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ANOMALY DETECTION AND CLASSIFICATION FOR WORKER ASSISTANCE
DURING MACHINE TOOL ACCEPTANCE

Machine acceptance is a vital part of the manufacturing process, especially for 5-axis machine tools prevalent in
the aerospace industry. It is currently done by skilled workers using their experience and knowledge to iteratively
improve the machine tool until it is able to manufacture a test piece that meets the required quality standards. This
process is time consuming, requires a lot of expertise, and is not easily transferable to new workers. In this paper,
we propose a system that uses machine control signals to detect anomalies during the manufacturing of the test
piece and classify them by their cause, like an onset of chatter, positional errors, or others. For this, the machine
signals are segmented using a sliding window approach. Multiple strategies to reduce the dimensionality of the
segments are evaluated, including autoencoders based on a Convolutional Neural Network or a Long-Short Term
Memory Network as well as manually designed features. The reduced segments are then classified using a Random
Forest. The results show that the proposed system is able to detect anomalies with high accuracy and classify them
correctly.

1. INTRODUCTION

The process of machine acceptance is vital to ensuring that a machine tool is able to
manufacture workpieces in the desired quality and quantity. A machine tool that does not pass
acceptance cannot be sold, especially in aerospace, where the quality standards are very high.
For 5-axis milling tools, the prevalent machine type for this industry, the acceptance standard
according to 1SO 10791-7:2020 [1] is being established. According to it, a test piece (depicted
as a Computer Aided Design (CAD) part in Fig. 1 (left) and as a manufactured part in Fig 1
(right) is to be manufactured using the tool. It is then analysed using a coordinate measuring
machine. If the piece does not meet the required quality standards, iterative improvements are
necessary.
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Fig. 1. CAD model of a test piece according to 1SO 107'91-7:2020 (left). A manufactured test piece (right)

For this, a machine expert uses his acquired knowledge and years of experience to derive
parameter adjustments, sensor calibrations or changes in the machine control [1, 2]. There are
multiple issues within this approach. Iteratively manufacturing and measuring pieces and
especially the reclamping from the machine tool to the measuring machine requires a
significant amount of time during which the machine cannot be used productively [3]. Due to
the amount of possible causes for problems, even skilled workers with a lot of experience can
struggle to find the correct solution [4]. Further, the amount of machine experts able to
perform this task is on the decline due to the demographic change [5]. Since the knowledge
required to deduce the correct changes from a manufactured piece is not possible to be
formulated as a set of rules and the transfer of it from an experienced expert to a new worker
cannot be relied upon [6]. In order to facilitate the integration of new workers, to retain
knowledge from aging experts, and to minimise reliance on their input, an assistance system
for machine tool acceptance is needed.

To reduce the number of measurements on the coordinate measuring machine (and
therefore the amount of reclamping), the assistance system needs to detect and classify
anomalies using just the information available during manufacture of the piece. The control
signals of the feed axes of the machine tool (i.e. current, velocity, position, control difference,
etc.) show promise for this purpose. These signals demonstrate significant potential in the
areas of process monitoring [7, 8], condition monitoring [9, 10] and the creation and
synchronising of digital twins [11-13]. This is due to them being sensitive to changes (both
from the machine and the process) and methods based on them being potentially transferable
between different machines [14]. They also provide additional insight into the workings of
the machine that pure analysis of the manufactured parts cannot. While the part itself cannot
be used to derive definitive conclusions about the source of anomalies [1], this additional
information can bridge that gap. Furthermore, the machine signals are available for all modern
machine tools and are therefore not limited to a specific machine type or manufacturer.

The aim of this paper is to harness the machine control signals in the machine acceptance
process, an area they are currently underutilized in. We propose a system that based on
anomaly detection and classification algorithms can assist workers of all experience levels to
find the problem faster or at all, respectively. It predicts whether a manufactured test piece is
satisfactory and fit to be reclamped and formally measured on a coordinate measuring
machine. If not, a classification of the likely source of the error is done to shorten the
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adjustment process. To best utilize and retain the knowledge of experienced experts, it
includes a feedback loop and implements iterative improvements. The structure of the
intended system is shown in Fig. 2.
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Fig. 2. Structure of a machine acceptance process. The established process in orange, the elements added in this work in
blue and purple
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2. MATERIALS AND METHODS

2.1. USED DATASET

All data used for the development of the proposed system was recorded on a DMG
MORI DMU 65 monoBLOCK (shown in Fig. 3 (left)). The S-shaped test piece proposed by
ISO 10791-7:2020 was manufactured multiple times using different machine settings and
modifications to generate both “good” and “faulty” labelled datapoints. Five different types
of anomalies were induced within the machine:

Chatter: The feedrate of the machine was manipulated in order to induce chatter

PosX: The position value in x was manually changed by +0.05 mm after probing

PosY: The position value in y was manually changed by +0.05 mm after probing

Thermal: Thermal elongations were imitated by using a different tool length

Unbalance: Additional mass was added to the main spindle to induce unbalance (shown

in Fig. 3 (right)).

For each of these, one test piece was done. Starting from a rough pre-machined part, the
piece was finished in multiple tool passes, each reducing the radial depth of cut a, (starting
at 6 mm and ending at 0.5 mm). The passes are clearly visible in Figure 1 (right). During four
of these passes (5 mm, 3.5 mm, 2 mm, and 0.5 mm) the respective anomaly was induced and
the machine signals captured. The other passes (6 mm, 4.5 mm, 3 mm, and 1.5 mm) were
done normally in order to clear the part. This results in 20 different “faulty” runs.
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Additionally, two “good” parts were manufactured in the same way, resulting in 8 “good”
runs. The captured signals include the Current i, (Axes X, Y, Z, A, C, Spindle), the
ContourDeviation (Axes X, Y, Z), the ControlDeviation (Axes X, Y, Z, A, C), and the
EncoderDifference (Axes X, Y, Z, A, C), each with a sampling frequency of 500 Hz.

Fig. 3. DMG MORI DMU 65 monoBLOCK (left). ,,Unbalance” anomaly induced by adding a mass on one side of the
spindle, causing an unbalanced spindle (right). Even though the mass added is small, the deviations are noticeable
in the signals

2.2. DATA PROCESSING AND SEGMENTATION

The preprocessing starts with data scaling. In order to be able to compare the different
value ranges of the signals, Min-Max-Scaling [15] was chosen. To segment the time series,
the sliding window method [16] was used. It separates a time series X of length T with the
format

X = (x1,%9, ., XT) @

into N segments of length L and spacing S

T—1L
Fi = (xi*5+1, XixS+4+2s ...,xl-*5+L); [ = O, ,N - 1,N = lT + 1J (2)

Since these segments overlap for values of S smaller than L, redundant information is
introduced into the dataset. This is a form of data augmentation [17]. The principle is shown
in Figure 4. The sliding window method generalizes well and enables an in-process reaction.
The best value for the segment length L depends on the use case and the interaction with the
other used methods and is therefore determined by experiments. The results for this are shown
in Section 3.1.
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Fig. 4. Segmentation of a time series using the sliding window method for a segment length L = 15000
and spacing S = 5000

2.3. ANOMALY DETECTION

In order to separate anomalous from good segments, multiple different approaches were
tested. They include methods belonging to either classical data and time series analysis or
Deep Learning. The classical method includes expert features, that is the extraction of the
time series features max, mean, root mean square, standard deviation, energy, skewness,
kurtosis, peak-to-peak-distance, and the first four coefficients of the Fast Fourier Transform.
The binary classification is then done using a Random Forest (RF) approach. The Deep
Learning approaches all use autoencoders, that is the compression and subsequent
decompression of the raw time series segments. If the autoencoder is trained using only
“good” data, the reconstruction error (RE), that is the difference between the compressed and
decompressed time series and the original time series, can be used to detect anomalies.
Another approach is the clustering and classification of the compressed time series using a
separate classification structure. If the encoder is well trained, the features in the embedded
space contain all relevant information about the segment. While costlier to design and train,
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this approach offers deeper insights into both the workings of the encoder and the nature of
the time series itself. For the design of the autoencoder, both a Convolutional Neural Network
(CNN) and Long-Short Term Memory (LSTM) structure were tested. LSTMs are the more
“natural” fit for time series data, but CNNs are generally faster in both training and inference
and are robust against changes in the trajectory of the segment, since they work by analysing
local structures within a time series. Additionally, a self-attention-mechanism was introduced
into the embedded space for both structures. This improved the robustness and prediction
quality of the models. The results for all the different methods are shown in Section 3.2.

2.4. ANOMALY CLASSIFICATION

To classify the detected anomalies by their cause, the methods described in Section 2.3,
that are a RF in combination with an autoencoder as well as in combination with manually
chosen expert features, are adapted to fit the multi-class requirement. The RE of the
autoencoder methods is used as an additional input for the classification model, where
applicable. The RF is used for classification due to its high robustness, low training and
inference time, and good performance in general.

2.5. ASSISTANCE SYSTEM AND FEEDBACK LOOP

The assistance system is a central element of the proposed system. It provides the
interface between the user and the underlying functionality. This interface works both ways,
as the worker is able to label new data points. This gives rise to a new problem: Determining
the confidence in this new label. According to [18], the assumption that a human judgement
can in general be regarded as correct is only valid for a large sample size. Therefore, the
training weight of the newly labelled datapoint needs to be defined. For this, the user needs
to provide a judgement of their own experience E and their certainty C on a scale of 1-10.
From there, the resulting weight W of the datapoint can be calculated by

W=(@*E+p*C)Y (3)

with o, B, and y as tuneable parameters. The resulting curve values high experience and
certainty much stronger than middling values and does not overly punish extremes in either
direction. For the “good” class, only datapoints with a maximum certainty value are used,
since all “good” parts are verified by the coordinate measuring machine. It is therefore
expected that the user enters the maximum certainty value for these verified points.

To be able to retrain the model, all datapoints (and their respective values for E and C)
are recorded in a database. In order to save time, the autoencoder is trained incrementally. For
that, batches of “good” data are sampled randomly from all datapoints until the model loss
reaches a plateau. By not excluding older samples, Catastrophic Forgetting [19] can be
avoided. The classification model is retrained from scratch every time due to its fast training
speed.
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3. RESULTS

In order to decide on the exact algorithms for both the anomaly detection and
classification, all in Section 2.3 and Section 2.4 proposed models were implemented and
tested on the dataset presented in Section 2.1. The results of these experiments are shown in
the following.

3.1 SEGMENT LENGTH

The segment length L was varied in different ranges for the different models (Expert
Features, CNN, LSTM, CNN in combination with Expert Features), with a minimum of 4 and
a maximum of 60000. The models on trial (and, if necessary, a RF classification model) were
then trained on classifying anomalies. The classification was chosen as a benchmark, because
it is expected to be a more complex problem than the anomaly detection. The results are
shown in Figure 5. With an increase in segment length, the training time of the models
decreases due to the lower number of segments. The performance of the models is increasing,
but only up to a certain point. After that, the performance decreases again. The chosen
segment lengths for all following experiments were 1024 for the LSTM, 8192 for the CNN
and the CNN with Expert Features, and 32768 for the Expert Features.

The spacing S was set differently for each segment length. Smaller segment lengths were
set to not overlap, while larger segment lengths were set to overlap by up to 50%. This was
done to increase the amount of data available without introducing too much redundancy and
therefore overfitting the model.

Accuracy over Segment Length for different models
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CNN + Expert Features
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Fig. 5. Performance of the different models with varying segment length. Not shown are the training times, which
decrease with increasing segment length
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3.2. ANOMALY DETECTION

To assert the anomaly detection performance, the autoencoders were trained on 50 % of
the “good” data to ensure a remainder to test on. Because the overall goal is to detect
anomalies in a whole manufacturing process, a tool pass is labeled as “good” if all segments
within it are “good”. The results of the different models for the anomaly detection are shown
in Table 1. The models are evaluated using the Balanced Accuracy Score. The autoencoder
approaches show a perfect performance, while the Expert Features and CNN with Expert
Features are slightly worse.

Table 1. Balanced Accuracy Score of the different models for the anomaly detection. The pure Autoencoders could
detect all

LSTM (Only RE) CNN (Only RE) CNN (Additional RF) Expert Features (RF)
100 100 97.5 97.5

3.3. ANOMALY CLASSIFICATION

For the training of the anomaly classification, the models were trained on all but one of
the “faulty” passes and then tested on the remaining one. This was done for each of the
“faulty” passes. This is to simulate the real use case, where the model is trained on every pass
beforehand. The results are shown in Table 2. The models were evaluated using the Accuracy
Score.

Table 2. Accuracy Score of the different models for the anomaly classification. The Expert Features show the best
performance, the encoder strategies are lacking

LSTM (RF) CNN (RF) CNN + Expert Features (RF) Expert Features (RF)
40 65 65 80

A deeper look into the wrongly classified anomalies reveals that Chatter and Thermal
are confused most often. This is due to the fact that both anomaly types result in vibrations of
the tool and therefore similar signals. The anomaly Chatter 50, the 5 mm pass of the Chatter
anomaly, was not detected by the classifiers and most often classified incorrectly.

The PosX and PosY anomalies are also confused. This is due to the nature of the training,
as only one pass is left out for testing. The model generalizes better over the depth of cut than
over the type of anomaly. For instance, the PosX_50 pass is more similar to the PosY_50 pass
than to the PosX_20 pass.

If the Thermal and Chatter as well as the PosX and PosY anomalies are each combined,
the performance of all classifiers increases up to an accuracy of 95 %. The Unbalance
anomaly is not confused with any other anomaly, as it is a completely different type of
anomaly.

3.4. ASSISTANCE SYSTEM AND USER INTERFACE

A large part of the proposed system is the user interaction. The necessary algorithms
and interfaces are designed to be easy to use and intuitive, while being able to run on an edge
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device with limited ressources. The response time for the anomaly classification is 3 to 4.5
seconds, depending on the segment length and model chosen.
The User Interface developed for testing the system is shown in Fig. 6.

Active Data Sourcing S-Tests

PCA Scatter Plot

Fig. 6. The proposed User Interface. Due to low model confidence, a label is requested. To better explain the prediction,
the PCA of the embedded space is plotted

The Principal Component Analysis (PCA) of the embedded space is computed to
visualize the data and the reasoning behind the classification. Iteratively training the whole
model takes around 7 minutes, training just the classification model around 40 seconds. All
tests were run on a NVIDIA RTX 3060 with a Ryzen 5 3600 CPU and 48 GB of RAM.

4. CONCLUSION

For the anomaly detection, the autoencoder models based on the RE work flawlessly.
The CNN is faster in its prediction time (<0.1 s compared to ~0.13 s for the LSTM) and
therefore the better choice for the anomaly detection. The Expert Features and CNN with
additional Expert Features are slightly worse, but still show a good performance. This is
surprising, as the RE is also included as an input to the RF classifier (without it, the accuracy
drops by ~10%). The additional information is therefore not necessary for the anomaly
detection, but it is still useful for the classification.

The Expert Features with a RF classifier perform the best for the anomaly classification.
This is because the autoencoders are trained to minimize the RE, which is not the same as
designing an embedded space that is optimal for classification. Introducing additional
supervised training into the autoencoders could improve the performance, which is a future
research direction. The CNN with additional Expert Features is slightly worse than the Expert
Features alone, which is similar to the anomaly detection case. Additional data that is not
useful is therefore harmful for the classifier.
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The combination of the different anomaly types increasing the performance of the
classifiers shows that a classifier trained on distinguishing all anomaly types is not able to
separate anomalies that are similar in nature. A possible future research direction could be to
use a cascading classifier, where the first classifier separates the anomalies into groups and
the second classifier distinguishes between the anomalies within each group. This could
improve the performance of the classification, especially for distinguishing the Chatter and
Thermal types.

The anomaly Chatter_50 is not detected by any classifier. This is due to the nature of its
induction: By changing the feed rate, it is not guaranteed to actually induce chatter. This
anomaly might therefore not actually exist.

For the application of the proposed system, the anomaly detection using the CNN with
an additional RF classifier and the anomaly classification using an RF trained on the Expert
Features is chosen. Both methods are fast and robust. Around four seconds are needed for the
anomaly detection and classification using the aforementioned hardware, which is acceptable
for a real-time application. The segmentation takes the longest time, but this is not a problem,
as it can be done in the background while the machine is running. The proposed system is
therefore able to assist workers during the machine acceptance process.

Future research directions include the integration of the proposed system into a real
machine acceptance process, where it can be used to assist workers in finding and classifying
anomalies. Additionally, extensions of the system to use Contrastive Learning [20] to actively
design the embedded space could improve the performance of the anomaly classification,
especially if the number of anomaly types increases.
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