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The evaluation of machine tool characteristics and their impact on surface quality is challenging, often requiring 

disruptive traditional methods. This study introduces a novel, non-invasive approach using optical camera images 

for rapid and accurate assessment. Data robustness was ensured by acquiring initial images outside the machining 

chamber with consistent external illumination, focusing on detailed intensity profile analysis. Machined surfaces 

were processed using intensity profile extraction and Fast Fourier Transform (FFT). The dominant spatial 

wavelength (0.1833 mm) consistently showed excellent agreement (within 1.85%) with the theoretical feed per 

revolution (0.1800 mm). This robustly validates the method's ability to precisely capture primary kinematic tool 

marks. Temporal information, inferred from spatial frequencies, underwent subsequent FFT to identify periodic 

phenomena and harmonics. The comprehensive spatial and temporal FFT analyses offer detailed, quantitative 

surface characterizations. The clear distinctions in temporal harmonic patterns provide robust, frequency-domain 

signatures informing machining system performance and process integrity. 

1. INTRODUCTION 

In cutting operations, the surface quality of a machined workpiece varies according to 

the extent to which the tool deviates from its commanded path. Such deviations stem from 

multiple factors, including the static and dynamic characteristics, thermal behaviour [1], and 

geometric accuracy of the machine tool’s structure, as well as the drive system’s properties 

such as servo synchronization accuracy and long-term effects like bearing wear. In other 

words, the final surface of the workpiece reflects the superimposed influences of these various 

characteristics. 

Numerous methods have been proposed to measure and evaluate these factors 

individually. For instance, the Loaded Double Ball Bar (LDBB) method [2] can evaluate static 
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characteristics that depend on direction, while techniques using vibrations arising during 

machining have been employed to assess dynamic characteristics [3]. Approaches that utilize 

many temperature sensors have also been reported for evaluating thermal deformation [4], 

[5]. Additionally, Double Ball Bar (DBB) is well known for measuring geometric error and 

servo synchronization accuracy [6, 7]. However, many of these methods often require 

interrupting the machining process, removing the workpiece for evaluation, or installing 

numerous sensors in advance. Such measurement tasks create downtime on the production 

line, compromising productivity. 

To evaluate machine tool characteristics with high accuracy and in minimal time, Ibaraki 

and Okumura [8] proposed a method that leverages the machined workpiece itself. By 

measuring the machined surface with a touch-trigger probe, one can assess thermal errors. 

This technique is widely recognized and is included in Annex of ISO 10791-10 [9] for 

evaluating thermal deformation. Nonetheless, this approach only captures thermal 

deformation related errors, which represent just one factor among many that determine 

workpiece accuracy and surface quality. 

Consequently, it remains challenging to quickly and accurately estimate all the 

machining process-related factors that influence the final quality of the work piece [10]. Still, 

because the final surface results from a superposition of all these characteristics, there is 

potential to conduct a comprehensive evaluation of the machine tool if the surface can be 

observed and measured by some means. Therefore, the present study aims to use a general-

purpose camera, rather than a dedicated measurement device, to observe and measure the 

machined workpiece surface. In doing so, we seek to identify each characteristic of the 

machine tool in a short time while retaining high accuracy. 

Several in-situ methods for observing machined surfaces using optical cameras have 

already been proposed. For example, Quinsat et al. [11] measured the surface of a workpiece 

mounted on a five-axis machining center using a sensor based on chromatic confocal sensing 

technology, integrated on the same machine. The papers [12 – 14], likewise report in-situ 

surface roughness measurement using chromatic confocal sensing technology. Although 

these techniques enable highly accurate measurement of surface roughness, they do not 

address the identification of other machine tool characteristics.  

On the other hand, identifying each individual characteristic from the superimposed 

surface features is generally difficult. The static and dynamic characteristics, thermal 

properties, and geometric accuracy of the machine tool’s structure, as well as drive system 

properties such as servo synchronization accuracy and the long-term effects of bearing wear, 

do not act independently but instead affect one another. For instance, changes in the 

temperature distribution can alter the pressure on contact interfaces, which in turn changes 

stiffness owing to nonlinear contact behaviour. Bearing wear could further influence static 

and dynamic characteristics as well as thermal behaviour. Under these complex interactions, 

constructing a geometry-based or physics-based model and then solving the inverse problem 

to isolate each factor proves difficult. Statistical methods particularly those incorporating 

machine learning are thus promising alternatives. 

Machining is a forceful process that requires significant power, necessitating the 

encapsulation of the workpiece and tool within a machining chamber to protect the 

surrounding environment. The environment within the machining chamber is aggressive, 



V. Söderberg et al. / Journal of Machine Engineering, 2026, Vol. 26   
 

characterized by vibrations, temperature fluctuations, and material removed from the 

workpiece. Additionally, fluids such as cutting fluids may be present, further contributing to 

harsh conditions. These aggressive conditions complicate the placement of analytical 

equipment within the machining chamber and impose additional requirements on processes 

to perform analyses, such as ensuring the cleanliness of the workpiece. However, the 

environment is not constant; it is most aggressive when the tool is engaged. The idea is to 

quickly collect necessary data during pauses in modern machining, such as tool or workpiece 

changes, to evaluate the process results with minimal impact on process time. 

This study examines milling, which is characterized by a stationary workpiece and a 

moving tool. Material removal occurs intermittently, with the tool periodically engaging, 

leading to variations in forces. These variations must be mitigated to minimize their impact 

on the generated surface. The hypothesis is that images captured by a CCD camera of the 

machined surface contain sufficient data to detect specific frequencies, including vibrations. 

This research proposes a method for rapidly and accurately estimating machine tool 

characteristics. Specifically, by capturing images of the machined workpiece surface using an 

optical camera mounted on the machine tool. From multiple surface images, features such as 

the workpiece intensity profiles are extracted. Frequency analysis techniques are then 

employed to identify machining system and process characteristics. With this proposed 

method, the lengthy evaluations traditionally requiring specialized measurement devices can 

be performed more rapidly, without sacrificing accuracy. 

2. MATERIALS AND METHODS 

2.1. MACHINING 

This research utilized a 3-axis vertical milling centre (Baca R1000) to perform dry 

machining on an aluminium Al6082. Several slots were milled using a 12 mm diameter, 2-

flute solid end mill, with cutting parameters detailed in Table 1. Post-machining, the 

workpiece was inspected using a camera at 200x magnification. To ensure process stability, 

the initial 10 mm of each slot was excluded from data collection, and uniform illumination 

was maintained to guarantee data quality. 

Table 1. Cutting parameters 

Slots Feed rate 𝑣𝑓 

[mm/min] 

Feed per 

tooth [mm] 
𝑓𝑧 = 𝑣𝑓 (𝑛 ∙ 𝑧)⁄  

Spindle speed 

[rpm] 

Depth of Cut 

[mm] 

Odd (1, 3, 5, …) 540 
0.09 

3000 
2 

Even (2, 4, 6, …) 720 4000 

 

 

The number of flutes on a milling cutter is a critical parameter influencing performance 

primarily through its effect on chip load. Two-flute cutters, with their larger gullets, are 

effective for roughing softer materials like aluminium by efficiently evacuating large chips. 
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Conversely, multi-flute cutters are better for finishing harder materials, as their design 

produces a smoother surface finish and enhances tool rigidity, which minimizes chatter. While 

2-flute tools allow for a heavier chip load per tooth, multi-flute tools can achieve higher 

material removal rates at increased rotational speeds and offer longer tool life by distributing 

wear. 

2.2. IMAGE ACQUISITION AND ANALYSIS   

In this study, a DinoLite AM7915MZT CCD camera was used. A protective enclosure 

has been designed for the camera to shield it from the machining environment. Special 

attention has been given to finding an appropriate placement for the camera. 

Table 2. Specification of the CCD camera used for image acquisition 

Manufacturer Dino-lite 

Model Number AM7915MZT 

Magnification 10x – 220x 

Resolution 2592 × 1944 

Collected images of machined surfaces are analysed in several steps, acquiring image, 

extraction of intensity profile, FFT analysis of spatial frequencies, converting spatial 

frequency to inferred temporal frequency (ITF), comparison of dominant spatial wavelength 

with theoretical feed per revolution, and finally calculating harmonics from ITF analysis. 

Schematic diagram of the image analysis is presented in the Fig. 1.  

 

Fig. 1. Schematic diagram of methodology for machined surface image analysis 

To ensure a robust image analysis method, all initial image acquisition was deliberately 

conducted outside the machine tool chamber. This crucial decision, coupled with an external 

light ring for consistent illumination, aimed to mitigate inherent challenges of in-situ imaging 

and prevent potential negative effects from early image processing steps. Developing a robust 
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image analysis methodology involves a systematic and iterative testing framework.  

The acquired images were then processed in MATLAB, with a central focus on extracting 

key features indicative of machining quality and dynamics. A primary analytical step involved 

extracting intensity profiles from specific regions of interest within the images. This rich 

spatial information was then subjected to Fast Fourier Transform (FFT) analysis, both 

spatially and temporally. 

The spatial FFT yielded dominant spatial wavelengths, which were critically compared 

with the theoretical feed per revolution. This comparison served as a robust validation point, 

as discrepancies could indicate issues like tool wear, material irregularities, or machine 

vibration effects impacting the desired surface finish. Similarly, the temporal FFT of the 

image data, derived from sequences of frames or specific time-series data extracted from the 

images, allowed to identify inferred temporal frequencies. Within these temporal frequency 

spectra, the attention was specifically directed towards identifying harmonics. The presence 

and amplitude of these harmonics provide robust indicators of periodic phenomena within the 

machining process, potentially pointing to chatter, imbalances, or specific operational 

frequencies, all of which are crucial for maintaining process stability and part quality. 

By performing these analyses on clean, high-fidelity images, and focusing on 

fundamental physical relationships (like feed per revolution) and characteristic frequency 

signatures (harmonics), this approach significantly enhanced the robustness and reliability of 

the insights derived, making the methodology less susceptible to the typical noise and 

variability of an industrial environment. 

3. RESULTS 

3.1. MACHINING AND SURFACE ANALYSIS 

Machining of slots based on the provided in Table 1 parameters. The main consideration 

of this test was to acquire different surface texture, which contains error transmitted 

machining system, such as vibrations. More information about machining test can be read in 

the paper [15]. The surfaces were captured by using designed on-machine surface 

measurement (OMSM) system. As a baseline, surfaces were measured using Zygo 

Nview7300 White Light Interferometer (WLI), with 10 times magnification and 1MPx CCD 

camera. The spacing of the 3D surface data was 1.09 μm × 1.09 μm × 0.0087 nm. The surface 

data are presented in Table 3.  

Interestingly, standard parametric analyses of these WLI-measured surfaces did not 

reveal substantial differences, suggesting a deceptive similarity at a macroscopic level. 

However, a more granular examination of the extracted surface profiles clearly exposed 

distinct variations in characteristic features. These differences manifested as subtle yet 

undeniable profile irregularities, which can hypothesize are direct consequences of either the 

inherent dynamics of the machining system or specific nuances within the machining process 

itself. This observation underscores the value of detailed profile scrutiny, even when 

conventional roughness parameters appear consistent. 
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Table 3. Surface data measured using WLI, machined with 2 mm depth of cut 

Image from slot 1 Image from slot 6 Image from slot 12 

   
Surface texture analysis from WLI microscope 

   

    

   

3.2. MACHINED SURFACE INTENSITY PROFILE ANALYSIS 

This section details the methodology and immediate findings from the quantitative 

assessment of machined surface characteristics, leveraging detailed intensity profiles derived 

from acquired images. This granular analysis provides critical insights into the underlying 

machining process and system dynamics, aiming to reveal features not apparent through 

conventional macroscopic examinations. To ensure the robustness and reliability of the 

intensity data, free from typical industrial disturbances, all images were captured deliberately 

outside the machine tool chamber. This acquisition strategy employed an external light ring 

to provide uniform and consistent illumination across the workpiece surfaces. The resultant 

high-fidelity images formed the foundation for all subsequent analyses. 

The acquired images, specifically those depicting machined surfaces, were then 

processed. Image files were loaded, converted to grayscale, and pre-processed with a median 

filter to reduce noise. Intensity profiles were then systematically extracted along  
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a representative horizontal line (Fig. 2a, Fig. 3a), transforming the two-dimensional image 

data into one-dimensional intensity variations that reflect surface topography. 

Following intensity profile extraction, a Fast Fourier Transform (FFT) was applied to 

these spatial profiles to transition the data from the spatial domain to the frequency domain. 

This transformation allowed for the identification of dominant spatial wavelengths present on 

the machined surfaces. The single-sided amplitude spectrum was derived from the absolute 

values of the FFT results, and leading spatial frequencies were identified. For both the “odd 

slot” and “even slot” surfaces, the dominant spatial wavelength identified from the FFT 

spectrum was then compared with the theoretical feed per revolution of the machining 

process.  

Peaks in the frequency spectrum correspond to the dominant spatial frequencies present 

on the surface. The location of these peaks indicates the wavelength of periodic patterns (like 

feed marks or vibration-induced waves), and their amplitude reflects the prominence of these 

patterns. Machine tool vibrations, especially forced vibrations and chatter, leave characteristic 

periodic patterns on the machined surface. 

 

 

Fig. 2. a) Grayscale image with horizontal line representing profile extraction position, b) extracted intensity profile, c) 

an example of the Inferred Temporal Frequency Spectrum (from Spatial FFT) of even slot (slot 17), with first five (5) 

harmonics for Spindle Speed Frequency (SF) and Tooth Passing Frequency (TPF) 

 

For the “odd slot” samples, with machining parameters of 3000 RPM and 540 mm/min 

feed, the theoretical feed per revolution was 0.1800 mm/revolution. The image analysis 

yielded a dominant spatial wavelength of 0.1833 mm, corresponding to a dominant spatial 

frequency of 5.4545 cycles/mm. This showed agreement, with a difference of only 1.85% 

from the theoretical value. Similarly, for the “even slot” surfaces, machined with 4000 RPM 

a) b) 

c) 
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and 720 mm/min feed, the theoretical feed per revolution was also 0.1800 mm/revolution. 

The dominant spatial wavelength from the “even slot” image analysis was also 0.1833 mm 

(5.4545 cycles/mm), similarly demonstrating good agreement with the theoretical value 

(1.85% difference). This consistent alignment for both slot types suggests that the primary 

tool mark wavelength on the surface is robustly captured and aligns well with the expected 

kinematic imprint of the tool's feed. 

In parallel, temporal information was inferred by converting the spatial frequencies into 

temporal frequencies using the theoretical feed rate. A FFT was subsequently applied to these 

inferred temporal frequencies to identify periodic phenomena within the machining process 

(Fig. 2c, Fig. 3c). A key objective of this temporal analysis was to specifically look for the 

presence and characteristics of harmonics within the frequency spectra, particularly those 

related to the Theoretical Spindle Speed Frequency (SF) and Theoretical Tooth Passing 

Frequency (TPF). 

For the “odd slot” samples, the theoretical SF was 50.00 Hz and the TPF was 100.00 

Hz. The temporal FFT spectra revealed the fundamental TPF at 98.18 Hz with an amplitude 

of 20.36, showing good agreement with the expected value. Furthermore, distinct higher-

order TPF harmonics were identified, including Harmonic 2 (at 202.50 Hz, expected 

200.00 Hz), Harmonic 3 (at 300.68 Hz, expected 300.00 Hz), Harmonic 4 (at 398.86 Hz, 

expected 400.00 Hz), and Harmonic 5 (at 497.05 Hz, expected 500.00 Hz). The fundamental 

SF was also found at 49.09 Hz (expected 50.00 Hz) with a dominant amplitude of 22.75, and 

its third harmonic (SF H3) was also present. This pattern indicates a stable machining process 

for the “odd slot” configuration, with the expected kinematic frequencies prominently 

represented. 

 

 

Fig. 3. a) Grayscale image with horizontal line representing profile extraction position, b) extracted intensity profile, c) 

an example of the Inferred Temporal Frequency Spectrum (from Spatial FFT) of even slot (slot 34), with first five (5) 

harmonics for Spindle Speed Frequency (SF) and Tooth Passing Frequency (TPF) 

b) 

c) 

a) 
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In contrast, the “even slot” samples, with a theoretical SF of 66.67 Hz and TPF of 133.33 

Hz, exhibited a different temporal frequency signature. The fundamental TPF was found at 

130.91 Hz with an amplitude of 18.91. Notably, the third TPF harmonic (TPF H3) at 400.91 

Hz (expected 400.00 Hz) showed a relatively high amplitude of 19.72, nearly matching that 

of the fundamental TPF. The fundamental SF itself was highly prominent, found at 65.45 Hz 

(expected 66.67 Hz) with a significantly larger amplitude of 43.50, almost double that of its 

TPF counterpart. The third (SF H3) and fifth (SF H5) SF harmonics were also clearly 

detected. The presence of these higher-amplitude SF components and specific TPF harmonics 

for the “even slot” suggests a more pronounced influence of spindle-related dynamics or 

specific resonant conditions (including vibrations) during this machining configuration, 

which warrants further investigation into its impact on surface integrity and process stability. 

These comprehensive spatial and temporal FFT analyses of machined surface intensity 

profiles allowed for a detailed, quantitative characterization of surface features that might be 

overlooked by macroscopic or conventional parametric assessments. 

4. DESIGN OF ON MACHINE SURFACE MEASUREMENT SYSTEM 

While many studies have been conducted to explore the on-machine implementation of 

the non-contact 3D surface measurements of the workpiece via interferometry [1, 17], 

deflectrometry [18], confocal microscopy [13, 19] and autostereoscopic [20] systems for 

measuring workpiece profile error and tool wear, use of machine vision systems integrated to 

machining centers for acquiring surface characteristics is not well explored. Especially, robust 

machine vision systems which can withstand the environment inside the machining chamber 

is not proposed. An embedded camera assembly with an actuated cover is developed for this 

study to meet the following requirements ease of integration to existing machining tool, ease 

of customization and duplication for allow different camera/lighting configurations, and 

sufficient protection against cutting chips and fluids  

The assembly consists of three stationary parts (marked blue in Fig. 4) and one actuated 

part (marked red in Fig. 4), all of which fabricated with commercial FDM printer.  The printed 

parts are made of ABS plastic to account for higher operational temperatures and vibration.  

 

Fig. 4. OMSM assembly, a) Front view without the cover, b) Projection view with the actuated cover, 

 c) OMSM assembly in machining chamber, example 

a) b) c) 
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The use of multiple parts instead of monolithic design allows easier adjustment of the 

camera alignment around X and Y-axes, as well as replacing machine vision system without 

remaking the entire assembly. The actuated cover can be closed while machining to prevent 

the damages to the camera due to cutting chips and coolant and be opened when the workpiece 

imaging is to be conducted (Fig. 4b). The design also features five M6 holes (marked orange 

circles in Fig. 4a), which allows the assembly to be installed either directly to the spindle 

housing, or with an aluminum profile to any interior surface (Fig. 4c). 

The illumination pattern was enhanced through the integration of a coaxially mounted 

light ring in conjunction with the DinoLite camera. 

5. CONCLUSION 

This study demonstrates the feasibility of using a CCD camera mounted inside the 

machining chamber to capture images containing sufficient data to correlate the generated 

surface with the machining process. This approach can enhance machine productivity. The 

method shows potential to complement existing analysis techniques by reducing the time 

required for analysis and feedback regarding unwanted vibrations in the machining system. 

The experiment underscores the critical importance of capturing images with 

sufficiently high quality to enable the extraction of essential data. Illumination presents a 

significant challenge due to the reflective properties of the workpiece. The DinoLite camera 

has inbuilt lightning. However, the designed proved to not give sufficiently uniformed light 

and had to be completed by an external device. The adopted strategy to mitigate this involved 

uniformly flooding the object with light from directly above, centred around the camera. 

Ensuring uniform lighting is crucial, as local variations in light intensity introduce noise and 

degrade the fidelity of the data acquired by the CCD sensor. 

Image-based spatial frequency analysis consistently validates theoretical feed per 

revolution. For both “odd slot” and “even slot” machined surfaces, the dominant spatial 

wavelength extracted from image intensity profiles through FFT analysis showed excellent 

agreement (within 1.85% difference) with the theoretical feed per revolution. This indicates 

that the image analysis method robustly captures the primary kinematic imprints on the 

machined surface, confirming the expected tool mark wavelength regardless of specific 

machining parameters used for each slot type. 

Temporal harmonic analysis reveals distinct machining process dynamics for different 

slot types. While spatial characteristics were consistent, the temporal FFT spectra showed 

notable differences between the “odd slot” and “even slot” surfaces. The “odd slot” exhibited 

a stable process with expected fundamental and higher-order Tooth Passing Frequency (TPF) 

harmonics. In contrast, the “even slot” displayed a more pronounced influence of Spindle 

Speed Frequency (SF) components and specific TPF harmonics, suggesting potentially 

different spindle-related dynamics or resonant conditions impacting the surface during its 

machining. The clear distinctions observed between the “odd slot” and “even slot” 

characteristics, particularly in terms of dominant spatial wavelength alignment and the 

specific patterns and amplitudes of temporal harmonics, provide robust, frequency-domain 

signatures directly informing the understanding of the machining system's performance and 

process integrity. 
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FFT analysis of surface images can reveal the frequencies of patterns, which can be 

directly correlated to the vibration frequencies of machine tool components (e.g., spindle 

imbalance, structural resonances). 

The image analysis approach, encompassing both spatial and temporal Fast Fourier 

Transform (FFT) of intensity profiles, proves to be a highly effective and robust methodology 

for characterizing machined surfaces. It not only consistently validates theoretical kinematic 

parameters, such as the feed per revolution, by precisely identifying the dominant spatial 

wavelength of tool marks, but also critically reveals subtle yet significant dynamic differences 

within the machining process through its detailed harmonic analysis. This capability to 

uncover frequency-domain signatures provides invaluable insights into machining system 

performance and process stability that might otherwise be overlooked by conventional 

macroscopic or parametric surface assessments. 

6. FUTURE WORK 

The next step in advancing this research is to comprehensively refine and further 

evaluate the parameters for image acquisition. This includes exploring various camera 

settings (e.g., exposure time, aperture, focal length), alternative illumination strategies (e.g., 

structured light, dark field illumination, coaxial lighting), and advanced optical setups to 

optimize the capture of specific surface features. Concurrently, a rigorous assessment of 

various image processing techniques is underway. The overarching goal is to ensure that the 

raw image data, and subsequent processed data, sufficiently highlight and accurately represent 

the desired characteristics of the surface, such as tool marks, chatter patterns, or material 

defects, which are crucial for process diagnostics. 

Furthermore, a significant avenue of ongoing research involves leveraging the power of 

machine learning (ML), deep learning (DL), and transfer learning (TL) models. The aim is to 

train these advanced computational models to autonomously process and establish robust 

links between the detailed surface characteristics extracted from images and the underlying 

machining process parameters and conditions. This includes developing models capable of 

predicting surface roughness from image features, identifying the root cause of specific 

surface irregularities based on spectral signatures, and ultimately enabling real-time process 

monitoring and control through image-based feedback. Such data-driven approaches are 

essential for moving towards intelligent manufacturing systems capable of optimizing 

machining processes for desired surface quality and predicting potential anomalies [21, 22]. 
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