

machining area.  

For automatic data acquisition of the sensor integrated tool holder a signal processing 

unit was connected with the FOCAS interface of the machine's FANUC control via Ethernet. 

When the sensor-integrated tool holder was changed into the workspace of the machine tool, 

the automatic start of data acquisition was initiated by the exchange of macro variables 

between the CNC of the machine tool and the signal processing unit. Two processes were 

investigated - roughing and finishing of the screw support surface of a connecting rod. 

Therefore, the machining centre was equipped with a total of four sensor integrated tool 
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holders. This meant that two tools were available for each process and ensured that the 

production process could be monitored continuously, without interruptions caused by the 

need to recharge the battery of the sensory tool holder. When the end of tool life was reached, 

the tool holder with the clamped tool is removed from the machine´s tool magazine so that a 

new tool could be inserted in the company's tool preparation department. After recharging, 

the toolholder is returned to the machine once the sister tool has reached the end of tool life. 

 

 

Fig. 1. Sensor integrated toolholder 

The connecting rod material is Ti-6Al-4V. The end mill SECO JS754160E2R200.0Z4-

HXT with a diameter of d = 16 mm and four cutting edges was used for roughing and the end 

mill SECO RM-JS720160R195-HXT again with a diameter of d = 16 mm and six cutting 

edges was used for finishing. During the measurement period, tooling tests were carried out 

using in-house manufactured tools for both roughing and finishing. These tools had the same 

diameter and number of cutting edges, but showed differences in the rounding of the cutting 

edges. The material allowance for the finishing operation is 0.15 mm. The machining 

parameters for the two process steps and the optimised parameters for finishing are given in 

Table 1. 

Twelve connecting rods are clamped in one set-up. For each connecting rod, two screw-

support surfaces have to be machined. Thus, the acceleration signal, measured by the sensor 

integrated tool holder, includes the machining of 24 surfaces. Figure 2 shows the clamping 

situation of the twelve con rods and the tool path for machining the screw support surface. 

Table 1. Machining parameters 

process 
Cutting speed 

m/min 

spindle speed 

1/min 

feed rate  

mm/min 

cutting depth ap 

mm 

roughing 40.2 800 308 2 

finishing 78.4 1560 168 / 336 0.15 

finishing optimisation 1 78.4 1560 168 / 336 0.15 

finishing optimisation 2 78.4 1560 336 0.15 
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Fig. 2. Fixture and toolpath 

4. SIGNAL ANALYSIS AND RESULTS 

Seven levels of Db4 wavelet decomposition were applied to the roughing and finishing 

acceleration data. Due to the continuous process monitoring, measurements of both, the new 

and the worn tool are available and a signal comparison between these two tool states is 

possible. The original signal and the first three wavelet coefficients of the decomposition are 

shown in Fig. 3 for roughing and Fig. 4 for finishing. The vibration signal from machining 24 

screw support surfaces with the new tool is shown in red and that of the worn tool is depicted 

in black. By visually comparing the original signal and the wavelet decomposition 

coefficients, it is possible, to evaluate which coefficient could be relevant for assessing tool 

wear. The roughing process presented in Fig. 3, demonstrates that the amplitudes of the 

wavelet coefficient at level one for the worn tool are significantly higher than the original 

signal. 

 



10  J-A. Greitler et al. /Journal of Machine Engineering, 2025, Vol. 25  

 
Fig. 3. Wavelet decomposition of acceleration signal of roughing process 

For the finishing process, wavelet coefficients at level two and three show the largest 

differences in amplitude between the new and the worn tool, as it is presented in Fig. 4. These 

assessments of the time series of the wavelet decomposition show that such a signal 

decomposition facilitates an optical signal analysis to determine their wear condition. 

In the next step, the variance ωj of the wavelet coefficients (shown in Figs. 3 and 4) was 

calculated using Equation (3). This approach condenses the differences in wavelet coefficient 

amplitudes into a single characteristic value. For the long-term analysis, the calculation was 

applied to the complete machining dataset. As outlined earlier, the first decomposition level 

ω1 serves as a reliable indicator of tool wear in the roughing process, while the third 

decomposition level ω3 provides a measure of wear in the finishing process. By plotting these 

variances as time series, the progression of tool wear over time can be systematically 

monitored. This means that each machining setup - corresponding to the production of 24 

screw support surfaces – is represented by one characteristic value, which corresponds to the 

wear state of the tool at that point in time. 

 

 

Fig. 4. Wavelet decomposition of acceleration signal of finishing process 

Fig. 5 shows the variance ω1 for the roughing process. Each data point corresponds to 

one machining setup, with colour coding used to distinguish between the two replacement 

tools (green and blue). A clear correlation between ω1 and tool runtime is visible: as tool wear 

increases, so does the variance. This consistent trend demonstrates that ω1 is a possible 

indicator of tool wear in the roughing process. Moreover, the stability of this parameter over 

the extended observation period confirms its deterministic nature, supporting the feasibility 

of automated wear detection based on defined threshold values.  

Notable fluctuations in ω1 are also observed. These variations are attributable to several 

factors, including tests with in-house manufactured tools, tool life experiments, and coolant 
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renewal. The in-house tools exhibited lower vibration amplitudes at the onset of use but, 

owing to their extended nominal tool life (100 minutes compared with 50 minutes for the 

original tools), they demonstrated considerably higher vibration levels at the end of their 

service life. For the original tools, when the tool life threshold was artificially extended to 

100 minutes, higher variance values were similarly observed, as evident in the June test 

campaign. Additionally, a marked increase in ω1 was recorded following coolant renewal 

after the annual plant shutdown in mid-August. This effect is plausibly linked to improved 

frictional conditions. 

 

Fig. 5. Variance of wavelet coefficient level 1 for roughing 

Fig. 6 depicts the variance ω3 for the finishing process, with the point colours indicating 

again the respective replacement tools (black and red). Here again, a clear correlation between 

variance and tool usage is discernible, enabling the definition of a threshold-based criterion 

for identifying critical wear states. Tests conducted with in-house manufactured tools over a 

two-week period in May are also reflected in the data. Although these tools demonstrated 

improved vibration characteristics overall, the results revealed a higher degree of variance, 

which may be attributed to limited process repeatability and variability in the in-house 

grinding process.  

Two process optimisations aimed at reducing cycle time were also implemented during 

the observation period and are clearly reflected in the ω3 values. These adjustments resulted 

in a modest increase in variance at the beginning of tool life. Because the nominal tool life 

setting remained constant, the reduction in machining time - achieved through increased feed 

rates - allowed a substantially greater number of screw contact surfaces to be machined per 

tool. In the second optimisation stage, the cycle time was reduced by 43%, enabling each tool 

to machine an average of 618 screw support surfaces, compared with 432 in the baseline 

condition. Although the higher feed rates resulted in elevated ω3 values, the required surface 
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roughness remained within tolerance limits. This outcome indicates that the previously 

applied tool life limit was conservative. 

 

 

Fig. 6. Variance of wavelet coefficient level 3 for finishing 

5. CONCLUSION 

Tool wear monitoring is critical in modern manufacturing processes as it can 

simultaneously reduce machine downtime and increase productivity. This paper shows that it 

is possible to perform in-line process monitoring using close-to-process data. Wavelet 

decomposition using a Daubechies Db4 wavelet can be used to generate characteristic values 

for roughing and finishing operations that exhibit deterministic behaviour for assessing the 

state of wear of end mills. This allows wear detection to be implemented in highly automated 

production using simple threshold rules. It was also demonstrated that changes in the coolant, 

slight changes in the tool contour (rounding of the cutting edge) and changes in tool runtime 

are detectable in the data. 

In future steps, further types of tools will be investigated together with additional 

workpiece materials (steel) and additional workpiece features in order to verify the generality 

of the presented evaluation methodology. 
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