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SCREW DRIVEN FEED AXES 

Feed axes of machine tools often include more sensors and actuators than needed for basic motion generation. In 

such over-actuated systems, actuator control is typically implemented in an independent manner, without explicit 

consideration of the dynamic interactions between individual control loops. The performance of such decentralised 

control schemes is often limited. Modal decoupling enables the system to be separated into individual vibration 

modes, each controlled independently. The advantage of modal control lies in its ability to simplify the control of 

complex systems by reducing them to multiple independent single-input, single-output systems. Each control loop 

corresponds to a specific vibration mode, and its control law can be designed to meet the desired performance 

requirements. This study presents a simulation-based analysis of modal control applied to feed axes equipped with 

a ball screw. Two over-actuated configurations are examined. The first consists of a ball screw driven by a single 

motor, with an optional active damping device attached to the slide. The second configuration features a ball screw 

driven by two motors, one mounted on each side. Applying modal control increases the position-control bandwidth 

by up to 60 % when using an active damping device, and by up to 20 % for a dual-motor ball screw axis. 

1. INTRODUCTION 

High-speed metal cutting machines require high feed dynamics, which can be achieved 

by increasing the force or torque of the feed drive. For this purpose, multiple drives per axis 

are applied. The gantry architecture, which implements the principle of “Drive at the Center 

of Gravity” [1] and prevents the slide from yawing, represents a solution for constructively 

increasing the feed dynamics [2]. Moreover, two motors can be connected to both ends of a 

ball screw to drive the slide. This so-called “both-side drive” [3], also referred to as the “Zero 

Gap Drive System” [4], allows for a thermally symmetrical machine design and enhances 
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both motion dynamics and accuracy. To achieve high feed dynamics, active damping devices 

(ADD) equipped with proof-mass actuators are employed to dampen structural modes and 

increase the chatter-free cutting depth [5]. These systems can be easily integrated into 

machine tools without any design modifications being required. 

As an essential component of machine tools, the dynamic properties of the feed drive 

system have a significant influence on machining performance. For machine tools with short 

and medium axis lengths, backlash-free, preloaded ball screws are the preferred drive system. 

Ball screw drives (BSD) are characterised by high accuracy, load capacity and dynamics [6]. 

When high positioning accuracy is required, a linear encoder is used in addition to the rotary 

encoder to directly measure the slide position. In this case, wear and temperature-induced 

changes in the drive mechanism as well as inaccuracies in the transmission elements – such 

as spindle lead errors – can be eliminated. In this drive configuration, the actuator and sensor 

are not collocated, as the linear encoder and the motor are not in the same physical location. 

In addition, the BSD dynamics (i.e. eigenfrequencies and modes) vary according to the 

position of the slide [7]. The achievable bandwidth of the position loop of BSD feed axes with 

conventional P-PI position-velocity cascade control (industrial standard) is limited by 

structural vibrations originating from the axial and torsional modes of the mechanical 

transmission elements [8]. In [9], a friction-based actuator is used to suppress the axial 

vibration mode of a BSD. To increase the bandwidth of the position loop of BSD axes, several 

control solutions have been proposed. In [10] for example, a cascaded feedback control is 

presented consisting of a weakly set motor velocity controller, a disturbance observer loop 

and a superimposed PD position controller. In [11], axial vibrations are modelled and actively 

compensated for in the control law, which enables the realisation of a high positioning 

bandwidth. To improve the dynamics of a BSD the P position controller of the cascade control 

can be substituted with a sliding mode controller [12]. In [13], a modal characteristic modifier 

is presented that employs a combination of peak and notch filters to reshape the plant 

dynamics into a virtually collocated system, thereby avoiding control spillover. 

This paper discusses the control of BSD feed axes in modal space. Two modal control 

strategies have been developed. The effectiveness of these approaches is demonstrated 

through simulations involving an axis with BSD and a proof-mass actuator, as well as a BSD 

driven by two servomotors. By applying the modal transformation, the dynamics of the feed 

axis are decoupled, allowing the system’s eigenmodes to be controlled individually [14]. The 

modal control (MC) is particularly advantageous for axes with more sensors, drives or 

actuators than is necessary for generating and capturing feed motion [15]. 

2. MODAL DECOUPLING AND MODAL CONTROL APPROACH 

The mechanical structure of a motion system shown in Fig. 1, left, can be expressed as 

a coupled system of ordinary differential equations: 

𝑴𝒒̈ + 𝑫𝒒̇ + 𝑲𝒒 = 𝒇, (1) 
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where 𝑴, 𝑫 and 𝑲 are the mass, damping and stiffness matrix respectively. The dynamic 

system can be decoupled using the modal transformation. The eigenvector matrix 𝜱 of the 

matrix 𝑴−1𝑲 forms the transformation between physical 𝒒 and modal coordinates 𝝃: 

Substituting Eq. (2) into Eq. (1) and normalising the eigenvectors such that the modal mass 

matrix becomes the identity matrix transforms the equation of motion into its modal form: 

The matrix of the eigenvalues 𝜦 consists of main diagonal entries only. Assuming the 

matrix of modal damping ratios, denoted by 𝜟, can be approximated as diagonal, Eq. (3) 

decouples into 𝑁 independent scalar equations: 

where 𝛿𝑖 and 𝜔𝑖 are the damping ratio and the eigenfrequency of the 𝑖th mode, respectively. 

The dynamics of the system are now represented by the transfer function matrix 𝑮mod(j𝜔) 
containing 𝑁 decoupled single-mass oscillators in modal space, as shown in Fig. 1, right. The 

modal control approach utilises the independence of the modal systems from Eq. (4). An 

independent control law 𝑅mod,𝑖 can be formulated for each modal system [16]: 

The modal loads 𝝉C are calculated for a limited number of controlled modes 𝑚C. The 

modal coordinates 𝝃C and the actuator forces 𝒇A are calculated using the modal filter 𝜳T [17] 

and the modal synthesizer 𝜣 with 𝒒S representing the measured coordinates: 

where 𝜱CS and 𝜱CA are submatrices of 𝜱. 𝜱CS includes only the columns corresponding to 

the controlled modes 𝝃C and the rows associated with the measured coordinates 𝒒s. In 𝜱CA, 

the rows corresponding to the actuator forces 𝒇A are selected. 

 

Fig. 1. Modal decoupling technique 

3. MODEL APPROACH 

The test rig depicted in Fig. 2 was designed and built in order to assess the potential of 

modal control for over-actuated axes with BSD. This study focuses exclusively on simulation-

based investigations. The model specifications are derived from this test rig. The feed axis 

𝒒 = 𝜱𝝃. (2) 

𝝃̈ + 𝜟𝝃̇ + 𝜦𝝃 = 𝝉  with  𝝉 = 𝜱T𝒇. (3) 

𝜉̈𝑖 + 2𝛿𝑖𝜉̇𝑖 + 𝜔𝑖
2𝜉𝑖 = 𝜏𝑖 ,   𝑖 = 1…𝑁, (4) 

𝜏C,𝑖 = 𝑅mod,𝑖(j𝜔)𝜉C,𝑖 ,   𝑖 = 1…𝑚C. (5) 

𝝃C = 𝜳
T𝒒S  and  𝒇A = 𝜣𝝉C  with  𝜳

T = (𝜱CS)
−1  and  𝜣 = (𝜱CA

T   )−1, (6) 
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analysed consists of a spindle with a diameter of 𝑑sp = 32 mm , a total length of 𝑙sp =

1752 mm, and a lead of ℎsp = 32 mm, driven by servomotors with an inertia of 𝐽Mot =

0.00085 kgm2. The mass of the slide is 𝑚slide = 130 kg. To ensure consistency in units, the 

rotary encoder signal was converted into an equivalent slide displacement, and the motor 

torque into an equivalent force. 

 

Fig. 2. Feed axis with a ball screw driven by dual motors, serving as the basis for the derived models 

3.1. FINITE ELEMENT MODEL 

The main components of the BSD feed axis are modelled in ANSYS®, where the ball 

screw spindle and motor rotors are meshed with beam elements. Remote points were created 

for the subsequent coupling of subsystems. In order to analyse the feed axis behaviour at 

various slide positions, the modal parameters of the frame (comprising the spindle, motors 

and couplings) as well as those of the slide were exported individually from ANSYS®. Fig. 3 

provides an overview of the exported submodels. The frame’s modal matrices include 

eigenmodes with frequencies up to 2 kHz, while those of the slide extend up to 10 kHz. 

 

Fig. 3. Submodels exported from ANSYS for different simulation scenarios 

In this paper, three axis configurations are investigated. The first configuration is a 

standard BSD (Fig.°3a+c and Fig. 4a). The second configuration extends the first by adding 

an additional ADD mounted on the slide (Fig.°3a+d and Fig.°9). The third configuration 

features two motors and couplings attached to the spindle (Fig.°3b+c and Fig. 14a). To couple 
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the systems in MATLAB®, the additional stiffness between the carriages and the rails of the 

guiding system, and between the nut and the spindle, must be taken into account. Modelling 

the stiffness conditions at the contact between ball and groove of the BSD is essential for the 

representation of the dynamic behaviour of the axis. Since the remote points of the ball screw 

and the nut coincide, and the spindle is aligned along the y-direction, the stiffness matrix 𝑲NS 
between the spindle and the nut has the form [18]: 

where 𝑘ax, 𝑘rad and 𝑘rot are the axial, radial and rotational stiffness of the spindle-nut contact 

respectively. The modal subsystem matrices are assembled into new block-diagonal matrices: 

The coupling stiffness 𝑲add, which incorporates the stiffness of the guiding system and 

the spindle-nut contact, is transformed into the modal space via the modal matrix 𝜱12, and 

added to the eigenvalue matrix 𝜦12: 

The resulting matrix 𝜦̃12  is no longer diagonal. To re-diagonalise the system, the 

eigenvalue problem of the updated system is solved again, yielding the new modal matrix 

𝜱̃12. The eigenvalue and eigenvector matrices of the composed system are then obtained as: 

Finally, the modal damping matrix of the composed system 𝚫comp is defined based on 

modal damping ratios. The synthesised modal system consists of 𝑚  modes and 𝑁 

coordinates. Since only 𝑚 modes are considered, the system is already in a reduced form 

(indices for the composed system are omitted below): 

______________ 
† The dimensions of the respective matrix or vector are provided in square brackets. 

𝑲NS = [
𝑲̃NS −𝑲̃NS
−𝑲̃NS 𝑲̃NS

]  with 

𝑲̃NS = 

[
 
 
 
 
 
 
 
 
𝑘rad 0 0 0 0 0

0 𝑘ax 0 0 (
ℎsp

2𝜋
) ∙ 𝑘ax 0

0 0 𝑘rad 0 0 0
0 0 0 𝑘rot 0 0

0 (
ℎsp

2𝜋
) ∙ 𝑘ax 0 0 (

ℎsp

2𝜋
)

2

∙ 𝑘ax 0

0 0 0 0 0 𝑘rot]
 
 
 
 
 
 
 
 

, 

(7) 

(
𝝃̈sub,1

𝝃̈sub,2
) + [

𝜦sub,1 𝟎

𝟎 𝜦sub,2
]

⏟          
𝜦12

(
𝝃sub,1
𝝃sub,2

) = (
𝝉sub,1
𝝉sub,2

)   and  𝜱12 = [
𝜱sub,1 𝟎

𝟎 𝜱sub,2
]. (8) 

𝜦̃12 = 𝜦12 +𝜱12
𝑇 𝑲add𝜱12. (9) 

𝜦comp = 𝜱̃12
𝑇 𝜦̃12𝜱̃12  and  𝜱comp = 𝜱12𝜱̃12. (10) 

𝝃̈[𝑚×1] + 𝜟[𝑚×𝑚]
†
𝝃̇[𝑚×1] + 𝜦[𝑚×𝑚]𝝃[𝑚×1] = (𝜱T)[𝑚×𝑁]𝒇[𝑁×1]. (11) 
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3.2. REDUCED STATE-SPACE MODEL 

The system defined in Eq. (11) is used to formulate the modal state-space representation: 

where 𝑨, 𝑩 and 𝑪 are the state, input and output matrix respectively. For the transfer function 

matrix that is used for modal control analysis, only the input-output behaviour at several 

coordinates is required. Selection matrices are therefore introduced, with 𝑛S representing the 

number of sensors and 𝑛A the number of actuators. The coordinates at which loads are applied 

are selected with 𝑺A
[𝑁×𝑛A]  and the coordinates at which sensors are located with 𝑺S

[𝑛S×2𝑁] . 

Thus, the load and sensor vector become 𝒇 = 𝑺A
[𝑁×𝑛A]𝒇A  and 𝒚S = 𝑺S

[𝑛S×2𝑁]𝒚 respectively. 

The reduced state space system results in: 

If the sensor outputs 𝒚S are positions, 𝑺vel
[𝑛S×𝑁] is set to the zero matrix, and if the outputs 

are velocities, 𝑺pos
[𝑛s×𝑁] is set to the zero matrix. 

Taking the Laplace transform of Eq. (13) and assuming zero initial conditions, the 

transfer function matrix 𝑮mech(𝑠) of the mechanics is obtained as follows: 

To assess the accuracy of the reduced transfer function matrix 𝑮mech, the coupling of the 

subsystems was also performed in ANSYS®. The resulting frequency response comparison 

confirms that neglecting higher-order eigenmodes has only a negligible influence on the 

system behaviour within the frequency range of interest. The transfer functions of the current 

controller (bandwidth: 800 Hz, deadtime: 125 µs) and the mechanical system 𝑮mech
[𝑛S×𝑛A] form 

the plant 𝑮[𝑛S×𝑛A], which is used for the following analyses in the frequency domain. The 

sampling time of the controllers is 250 µs. 

3.3. EVALUATION OF CONTROL PERFORMANCE 

As the feed axis configurations represent multi-variable systems, the stability analysis 

is performed according to the Nyquist criterion using the eigenvalues 𝜆𝑖(j𝜔) of the matrix 𝑮𝑹 

and the determinant of the return difference operator (𝑰 + 𝑮𝑹) [19]. Here, 𝑹 represents the 

𝒙̇ = (
𝝃̇

𝝃̈
) = 𝑨𝒙 + 𝑩𝒇   and   𝒚 = 𝑪𝒙   with   𝑨[2𝑚×2𝑚] = [ 𝟎

[𝑚×𝑚] 𝑰[𝑚×𝑚]

−𝜦[𝑚×𝑚] −𝜟[𝑚×𝑚]
], 

𝑩[2𝑚×𝑁] = [
𝟎[𝑚×𝑁]

(𝜱T)[𝑚×𝑁]
]   and   𝑪[2𝑁×2𝑚] = [𝜱

[𝑁×𝑚] 𝟎[𝑁×𝑚]

𝟎[𝑁×𝑚] 𝜱[𝑁×𝑚]
], 

 

(12) 

𝒙̇ = (
𝝃̇

𝝃̈
) = 𝑨𝒙 + 𝑩red𝒇A   and   𝒚s = 𝑪red𝒙   with   𝑩red

[2𝑚×𝑛A] = 𝑩[2𝑚×𝑁]𝑺A
[𝑁×𝑛A], 

𝑪red
[𝑛S×2𝑚] = 𝑺S

[𝑛S×2𝑁]𝑪[2𝑁×2𝑚]   and   𝑺S
[𝑛S×2𝑁] = [𝑺pos

[𝑛S,pos×𝑁] 𝑺vel
[𝑛S,vel×𝑁] ]. 

 

(13) 

𝒚S
[𝑛S×1] = 𝑪red

[𝑛S×2𝑚](𝑠𝑰 − 𝑨[2𝑚×2𝑚])
−1
𝑩red
[2𝑚×𝑛A]

⏟                      

𝑮mech
[𝑛S×𝑛A](𝑠)

𝒇A
[𝑛A×1]. 

 

(14) 
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matrix of the controller transfer functions. All controllers will be set so that there is at least a 

gain margin of 2. The sensitivity 𝑺 and complementary sensitivity function 𝑻 are calculated 

in order to compare the control strategies. 𝑺 is the closed-loop transfer function from the 

output disturbances to the outputs, while 𝑻 is the closed-loop transfer function from the 

reference signals to the outputs. These frequency response functions (FRFs) are defined as: 

To achieve good control performance – such as good disturbance rejection, reference 

tracking, and mitigation of measurement noise – for the investigated feed axis configurations, 

the maximum peaks of the sensitivity 𝑀𝑆  and complementary sensitivity functions of the 

velocity 𝑀T,vel and position loop 𝑀T,pos are defined as follows [20]: 

4. MODAL CONTROL OF A BALL SCREW AXIS DRIVEN BY ONE MOTOR 

Firstly, the standard axis configuration of machine tools, consisting of a ball screw, a 

servomotor (𝑀Mot,1) including a rotary encoder (𝑦rot,1) and a linear encoder for detecting the 

slide position 𝑦lin is analysed (see Fig. 4a). Fig. 4b shows the control-relevant mode shape of 

the feed axis (axial mode): a rotation 𝜑y of the spindle, the coupling and the motor rotor, 

which is coupled with an antiphase translational vibration of the slide. 

 

Fig. 4. Feed axis with a ball screw driven by one motor (slide at Pos. 3): FE-model (a) and first relevant eigenform (b) 

4.1. MODAL DECOMPOSITION OF THE FEED AXIS WITH ONE SERVOMOTOR 

The matrix of FRFs of the feed axis with a single motor is obtained by: 

Figure 5a+b depicts the plants in physical coordinates for three slide positions. The 

spindle section in the force-flow changes according to the slide position. This reduces the 

𝑺 = (𝑰 + 𝑮𝑹)−𝟏,     𝑻 = 𝑺𝑮𝑹. (15) 

𝑀S = max
𝜔
|𝑆| ≤ 2.25 , 𝑀T,vel = max

𝜔
|𝑇| ≤ 1.25 , 𝑀T,pos = max

𝜔
|𝑇| ≤ 1. (16) 

𝒚̇ = (
𝑦̇rot,1
𝑦̇lin

) = (
𝐺11(j𝜔)

𝐺21(j𝜔)
)

⏟      
𝑮(j𝜔)

∙ 𝐹Mot,1. (17) 
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resonance frequency from approx. 230 Hz (slide near locating bearing: Pos. 1) to approx. 

195 Hz (slide near non locating bearing: Pos. 3, see Fig. 4). The second resonance occurs at 

around 730 Hz and is attributed to the first torsional mode. In the following analyses, it is 

assumed the slide is in the middle position (Pos. 2). The system’s dynamic response in modal 

space is given by: 

whereby the modal filter 𝜳[2x2]
T  considers the rigid body motion and the axial eigenmode 

only. As two sensors are available, two modes can be decoupled internally with the modal 

filter. However, since the number of actuators 𝑛A is smaller than the number of sensors 𝑛S, 
the system is externally coupled. In such case, the actual forces can be synthesised from the 

modal control forces by computing the pseudo-inverse of (𝜱CA
T ). However, pseudo-inverses 

are not exact inverses, so errors are to be expected [21]. The modal synthesiser 𝛉[1×2] in 

Eq. (18) used for this configuration is simply a weighted sum of the outputs of the modal 

controllers. The phase curve for the non-collocated situation (𝐺21 in Fig. 5b) illustrates that 

the system is prone to instability when the linear encoder signal is used in a conventional 

velocity control loop. However, applying the modal transformation allows the rigid body 

motion to be separated internally from the first axial mode, as shown in Fig. 5c+d. Until 

300 Hz, 𝐺mod,11 exhibits behaviour similar to that of a first-order integrator because the first 

mode represents the rigid-body motion. A phase delay, as with the sole use of the linear 

encoder, is not to be recognised. The torsional mode at approx. 730 Hz cannot be decoupled. 

In this configuration, there is an external coupling due to the off-diagonal transfer functions 

having non-negligible magnitudes, as 𝐺mod,11 = 𝐺mod,12 and 𝐺mod,22 = 𝐺mod,21. 

 

Fig. 5. Feed axis FRFs with one motor at three slide positions: without modal decoupling (a+b) and with decoupling for 

𝑤1 = 𝑤2 = 1 (c+d) 

(
𝜉̇C,1

𝜉̇C,2
) = 𝜳[2×2]

𝑇 ∙ 𝑮(j𝜔) ∙ 𝜽[1×2]⏟              
𝑮mod(j𝜔)

∙ (
𝜏1
𝜏2
),    𝜽[1×2] = (𝑤1 𝑤2), (18) 
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4.2. CONTROL DESIGN OF THE FEED AXIS WITH ONE MOTOR WITHOUT ADD 

The analysed control strategies for the ball screw feed axis with one motor are depicted 

in Fig. 6. Achieving high positioning accuracy for the rigid body motion requires a P-PI loop 

as the first modal controller 𝑅1,mod (Fig. 6b), which can be tuned from the inside outwards 

much like conventional control loops. The proposed modal control concept only applies a 

modal transformation to the actual velocity signals. A modal transformation in the position 

control loop would lead to a reduction in static positioning accuracy due to the incorporation 

of the rotary encoder signal. The MC is compared with a conventional decentralised control 

(DC) approach for electromechanical axes, where the rotary encoder signal is fed back into 

the velocity control loop and the linear encoder signal is used for position control (Fig. 6a). 

For the DC, the indirect acquisition of the actual velocity of the slide via the rotary encoder 

is advantageous because the amplitudes of the slide vibrations only affect the measurement 

signal in the form of a negligible torsional excitation of the ball screw [23]. 

 

Fig. 6. Control strategies for the ball screw feed axis with one motor: DC (a) and MC (b) 

Both the decentralised controller 𝑅dec  and the first modal controller 𝑅1,mod  have the 

same cascaded control configuration. A notch filter set to 730 Hz was incorporated into both 

control schemes to prevent excitation of the first torsional resonance. The Nyquist plots of the 

open velocity loops for the control variants are shown in Fig. 7. It should be mentioned that 

the determinate of (𝑰 + 𝑮𝑹) does not encircle the origin in the part of the curve not shown. 

In principle, high velocity loop gains of 𝑅1,mod can be achieved by using the modal approach 

(Fig. 7 and Fig. 8a+b). However, high resonance peaks were observed for both the reference 

response (Fig. 8c) and the slide disturbance response represented by the matrix 𝑺𝑮 (Fig. 8d). 

 

Fig. 7. BSD feed axis driven by one motor, velocity loop: Nyquist plot of det(𝑰 + 𝑮𝑹) 

Activating the second modal controller 𝑅2,mod , a P-controller with high-pass filter, 

enables attenuation of the resonances. As there is only one actuator, interaction between the 

modal control loops is unavoidable and the bandwidth of the position control loop cannot be 

increased. Thus, the advantage of simple parameterisation due to modal decoupling cannot be 
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realised without adapting the control structure further. Therefore, modal control offers no 

significant benefit to this configuration. 

 

Fig. 8. BSD with one motor, velocity loop: eigenvalues (a+b), complementary sensitivity (c), disturbance response (d) 

4.3. CONTROL DESIGN OF THE FEED AXIS WITH ONE MOTOR AND ONE ADD 

This section examines the MC of a BSD axis equipped with one motor and an additional 

ADD, which is mounted on the slide (see Fig. 9). The ADD is a system comprising of a proof-

mass actuator, an accelerometer, and a control unit. The internal controller is not required for 

implementing MC. Proof-mass actuators generate forces by accelerating a suspended mass 

that is mechanically coupled to the main structure, as illustrated in Fig. 9, right. The actuator 

behaves as an ideal force generator at frequencies above its suspension frequency. Its 

operating bandwidth ranges from 25 to 2000 Hz. The specific proof-mass actuator considered 

in this study has a moving mass of 𝑚ADD = 2.2 kg and a resonant frequency of 8.4 Hz. 

 

Fig. 9. BSD feed axis with one motor and one ADD 
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For this system, the modal synthesizer can be obtained by inverting the matrix (𝜱CA
T ): 

The modal FRFs of the main diagonals of 𝐺mod are very similar to Fig. 5c+d and are 

thus not shown. However, since the rigid body motion and the axial mode can be decoupled 

effectively, the FRFs of the off-diagonals of 𝐺mod have negligible amplitudes. The modal and 

decentralised control strategies are illustrated in Fig 10. When operated at or below the natural 

frequency of the inertial actuator, the stroke of the reaction mass of the ADD becomes very 

large and high stress amplitudes result. For this reason, the controllers 𝑅2,dec  and 𝑅2,mod 
employ a band-pass filter with gain, and the modal control concept incorporates further high 

and low-pass filtering. In the second modal loop, the two modes are decoupled by using both 

actuators. The loads calculated for the motor from both loops are added (see Fig. 10b). 

 

Fig. 10. Control strategies for the ball screw feed axis with one motor and one ADD 

The Nyquist plot in Fig. 11 shows that higher gains can be set in the modal velocity 

loops, while simultaneously achieving higher gain and phase margins. Due to the coupling of 

the control loops, the gains in the DC cannot be increased any further, as this would result in 

insufficient stability margins. 

 

Fig. 11. Feed axis with one motor and one ADD, velocity loop: Nyquist plot of det(𝑰 + 𝑮𝑹) 

Significantly improved reference tracking can be achieved by applying the MC (see 

Fig. 12a). Furthermore, the response to disturbances on the slide – for example, those resulting 

from a process load – is much better than that observed with the DC, as shown in Fig. 12b. 

(
𝜉̇C,1

𝜉̇C,2
) = 𝜳[2×2]

T ∙ 𝑮(j𝜔) ∙ 𝜽[2×2]⏟              
𝑮mod(j𝜔)

∙ (
𝜏1
𝜏2
),    𝜽[2×2] = (𝜱CA

T )−1. (19) 
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Fig. 12. Velocity loop: complementary sensitivity function (a) and disturbance response (b) 

Activating the decentralised controller 𝑅2,dec for the ADD results in a slightly higher 

velocity gain factor 𝐾v for the position controller. Compared to the DC approach, the MC’s 

𝐾v factor is 45 % higher, and the control bandwidth can be expanded by 60 % (see Fig. 13a). 

Noise or disturbances at the linear encoder 𝑦n,lin can be attenuated more effectively at low 

frequencies using MC. However, the MC’s noise suppression deteriorates at frequencies 

above 100 Hz, as illustrated in Fig. 13b. 

 

Fig. 13. Position loop: complementary sensitivity function (a) and sensitivity function (b) 

The proposed modal control approach for BSD, with the addition of an ADD, 

significantly improves mechanical disturbance rejection and delivers better dynamic 

positioning accuracy than a conventional controller. Applying the MC of the BSD axis with 

inertial actuators for active vibration damping can considerably minimise the impact on the 

position control of the feed drives. However, the use of an additional ADD has the 

disadvantage that additional damping energy is required. 

5. MODAL CONTROL OF A BALL SCREW AXIS DRIVEN BY TWO MOTORS 

For this analysis, a second, identical motor is attached to the spindle, as can be seen in 

the depicted FE-model in Fig. 14a. Therefore, the total inertia is increased and the driving 

torque is doubled. The axial and first torsional natural frequencies are shifted to lower values 

compared to the single-sided drive, as shown in Fig. 15a+b. The corresponding mode shapes 

are illustrated in Fig. 14b+c. 
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Fig. 14. Feed axis with a ball screw driven by two motors: FE-model (a) and relevant eigenforms (b+c) 

The dynamics of the axis with a ball screw driven by two motors are given by: 

In this configuration, there is an interaction between the motors. The torsional resonance 

limits the stability margins and the achievable positioning bandwidth. Only the signals of the 

rotary encoders are considered for the modal decoupling. Using the modal filter 𝜳[2𝑥2]
T  and 

the modal synthesizer 𝛉[2×2], the modal system can be obtained from the physical system 

𝑮[2×2] (without linear encoder output): 

 

Fig. 15. Feed axis FRFs with two motors at three slide positions: no modal decoupling (a+b) vs. with decoupling (c+d) 

𝒚̇ = (

𝑦̇rot,1
𝑦̇rot,2
𝑦̇lin

) = (

𝐺11(j𝜔) 𝐺12(j𝜔)

𝐺21(j𝜔) 𝐺22(j𝜔)

𝐺31(j𝜔) 𝐺32(j𝜔)
)

⏟              
𝑮(j𝜔)

∙ (
𝐹Mot,1
𝐹Mot,2

). 
(20) 

(
𝜉̇C,1+2

𝜉̇C,3
) = 𝜳[2𝑥2]

T ∙ 𝑮[2×2](j𝜔) ∙ 𝜽[2×2] ∙⏟                (
𝜏1+2
𝜏3
)

𝑮mod(j𝜔)

,    𝜽[2×2] = (𝜱CA
[2×2]

)
−T
. (21) 
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As can be seen from Fig. 15c+d, the torsional mode can be separated from the rigid body 

motion and the axial mode. This is advantageous for the velocity loop control design, as it 

allows for the development of individual control loops. 

5.1. CONTROL STRATEGY 

In contrast to the controller proposed in [3], the DC scheme uses two position 

controllers, whereby the signal from the linear encoder and the rotary encoder are fed back 

(see Fig. 16a). In this way, tensioning of the spindle by the two integral components of the 

velocity control loops can be avoided. A notch filter at approximately 470 Hz is used for the 

DC, but this is not required for the MC strategy. The MC utilises the modal transformations 

outlined in Eq. (21) to control the torsional mode independently of the other modes (Fig. 16b). 

The first modal controller, 𝑅12,mod, is also a P-PI controller that is primarily tuned to the rigid 

body motion and the axial mode. The second modal controller, 𝑅3,mod, is a P controller with 

a high-pass filter, that is tuned to dampen the torsional resonance. 

 

Fig. 16. Control strategies for the ball screw feed axis with two motors: DC (a) and MC (b) 

5.2 CONTROL DESIGN 

Fig. 17 compares DC with MC using one or both active modal controllers. The first 

modal controller can achieve higher gains than a decentralised control system. This 

enhancement is accomplished by eliminating the adverse impact of the torsional mode on the 

closed loop stability. Similar stability margins to those in DC can be achieved by setting 

higher gains for the first modal velocity controller. As can be seen from Fig. 17, activating 

the second modal controller, 𝑅3,mod, does not affect the stability margins of the system. The 

following figures depict only the MC variant with both modal controllers activated. 

 

Fig. 17. BSD feed axis with two motors, velocity loop: Nyquist plot of det(𝑰 + 𝑮𝑹) 
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Due to the higher gains in the velocity control loop, the reference and disturbance 

behaviour of the axis is slightly improved, as can be seen from Fig. 18. 

 

Fig. 18. Feed axis with two motors, velocity loop: complementary sensitivity function (a) and disturbance response (b) 

As shown in Fig 19, modal control of the feed axis with a ball screw driven by two 

motors enables an expansion of the position loop control bandwidth by up to 20 %. 

 

Fig. 19. Closed position loop: complementary sensitivity function (a) and sensitivity function (b) 

6. CONCLUSION AND OUTLOOK 

This paper has presented control strategies for ball screw-driven feed axes equipped 

either with an active damping device or with two motors per spindle, implemented in modal 

space. Applying the modal decoupling technique enables the system's eigenmodes to be 

controlled individually. This facilitates efficient parameterisation of the control laws, 

providing physical interpretability by treating vibration phenomena separately in the form of 

modes. The proposed controller designs for over-actuated ball screw drives improve both 

positioning accuracy and disturbance rejection capability. For the ball screw axis with an 

active damping device, the position control bandwidth can be expanded by up to 60 %. For 

the ball screw axis driven by two servomotors, the control bandwidth can be increased by up 

to 20 %. 

The proposed control strategies require experimental verification. Future research will 

focus on developing extended modal control approaches, such as modal feedforward control. 
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