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DIGITEYE: A TRANSPARENT SOFT TACTILE SENSOR
FOR ROBUST MULTI-MODAL PERCEPTION

Tactile sensing remains fundamental for enabling dexterous robotic manipulation and safe human-robot
interaction. Existing visuotactile sensors often compromise either deformation depth or optical transparency,
limiting their ability to capture both contact forces and external scene information. This paper presents DigitEye,
a transparent soft tactile sensor with a hollow box-shaped silicone rubber skin that deforms at the centimeter scale
while preserving high optical clarity. A one-shot molding process with inner-frame grooves ensures robust
adhesion and modular replacement of the soft skin, while dark-blue markers embedded through CNC-machined
molds enable reliable tracking under varied conditions. To validate the design, we constructed two benchmark
datasets: a force-sensing dataset linking images to indentation depth and ground-truth force, and an object detection
dataset of fruits under varying distances and lighting. Experimental evaluations demonstrate reliable force
estimation across multiple contact geometries, together with YOLO-based recognition, achieving a precision of
0.95, a recall of 0.87, and an mAP@0.5 of 0.689. These results highlight DigitEye as a practical platform for
transparent visuotactile sensing, supporting both fine-grained contact perception and safer robotic operation in
unstructured environments.

1. INTRODUCTION

Tactile sensing has been widely recognized as a critical capability enabling robots to
perform dexterous manipulation, adaptive grasping, and safe human-robot interaction in
unstructured environments. In recent years, diverse tactile sensing technologies have been
developed, including capacitive and piezoresistive arrays, optical fibers, and vision-based
approaches. Array-based sensors enable distributed force measurement, yet their use is
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restricted by issues such as wiring complexity, fragility, and limited spatial resolution. By
contrast, vision-based tactile sensors are increasingly favored, as they combine high
resolution with comparatively simple fabrication.

Several vision-based tactile sensors have demonstrated remarkable performance.
GelSight [1] and its successors, such as GelSlim 3.0 [2], employ opaque elastomers with
internal cameras to reconstruct contact geometry and forces. The open-source DIGIT sensor
[3] further improved compactness and accessibility, enabling widespread adoption. However,
these designs rely on opaque skins, preventing simultaneous access to external vision cues.
Efforts to integrate transparency were later introduced. FingerVision [4] embedded markers
into a transparent silicone layer, supporting multimodal perception but remaining vulnerable
to illumination noise and color interference. More recently, Vi2TaP [5] adopted polarization-
based switching between tactile and proximity sensing, but this sequential approach requires
hardware complexity and prevents real-time fusion. Other attempts explored bio-inspired
micropatterned skins [6, 7] or controllable-transparency links [8], focusing on grip
enhancement rather than vision integration.

Despite this progress, none of the current designs combine centimeter-scale
deformation, bulk optical transparency, and straightforward integration with modern vision
models. In addition, benchmark datasets for transparent visuotactile sensors are still limited,
which constrains reproducibility and makes comparative studies difficult.

This paper presents DigitEye, a new transparent visuotactile sensor created to address
these limitations (Fig. 1). The core innovation lies in its hollow box-shaped silicone rubber
skin, which enables large-scale deformation for richer shape encoding while preserving high
optical clarity for simultaneous observation of external objects. A modular fabrication
approach with one-shot molding secures reliable skin—frame adhesion and allows plug-and-
play replacement. To evaluate its capabilities, we constructed two datasets: a force-sensing
dataset linking images to precise indentation and force measurements, and an object detection
dataset of fruits captured under varying conditions. Combined with a machine learning
pipeline, DigitEye achieves robust force estimation and YOLO-based detection with high
accuracy.

The primary contributions of this work are:

1. Design of a transparent box-shaped soft skin that combines centimeter-scale

deformation with optical clarity for multimodal perception.

2. Integration of a simple architecture—transparent skin and camera—together with a
machine learning pipeline for force estimation and YOLO-based object detection,
without requiring complex switching mechanisms.

3. Creation of benchmark datasets for force sensing and object detection tailored to
transparent tactile skins, supporting both the evaluation of DigitEye and future
research on visuotactile sensing.

The remainder of this paper is structured as follows. Section 11 looks at earlier studies
on tactile sensing and visuotactile integration. Section Il explains how DigitEye was
designed and made. Section IV shows the vision-based multimodal sensing framework, and
Section IV describes the data collection experiments, the object detection and force sensing
multi-modal. Section V presents the results and discussion. Section VI concludes the paper,
and Section VII offers suggestions for future work.
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Fig. 1. Overview of the proposed DigitEye tactile sensor: a) The DigitEye prototype with a hollow box-shaped transparent soft skin;
b) Integration on a robotic gripper performing a tabletop grasping task; ¢) Vision-based object detection enabled through the
transparent skin; d) Force sensing capability using marker deformation and learning-based estimation

2. RELATED WORKS

Tactile sensing in robotics has been studied using different methods such as resistive
and capacitive arrays, optical fibers, and vision-based systems. Among these, vision-based
tactile sensors are drawing more interest because they can provide high-resolution contact
data while using fairly simple hardware.

Opaque visuotactile sensors were among the earliest successful designs. GelSight [1]
pioneered the use of an opaque elastomer with embedded markers and an internal camera to
reconstruct contact geometry and force distribution. Later iterations, such as GelSlim 3.0 [2]
improved compactness and introduced slip detection, while the open-source DIGIT [3]
enabled wide adoption in robotic manipulation research. However, these designs are
constrained to internal deformation sensing since their opaque skins block external vision.

To overcome this limitation, transparent skins were used. FingerVision [4] placed
markers inside a clear silicone layer, allowing both deformations tracking and outside
observation at the same time. However, it was still affected by light noise and colour
interference. Vi2TaP [5] employed cross-polarization to switch between tactile and proximity
sensing; while effective at separating modalities, this sequential approach prevented true real-
time fusion. Other efforts focused on bio-inspired surfaces, such as hexagonal micropatterns
[6] and torrent-frog-inspired adhesives [7], which enhanced friction under lubrication but did
not provide transparency. A controllable-transparency robotic link [8] further demonstrated
integration of optical modulation into soft robotics, but without a dedicated tactile skin.
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More compact visuotactile solutions have recently emerged. Shimonomura and
Nakashima [9] combined tactile and proximity sensing using a compound-eye camera,
offering early demonstrations of multimodality. Zhang et al. [10] proposed an improved thin-
format tactile skin equipped with a focus-adjustable imaging system, enabling robust
performance under varying contact depths. Li and Peng [11] introduced a monocular visual—
tactile fingertip for robust manipulation, emphasizing efficiency and integration. Chen et al.
[12] developed a thin-format tactile sensor with a microlens array, achieving high spatial
resolution in a miniaturized structure. Similarly, Duong [13] introduced BiTac, a soft vision-
based tactile sensor capable of bidirectional force perception, further confirming the trend
toward high-resolution, learning-compatible visuotactile designs. Collectively, these studies
highlight an evolution toward thin, robust, and multimodal tactile sensors.

At the same time, object detection methods have grown quickly, becoming the main
perception backbone for visuotactile fusion. Recent surveys of detectors [14] show the move
from two-stage to single-stage pipelines, pointing out the balance between speed and
accuracy. Transformer-based models have further enhanced multi-scale feature aggregation,
especially for recognizing small objects [15]. Extensions such as ARS-DETR [16] introduced
aspect-ratio-sensitive labels and rotated deformable attention to handle oriented targets, while
reviews of DETR variants [17] summarized advances in query design and convergence speed.
Other work proposed disentangling positional and content information in transformers to
achieve higher accuracy with multi-task training [18]. YOLO-derived architectures remain
widely used: ESF-YOLO [19] enhanced performance with cross-scale feature fusion and
attention modules, while application-driven studies integrated YOLOvV5 detection with
impedance control for safe human-robot collaboration [20].

Tactile sensing research has moved toward more complex, learning-based methods.
DenseTact 2.0 [21] applied an optical fingertip and deep learning to rebuild contact geometry
and measure six-axis force/torque, showing good generalization. GTac [22] used a
biomimetic two-layer structure with piezoresistive and Hall sensors to detect both normal and
shear forces. Vision-based Tac3D [23] relied on binocular imaging to estimate force
distribution and friction. Other material innovations include hemispherical protrusion arrays
for 3D vector force sensing with angular resolution below 15° [24], multilayered skins for
repeatable grasping and >95% classification accuracy [25], and scalable 3D magnetic tactile
sensors for grasping and slip detection [26]. Energy-autonomous tactile devices have been
reported, including self-powered multidimensional sensors [27]. Additional approaches have
leveraged piezoresistive thin films [28] and electrical impedance tomography (EIT) [29] to
achieve large-area tactile skins with distributed force mapping.

3. DESIGN AND FABRICATION

3.1. DESIGN

The DigitEye sensor is conceived as a small visuotactile module that combines a
transparent soft skin, a rigid frame, and a built-in fisheye camera in one unit (Fig. 2). Its
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purpose is to measure deformations at the centimeter scale while keeping the skin highly
transparent, so it can capture tactile and visual data at the same time.

The sensor consists of six main components: (1) a hollow box-shaped transparent
silicone rubber skin embedded with an array of dark-blue markers, which deform
proportionally to external contact forces; (2) a rigid frame with inner grooves that interlock
with the silicone during molding, ensuring strong adhesion and enabling modular replacement
of the skin; (3) a housing that provides structural support and alignment; (4) a wide-angle
fisheye USB camera (ELP, 150° field of view, 1080p@30 fps, 720p@60 fps, 480p@100 fps)
positioned beneath the soft skin to capture both marker displacements and external objects;
(5) a screw system that secures the optical unit to the housing; and (6) a protective cover that
seals and protects the assembly.

This modular design has three main benefits. First, the hollow box-shaped soft skin can
bend on the scale of centimeters, which helps the sensor pick up detailed geometric features
of the objects it touches. Second, the silicone rubber’s high optical transparency gives a clear
path for light, so the camera can detect hand-sized objects from as far as 2 meters away—an
important factor for safe robotic operation. Third, the frame—skin interlocking design
produced via one-shot molding facilitates plug-and-play replacement of the skin in case of
scratches or loss of clarity, thereby improving maintainability and extending the sensor’s
lifetime.

Fig. 2. Exploded view and assembled DigitEye sensor: Left - Exploded view showing the six main components: (1) transparent soft
skin with embedded markers; (2) rigid frame with grooves for anchoring; (3) housing; (4) fisheye camera module; (5) screw system;
and (6) protective cover; Right - Sectional perspective view of the complete assembly, illustrating the external appearance of
DigitEye and the internal arrangement of the optical module beneath the transparent soft skin

As a whole, DigitEye features a simple yet effective design that unites transparency,
deformability, and modularity in one compact unit, providing the foundation for multimodal
visuotactile sensing.

3.2. FABRICATION

The fabrication process of DigitEye is shown in Fig. 3. The rigid parts, frame, housing,
and cover, along with the casting molds, were first created in CAD software (Fusion 360) and
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then produced using fused deposition 3D printing with PLA. For the mold core, a mica plate
was CNC-milled to obtain a flat, smooth surface and patterned with circular recesses (1 mm
ball-end cutter) to keep the geometry consistent.

Markers were manually embedded by filling these recesses with transparent silicone
mixed with dark blue dye. After curing, the mold was assembled with the frame, and vacuum-
degassed transparent silicone rubber (Zoukei-Mura Co. Ltd., Japan, low-durometer < 40
Shore A) was cast into the cavity. Grooves in the frame allowed the silicone to flow in and
interlock, achieving both strong adhesion and modularity of the skin. After demolding, the
transparent box-shaped skin with embedded markers was obtained.

Finally, the optical module, consisting of a wide-angle fisheye USB camera (ELP, 150°
FOV, 1080p@30 fps, 720p@60 fps, 480p@100 fps), was mounted into the housing, secured
with screws, and enclosed with the protective cover. The completed prototype is shown in
Fig. 3.

(7) Complete (6) Assembly

~— (4) Marker fabrication

-+

S
-9.8 -
ST

(1) Design (2) 3D printing (3) CNC machining

Fig. 3. The fabrication process of DigitEye sensor: (1) CAD design of rigid parts and molds. (2) 3D printing of frame, housing, and
mold structures. (3) CNC machining of the mica mold core with patterned recesses. (4) Marker fabrication by embedding dyed
silicone into recesses. (5) Casting of vacuum-degassed transparent silicone to form the hollow soft skin. (6) Assembly of the optical
module and rigid components. (7) Completed DigitEye prototype

4. VISION-BASED MULTI-MODAL SENSING

4.1. DATA COLLECTING EXPERIMENT

Force Sensing Dataset. The experimental setup for collecting force-sensing data is
shown in Fig. 4, where DigitEye was mounted on a two-axis XY stage for lateral positioning
of contact points, while a vertical Z-axis carriage carried a digital force gauge (IMADA ZTA-
5N, IMADA Co., Ltd., Japan). The gauge indented the soft skin downward in increments of
0.1 mm, up to a maximum depth of 20 mm. At each step, the embedded fisheye camera of
DigitEye captured images of marker displacements, synchronized with the force signals
measured by the IMADA sensor.
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b)

Fig. 4. Data collection experiment for force model training: a) Main components of DigitEye data collection experiment with
different types of objects: sphere head, triangle head, needle head, cylinder shape; b) Image data recorded by DigitEye (top) and
force data recorded by IMADA force gauge (bottom)

To ensure comprehensive coverage, indentations were made on a 39-point grid spread
over the sensing surface. Three indenter shapes were used, spherical, cylindrical, and
triangular prism tips. This setup generated varied deformation patterns for training. Two ways
of collecting data were applied. In the static mode, the indenter stopped for 0.5 s at each point
so that steady images and force values could be recorded. In the dynamic mode, indentation
and release happened continuously, letting the dataset include both stable contact states and
short-term deformation changes.

During each trial, indenters with different geometries (Table 1) were used. The resulting
dataset, therefore, consists of synchronized triplets: (i) image of the soft skin deformation, (ii)
ground-truth indentation depth, and (iii) measured contact force. With repetitions under varied
lighting conditions, the dataset contains several thousand labeled samples, providing a robust
basis for training the proposed force sensing model.

Table 1. Table of test heads for data collection experiment

No 1 2 3 4 5 6 7 8 9
Shape Needle | Sphere Sphere Rectangular | Rectangular Triangle Triangle Cylinder Cylinder
Size - d10 ds0 10x10 20x20 10 20 d10 d20
Hardness Rigid Rigid Rigid Rigid Rigid Rigid Rigid Rigid Rigid

Image

Object detection dataset. To evaluate the transparency of DigitEye for external
perception, three representative fruits—orange, banana, and apple—were placed at distances
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of 20-50 cm. Images were collected under varied illumination and background conditions.
Each image was annotated with bounding boxes in YOLO format. The dataset covers several
thousand annotated samples, supporting the training and evaluation of the YOLO-based
object detection model.

4.2. OBJECT DETECTION AND FORCE SENSING MULTI-MODAL

To realize robust multimodal perception, DigitEye integrates two complementary
learning-based models: (i) an object detection model for external vision through the
transparent tactile skin, and (ii) a force sensing model for estimating contact forces from
marker deformation patterns. Although trained on separate datasets, both models operate
jointly in a unified pipeline (Fig. 6), enabling simultaneous visual recognition and tactile force
estimation in real time.

YoloV10 Object detection

1. Backbune | [2 Neck (Feature Enhanemen) 3. Head (Prediction)
(Feature Extraction)
sage1

Multi models
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elastomeric sk
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Fig. 6. DigitEye sensing multi-modal: Pipeline of the YOLO models applied for fruit recognition and force detection through
the transparent skin

For vision-based recognition, the YOLOv10 framework was used because it offers a
good balance between inference speed and detection accuracy [30]. This makes it suitable for
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real-time robotic manipulation. The dataset included images of fruits (banana, orange, and
apple) placed 20-50 cm from the sensor. To test the robustness of through-skin vision, the
data were collected with different backgrounds and lighting conditions. To further enhance
generalization, augmentation techniques were applied, including random brightness
adjustment, color jittering, and Gaussian noise injection to mimic distortions caused by light
scattering and reflections through the transparent elastomer. During inference, YOLOvV10
produced bounding boxes, class labels, and confidence scores for detected objects. This data-
driven approach aligns with recent advances in industrial visual inspection using YOLO-
based anomaly detection pipelines [31], highlighting its adaptability to real-world
environments. Experimental results confirmed that the model maintained stable accuracy
despite transparency-induced distortions, achieving high mean average precision (mAP) with
low latency. These outcomes verify that the transparent skin provides a viable optical pathway
for reliable external object recognition, thereby extending the perceptual capability of tactile
sensors to the surrounding environment.

We built a supervised learning pipeline with YOLOVS8 to estimate contact forces from
tactile deformation [32]. The input comes from a fisheye camera inside the sensor, which
records how dark-blue markers move within the transparent silicone skin. Because the raw
images also show background clutter and lens distortion, we applied a multi-stage
preprocessing pipeline to clean them. This included fisheye distortion correction, Gaussian
blurring, adaptive thresholding, and morphological filtering to suppress background noise and
enhance marker contrast. Connected component analysis was subsequently applied to identify
valid marker candidates, resulting in binarized deformation maps suitable for model training
(Fig. 6).

Originally designed for object detection, the YOLOV8 network was adapted to perform
two functions: identifying and locating markers, and predicting contact force magnitudes and
directions from marker displacement patterns. A regression head was attached to the
architecture, and training was carried out using a combined loss that integrated detection loss
(bounding box localization and classification) with regression loss (mean squared error
relative to the ground-truth force labels). Ground-truth annotations were obtained from a
calibrated IMADA ZTA-5N force sensor during controlled indentation experiments. Training
on several thousand image—force pairs produced a compact model capable of estimating
contact forces directly from unseen deformation images with high robustness against noise,
lighting variation, and transparency artefacts.

5. RESULT AND DISCUSSION

5.1. DESIGN AND FABRICATION

The DigitEye sensor was built successfully following the proposed design. Its hollow,
box-shaped silicone rubber skin bent by several centimetres when touched, as planned. Tests
using spherical, cylindrical, and triangular prism indenters (Fig. 5) showed clearly different
deformation patterns for each shape, suggesting that DigitEye could be used for shape
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recognition based on contact. Moreover, because the silicone rubber skin is soft, the sensor
could handle fragile items such as ripe fruits with thin skins, making it suitable for delicate
manipulation.

The transparency of the Zoukei-Mura silicone rubber was preserved throughout the
fabrication process. The embedded fisheye camera was able to observe hand-sized objects at
distances up to 2 m through the transparent skin, a capability that is highly relevant for
enhancing safety when DigitEye is mounted on robotic grippers by enabling early detection
of nearby objects and humans.

The one-shot molding technique, combined with the inner grooves of the frame, ensured
robust adhesion between the skin and the rigid structure. At the same time, this design
modularized the skin as a replaceable unit, making it possible to easily exchange the skin in
case of scratches or reduced optical clarity. This plug-and-play maintainability distinguishes
DigitEye from earlier visuotactile skins that are permanently bonded to rigid substrates.

The fabrication results confirmed that surface quality is important. The CNC-milled
mica mold core created flat, smooth surfaces that reduced light scattering and helped keep the
optical clarity high. Tests with embedded markers in different colors (black, white, red, and
dark blue) showed that dark blue gave the most consistent detection across different lighting
and background settings. Consequently, dark blue markers were adopted in the final
prototype. The resulting transparent box-shaped skin, combined with uniform marker
visibility and strong frame adhesion, provides a robust foundation for subsequent force
sensing and object detection experiments.

5.2. VISION-BASED SENSING MULTI-MODAL

The DigitEye sensor was tested for two functions: recognizing external objects and
estimating internal forces, both supported by vision-based machine learning models. In this
setup, YOLOV10 handles object detection while YOLOvV8 predicts forces, creating a single
framework that takes advantage of the soft skin’s transparency and the use of embedded
deformation markers.

YOLOv10-Based Object Detection. The object detection experiments were designed
to validate the feasibility of vision through the transparent silicone skin. In [33], three
representative fruits—banana, orange, and apple—were used as test objects due to their varied
shapes, textures, and reflective properties, which introduce different levels of optical
distortion when viewed through the elastomer. Despite the presence of embedded markers
and occasional reflections from the skin surface, YOLOv10 successfully detected and
classified objects with high consistency.

The model stayed robust under different lighting conditions, both natural and artificial,
and also handled cluttered backgrounds well. There was a slight drop in confidence scores
when marker shadows overlapped with object edges, but overall detection accuracy was
steady. The fact that the model kept a high mean average precision (mAP) with low inference
latency shows it can work in real-time robotic tasks. This result also confirms that the
transparent tactile skin does not seriously affect visual object recognition, supporting the
multimodal design idea of DigitEye.
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YOLOv8-Based Force Estimation. The force-sensing experiments were conducted
using deformation images paired with ground-truth labels acquired from the IMADA ZTA-
5N force gauge. The YOLOvV8-based pipeline was trained to detect marker positions and
regress contact force magnitudes and directions from marker displacement patterns.

In Fig. 7, training over 200 epochs demonstrated stable convergence across all loss
components, including bounding box regression, classification, and distribution focal losses.
Both training and validation losses approached low values, indicating good generalization to
unseen samples. As shown in the evaluation metrics, the model achieved a precision of
approximately 0.95 and a recall of 0.87. The mean Average Precision at loU 0.5 (mMAP@0.5)
reached 0.689, while the more stringent mAP@0.5-0.95 exceeded 0.60. These results
highlight that the model not only detects relevant features reliably but also maintains
predictive accuracy across varying force levels and contact geometries.
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Fig. 7. Results for training and testing steps for Yolov8 force prediction

From Fig. 8, visualization of the F1-confidence and precision—recall curves revealed a
balanced operating point around a confidence threshold of 0.37, ensuring both high sensitivity
and precision. Confusion matrix analysis further confirmed that most predictions aligned with
the true force categories, although limited confusion remained for underrepresented classes.
Quantitative evaluation followed a multi-criteria perspective similar to that used in decision-
making frameworks such as TOPSIS [34], allowing balanced assessment of precision, recall,
and F1 trade-offs. This suggests that dataset balancing could further improve performance,
particularly for rare contact scenarios.
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Fig. 8. Results for training and testing with Yolov8 force prediction in the relationship between precision, recall, F1 score, and
confidence index
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Integration of Object Detection and Force Estimation. The combined results
demonstrate that DigitEye can concurrently recognize external objects and estimate applied
forces in real time. This integration is particularly valuable for robotic manipulation tasks: the
object detection module informs the robot about the nature and approximate position of the
object, while the force sensing module provides continuous feedback about contact stability
and safety. Such a dual-modality framework allows for adaptive control strategies, such as
adjusting grip strength based on the detected object type or releasing fragile items before
damage occurs.

The experimental results confirm that DigitEye’s transparent visuotactile architecture
enables reliable object recognition and force estimation in a unified framework. The
YOLOvV10-based object detection model sustained high accuracy despite transparency-related
artefacts such as light scattering, marker interference, and background clutter, which typically
degrade vision performance in transparent media. Similarly, the YOLOv8-based force
sensing model demonstrated strong predictive capability across diverse contact scenarios,
showing that marker displacement patterns provide rich cues for learning-based force
estimation. Nonetheless, several challenges remain. The detection accuracy for objects with
colors or textures similar to the embedded markers showed slight degradation, and the force
model exhibited reduced precision in classes with fewer training samples, reflecting dataset
imbalance. Moreover, the evaluation was limited to relatively simple test objects and
controlled contact conditions; real-world manipulation tasks often involve irregular
geometries, dynamic motions, and occlusions that could further stress the system. Despite
these limitations, the results underscore the potential of DigitEye as a compact multimodal
sensor capable of supporting dexterous robotic interaction. Future improvements may include
expanding the dataset with more diverse object categories, refining preprocessing algorithms
to enhance marker visibility under challenging lighting, and integrating temporal modelling
to capture dynamic force evolution during manipulation.

The experimental results show that DigitEye’s vision-based multimodal framework is
both practical and effective. Using the YOLOV10 object detection model, the study confirmed
that the transparent skin allows reliable visual recognition. At the same time, the YOLOvVS8
force sensing model proved highly accurate in predicting tactile force. Taken together, these
findings support the proposed design as a strong option for safe, flexible, and adaptive robotic
manipulation in unstructured settings.

6. CONCLUSION

DigitEye utilizes a hollow, box-shaped silicone rubber skin that enables centimeter-scale
deformation, allowing the sensor to capture rich contact information while supporting the
gentle manipulation of fragile objects. The transparent skin keeps its optical clarity, allowing
vision-based detection of hand-sized objects up to 2 m away, which helps improve robotic
safety. The frame, designed with inner grooves, provides strong adhesion during one-shot
molding and makes the skin a replaceable unit, which improves both maintenance and
usability. The fabrication process consistently produced a transparent silicone rubber skin
with strong bonding and clear marker visibility, forming a reliable base for multimodal
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visuotactile sensing. In addition, the integration of YOLO-based models demonstrated
effective performance in both object recognition and force prediction. The detection pipeline
achieved high precision and recall, while the force estimation model accurately captured
contact dynamics, confirming the capability of DigitEye to support reliable grasping and
holding tasks such as the ROSE mechanism [35]. Overall, the proposed sensor establishes a
simple yet powerful platform for advancing multimodal tactile—visual perception in robotic
manipulation.

7. FUTURE WORKS

Future work will aim to improve both the design and the making of DigitEye. Possible
directions are to adjust the geometry of the soft skin to make it last longer, test other
transparent silicone mixes to get better optical clarity, and create simpler molding methods
for easier large-scale production. On the sensing side, keeping the markers visible is still
difficult when objects have similar colors or when lighting is very strong, so image restoration
methods will be explored. Furthermore, accurate force estimation under complex contact
conditions, such as objects with multiple angles or distributed contact points, will be studied
to improve the reliability of interaction modelling. These efforts aim to expand the
applicability of DigitEye in more diverse and demanding robotic manipulation scenarios.
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