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ANOMALY DETECTION AND CLASSIFICATION FOR WORKER ASSISTANCE 

DURING MACHINE TOOL ACCEPTANCE  

Machine acceptance is a vital part of the manufacturing process, especially for 5-axis machine tools prevalent in 

the aerospace industry. It is currently done by skilled workers using their experience and knowledge to iteratively 

improve the machine tool until it is able to manufacture a test piece that meets the required quality standards. This 

process is time consuming, requires a lot of expertise, and is not easily transferable to new workers. In this paper, 

we propose a system that uses machine control signals to detect anomalies during the manufacturing of the test 

piece and classify them by their cause, like an onset of chatter, positional errors, or others. For this, the machine 

signals are segmented using a sliding window approach. Multiple strategies to reduce the dimensionality of the 

segments are evaluated, including autoencoders based on a Convolutional Neural Network or a Long-Short Term 

Memory Network as well as manually designed features. The reduced segments are then classified using a Random 

Forest. The results show that the proposed system is able to detect anomalies with high accuracy and classify them 

correctly. 

1. INTRODUCTION 

The process of machine acceptance is vital to ensuring that a machine tool is able to 

manufacture workpieces in the desired quality and quantity. A machine tool that does not pass 

acceptance cannot be sold, especially in aerospace, where the quality standards are very high. 

For 5-axis milling tools, the prevalent machine type for this industry, the acceptance standard 

according to ISO 10791-7:2020 [1] is being established. According to it, a test piece (depicted 

as a Computer Aided Design (CAD) part in Fig. 1 (left) and as a manufactured part in Fig 1 

(right) is to be manufactured using the tool. It is then analysed using a coordinate measuring 

machine. If the piece does not meet the required quality standards, iterative improvements are 

necessary. 
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For this, a machine expert uses his acquired knowledge and years of experience to derive 

parameter adjustments, sensor calibrations or changes in the machine control [1, 2]. There are 

multiple issues within this approach. Iteratively manufacturing and measuring pieces and 

especially the reclamping from the machine tool to the measuring machine requires a 

significant amount of time during which the machine cannot be used productively [3]. Due to 

the amount of possible causes for problems, even skilled workers with a lot of experience can 

struggle to find the correct solution [4]. Further, the amount of machine experts able to 

perform this task is on the decline due to the demographic change [5]. Since the knowledge 

required to deduce the correct changes from a manufactured piece is not possible to be 

formulated as a set of rules and the transfer of it from an experienced expert to a new worker 

cannot be relied upon [6]. In order to facilitate the integration of new workers, to retain 

knowledge from aging experts, and to minimise reliance on their input, an assistance system 

for machine tool acceptance is needed. 

To reduce the number of measurements on the coordinate measuring machine (and 

therefore the amount of reclamping), the assistance system needs to detect and classify 

anomalies using just the information available during manufacture of the piece. The control 

signals of the feed axes of the machine tool (i.e. current, velocity, position, control difference, 

etc.) show promise for this purpose. These signals demonstrate significant potential in the 

areas of process monitoring [7, 8], condition monitoring [9, 10] and the creation and 

synchronising of digital twins [11–13]. This is due to them being sensitive to changes (both 

from the machine and the process) and methods based on them being potentially transferable 

between different machines [14]. They also provide additional insight into the workings of 

the machine that pure analysis of the manufactured parts cannot. While the part itself cannot 

be used to derive definitive conclusions about the source of anomalies [1], this additional 

information can bridge that gap. Furthermore, the machine signals are available for all modern 

machine tools and are therefore not limited to a specific machine type or manufacturer.  

The aim of this paper is to harness the machine control signals in the machine acceptance 

process, an area they are currently underutilized in. We propose a system that based on 

anomaly detection and classification algorithms can assist workers of all experience levels to 

find the problem faster or at all, respectively. It predicts whether a manufactured test piece is 

satisfactory and fit to be reclamped and formally measured on a coordinate measuring 

machine. If not, a classification of the likely source of the error is done to shorten the 

Fig. 1. CAD model of a test piece according to ISO 10791-7:2020 (left). A manufactured test piece (right) 
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adjustment process. To best utilize and retain the knowledge of experienced experts, it 

includes a feedback loop and implements iterative improvements. The structure of the 

intended system is shown in Fig. 2. 

 

Fig. 2. Structure of a machine acceptance process. The established process in orange, the elements added in this work in 

blue and purple 

2. MATERIALS AND METHODS 

2.1. USED DATASET 

All data used for the development of the proposed system was recorded on a DMG 

MORI DMU 65 monoBLOCK (shown in Fig. 3 (left)). The S-shaped test piece proposed by 

ISO 10791-7:2020 was manufactured multiple times using different machine settings and 

modifications to generate both “good” and “faulty” labelled datapoints. Five different types 

of anomalies were induced within the machine: 

Chatter: The feedrate of the machine was manipulated in order to induce chatter 

PosX: The position value in x was manually changed by +0.05 mm after probing 

PosY: The position value in y was manually changed by +0.05 mm after probing 

Thermal: Thermal elongations were imitated by using a different tool length 

Unbalance: Additional mass was added to the main spindle to induce unbalance (shown 

in Fig. 3 (right)). 

For each of these, one test piece was done. Starting from a rough pre-machined part, the 

piece was finished in multiple tool passes, each reducing the radial depth of cut 𝑎𝑒 (starting 

at 6 mm and ending at 0.5 mm). The passes are clearly visible in Figure 1 (right). During four 

of these passes (5 mm, 3.5 mm, 2 mm, and 0.5 mm) the respective anomaly was induced and 

the machine signals captured. The other passes (6 mm, 4.5 mm, 3 mm, and 1.5 mm) were 

done normally in order to clear the part. This results in 20 different “faulty” runs. 
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Additionally, two “good” parts were manufactured in the same way, resulting in 8 “good” 

runs. The captured signals include the Current 𝑖𝑞  (Axes X, Y, Z, A, C, Spindle), the 

ContourDeviation (Axes X, Y, Z), the ControlDeviation (Axes X, Y, Z, A, C), and the 

EncoderDifference (Axes X, Y, Z, A, C), each with a sampling frequency of 500 Hz. 

                     

Fig. 3. DMG MORI DMU 65 monoBLOCK (left). „Unbalance” anomaly induced by adding a mass on one side of the 

spindle, causing an unbalanced spindle (right). Even though the mass added is small, the deviations are noticeable 

in the signals 

2.2. DATA PROCESSING AND SEGMENTATION 

The preprocessing starts with data scaling. In order to be able to compare the different 

value ranges of the signals, Min-Max-Scaling [15] was chosen. To segment the time series, 

the sliding window method [16] was used. It separates a time series X of length T with the 

format 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇) (1) 

into N segments of length L and spacing S 

 

𝐹𝑖 = (𝑥𝑖∗𝑆+1, 𝑥𝑖∗𝑆+2, … , 𝑥𝑖∗𝑆+𝐿);  𝑖 = 0, … , 𝑁 − 1; 𝑁 =  ⌊
𝑇 − 𝐿

𝑆
+ 1⌋ (2) 

Since these segments overlap for values of S smaller than L, redundant information is 

introduced into the dataset. This is a form of data augmentation [17]. The principle is shown 

in Figure 4. The sliding window method generalizes well and enables an in-process reaction. 

The best value for the segment length L depends on the use case and the interaction with the 

other used methods and is therefore determined by experiments. The results for this are shown 

in Section 3.1.  
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Fig. 4. Segmentation of a time series using the sliding window method for a segment length L = 15000  

and spacing S = 5000 

2.3. ANOMALY DETECTION  

In order to separate anomalous from good segments, multiple different approaches were 

tested. They include methods belonging to either classical data and time series analysis or 

Deep Learning. The classical method includes expert features, that is the extraction of the 

time series features max, mean, root mean square, standard deviation, energy, skewness, 

kurtosis, peak-to-peak-distance, and the first four coefficients of the Fast Fourier Transform. 

The binary classification is then done using a Random Forest (RF) approach. The Deep 

Learning approaches all use autoencoders, that is the compression and subsequent 

decompression of the raw time series segments. If the autoencoder is trained using only 

“good” data, the reconstruction error (RE), that is the difference between the compressed and 

decompressed time series and the original time series, can be used to detect anomalies. 

Another approach is the clustering and classification of the compressed time series using a 

separate classification structure. If the encoder is well trained, the features in the embedded 

space contain all relevant information about the segment. While costlier to design and train, 
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this approach offers deeper insights into both the workings of the encoder and the nature of 

the time series itself. For the design of the autoencoder, both a Convolutional Neural Network 

(CNN) and Long-Short Term Memory (LSTM) structure were tested. LSTMs are the more 

“natural” fit for time series data, but CNNs are generally faster in both training and inference 

and are robust against changes in the trajectory of the segment, since they work by analysing 

local structures within a time series. Additionally, a self-attention-mechanism was introduced 

into the embedded space for both structures. This improved the robustness and prediction 

quality of the models. The results for all the different methods are shown in Section 3.2. 

2.4. ANOMALY CLASSIFICATION 

To classify the detected anomalies by their cause, the methods described in Section 2.3, 

that are a RF in combination with an autoencoder as well as in combination with manually 

chosen expert features, are adapted to fit the multi-class requirement. The RE of the 

autoencoder methods is used as an additional input for the classification model, where 

applicable. The RF is used for classification due to its high robustness, low training and 

inference time, and good performance in general. 

2.5. ASSISTANCE SYSTEM AND FEEDBACK LOOP 

The assistance system is a central element of the proposed system. It provides the 

interface between the user and the underlying functionality. This interface works both ways, 

as the worker is able to label new data points. This gives rise to a new problem: Determining 

the confidence in this new label. According to [18], the assumption that a human judgement 

can in general be regarded as correct is only valid for a large sample size. Therefore, the 

training weight of the newly labelled datapoint needs to be defined. For this, the user needs 

to provide a judgement of their own experience E and their certainty C on a scale of 1–10. 

From there, the resulting weight W of the datapoint can be calculated by 

𝑊 = (𝛼 ∗ 𝐸 + 𝛽 ∗ 𝐶)𝛾 (3) 

with α, β, and γ as tuneable parameters. The resulting curve values high experience and 

certainty much stronger than middling values and does not overly punish extremes in either 

direction. For the “good” class, only datapoints with a maximum certainty value are used, 

since all “good” parts are verified by the coordinate measuring machine. It is therefore 

expected that the user enters the maximum certainty value for these verified points.  

To be able to retrain the model, all datapoints (and their respective values for E and C) 

are recorded in a database. In order to save time, the autoencoder is trained incrementally. For 

that, batches of “good” data are sampled randomly from all datapoints until the model loss 

reaches a plateau. By not excluding older samples, Catastrophic Forgetting [19] can be 

avoided. The classification model is retrained from scratch every time due to its fast training 

speed. 
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3. RESULTS 

In order to decide on the exact algorithms for both the anomaly detection and 

classification, all in Section 2.3 and Section 2.4 proposed models were implemented and 

tested on the dataset presented in Section 2.1. The results of these experiments are shown in 

the following. 

3.1 SEGMENT LENGTH 

The segment length L was varied in different ranges for the different models (Expert 

Features, CNN, LSTM, CNN in combination with Expert Features), with a minimum of 4 and 

a maximum of 60000. The models on trial (and, if necessary, a RF classification model) were 

then trained on classifying anomalies. The classification was chosen as a benchmark, because 

it is expected to be a more complex problem than the anomaly detection. The results are 

shown in Figure 5.  With an increase in segment length, the training time of the models 

decreases due to the lower number of segments. The performance of the models is increasing, 

but only up to a certain point. After that, the performance decreases again. The chosen 

segment lengths for all following experiments were 1024 for the LSTM, 8192 for the CNN 

and the CNN with Expert Features, and 32768 for the Expert Features. 

The spacing S was set differently for each segment length. Smaller segment lengths were 

set to not overlap, while larger segment lengths were set to overlap by up to 50%. This was 

done to increase the amount of data available without introducing too much redundancy and 

therefore overfitting the model.  

 

Fig. 5. Performance of the different models with varying segment length. Not shown are the training times, which 

decrease with increasing segment length 
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3.2. ANOMALY DETECTION 

To assert the anomaly detection performance, the autoencoders were trained on 50 % of 

the “good” data to ensure a remainder to test on. Because the overall goal is to detect 

anomalies in a whole manufacturing process, a tool pass is labeled as “good” if all segments 

within it are “good”. The results of the different models for the anomaly detection are shown 

in Table 1. The models are evaluated using the Balanced Accuracy Score. The autoencoder 

approaches show a perfect performance, while the Expert Features and CNN with Expert 

Features are slightly worse. 

Table 1. Balanced Accuracy Score of the different models for the anomaly detection. The pure Autoencoders could 

detect all 

LSTM (Only RE) CNN (Only RE) CNN (Additional RF) Expert Features (RF) 

100 100 97.5 97.5 

3.3. ANOMALY CLASSIFICATION 

For the training of the anomaly classification, the models were trained on all but one of 

the “faulty” passes and then tested on the remaining one. This was done for each of the 

“faulty” passes. This is to simulate the real use case, where the model is trained on every pass 

beforehand. The results are shown in Table 2. The models were evaluated using the Accuracy 

Score. 

Table 2. Accuracy Score of the different models for the anomaly classification. The Expert Features show the best 

performance, the encoder strategies are lacking 

LSTM (RF) CNN (RF) CNN + Expert Features (RF) Expert Features (RF) 

40 65 65 80 

A deeper look into the wrongly classified anomalies reveals that Chatter and Thermal 

are confused most often. This is due to the fact that both anomaly types result in vibrations of 

the tool and therefore similar signals. The anomaly Chatter_50, the 5 mm pass of the Chatter 

anomaly, was not detected by the classifiers and most often classified incorrectly. 

The PosX and PosY anomalies are also confused. This is due to the nature of the training, 

as only one pass is left out for testing. The model generalizes better over the depth of cut than 

over the type of anomaly. For instance, the PosX_50 pass is more similar to the PosY_50 pass 

than to the PosX_20 pass. 

If the Thermal and Chatter as well as the PosX and PosY anomalies are each combined, 

the performance of all classifiers increases up to an accuracy of 95 %. The Unbalance 

anomaly is not confused with any other anomaly, as it is a completely different type of 

anomaly. 

3.4. ASSISTANCE SYSTEM AND USER INTERFACE 

A large part of the proposed system is the user interaction. The necessary algorithms 

and interfaces are designed to be easy to use and intuitive, while being able to run on an edge 
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device with limited ressources. The response time for the anomaly classification is 3 to 4.5 

seconds, depending on the segment length and model chosen.  

The User Interface developed for testing the system is shown in Fig. 6.  

 

Fig. 6. The proposed User Interface. Due to low model confidence, a label is requested. To better explain the prediction, 

the PCA of the embedded space is plotted 

The Principal Component Analysis (PCA) of the embedded space is computed to 

visualize the data and the reasoning behind the classification. Iteratively training the whole 

model takes around 7 minutes, training just the classification model around 40 seconds. All 

tests were run on a NVIDIA RTX 3060 with a Ryzen 5 3600 CPU and 48 GB of RAM. 

4. CONCLUSION 

For the anomaly detection, the autoencoder models based on the RE work flawlessly. 

The CNN is faster in its prediction time (<0.1 s compared to ~0.13 s for the LSTM) and 

therefore the better choice for the anomaly detection. The Expert Features and CNN with 

additional Expert Features are slightly worse, but still show a good performance. This is 

surprising, as the RE is also included as an input to the RF classifier (without it, the accuracy 

drops by ~10%). The additional information is therefore not necessary for the anomaly 

detection, but it is still useful for the classification. 

The Expert Features with a RF classifier perform the best for the anomaly classification. 

This is because the autoencoders are trained to minimize the RE, which is not the same as 

designing an embedded space that is optimal for classification. Introducing additional 

supervised training into the autoencoders could improve the performance, which is a future 

research direction. The CNN with additional Expert Features is slightly worse than the Expert 

Features alone, which is similar to the anomaly detection case. Additional data that is not 

useful is therefore harmful for the classifier. 
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The combination of the different anomaly types increasing the performance of the 

classifiers shows that a classifier trained on distinguishing all anomaly types is not able to 

separate anomalies that are similar in nature. A possible future research direction could be to 

use a cascading classifier, where the first classifier separates the anomalies into groups and 

the second classifier distinguishes between the anomalies within each group. This could 

improve the performance of the classification, especially for distinguishing the Chatter and 

Thermal types.  

The anomaly Chatter_50 is not detected by any classifier. This is due to the nature of its 

induction: By changing the feed rate, it is not guaranteed to actually induce chatter. This 

anomaly might therefore not actually exist. 

For the application of the proposed system, the anomaly detection using the CNN with 

an additional RF classifier and the anomaly classification using an RF trained on the Expert 

Features is chosen. Both methods are fast and robust. Around four seconds are needed for the 

anomaly detection and classification using the aforementioned hardware, which is acceptable 

for a real-time application. The segmentation takes the longest time, but this is not a problem, 

as it can be done in the background while the machine is running. The proposed system is 

therefore able to assist workers during the machine acceptance process. 

Future research directions include the integration of the proposed system into a real 

machine acceptance process, where it can be used to assist workers in finding and classifying 

anomalies. Additionally, extensions of the system to use Contrastive Learning [20] to actively 

design the embedded space could improve the performance of the anomaly classification, 

especially if the number of anomaly types increases. 
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