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IN SITU- ON MACHINE- POST PROCESS METROLOGY SYSTEM DESIGN
FOR MACHINING SYSTEM CHARACTERIZATION

The evaluation of machine tool characteristics and their impact on surface quality is challenging, often requiring
disruptive traditional methods. This study introduces a novel, non-invasive approach using optical camera images
for rapid and accurate assessment. Data robustness was ensured by acquiring initial images outside the machining
chamber with consistent external illumination, focusing on detailed intensity profile analysis. Machined surfaces
were processed using intensity profile extraction and Fast Fourier Transform (FFT). The dominant spatial
wavelength (0.1833 mm) consistently showed excellent agreement (within 1.85%) with the theoretical feed per
revolution (0.1800 mm). This robustly validates the method's ability to precisely capture primary kinematic tool
marks. Temporal information, inferred from spatial frequencies, underwent subsequent FFT to identify periodic
phenomena and harmonics. The comprehensive spatial and temporal FFT analyses offer detailed, quantitative
surface characterizations. The clear distinctions in temporal harmonic patterns provide robust, frequency-domain
signatures informing machining system performance and process integrity.

1. INTRODUCTION

In cutting operations, the surface quality of a machined workpiece varies according to
the extent to which the tool deviates from its commanded path. Such deviations stem from
multiple factors, including the static and dynamic characteristics, thermal behaviour [1], and
geometric accuracy of the machine tool’s structure, as well as the drive system’s properties
such as servo synchronization accuracy and long-term effects like bearing wear. In other
words, the final surface of the workpiece reflects the superimposed influences of these various
characteristics.

Numerous methods have been proposed to measure and evaluate these factors
individually. For instance, the Loaded Double Ball Bar (LDBB) method [2] can evaluate static
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characteristics that depend on direction, while techniques using vibrations arising during
machining have been employed to assess dynamic characteristics [3]. Approaches that utilize
many temperature sensors have also been reported for evaluating thermal deformation [4],
[5]. Additionally, Double Ball Bar (DBB) is well known for measuring geometric error and
servo synchronization accuracy [6, 7]. However, many of these methods often require
interrupting the machining process, removing the workpiece for evaluation, or installing
numerous sensors in advance. Such measurement tasks create downtime on the production
line, compromising productivity.

To evaluate machine tool characteristics with high accuracy and in minimal time, Ibaraki
and Okumura [8] proposed a method that leverages the machined workpiece itself. By
measuring the machined surface with a touch-trigger probe, one can assess thermal errors.
This technique is widely recognized and is included in Annex of 1SO 10791-10 [9] for
evaluating thermal deformation. Nonetheless, this approach only captures thermal
deformation related errors, which represent just one factor among many that determine
workpiece accuracy and surface quality.

Consequently, it remains challenging to quickly and accurately estimate all the
machining process-related factors that influence the final quality of the work piece [10]. Still,
because the final surface results from a superposition of all these characteristics, there is
potential to conduct a comprehensive evaluation of the machine tool if the surface can be
observed and measured by some means. Therefore, the present study aims to use a general-
purpose camera, rather than a dedicated measurement device, to observe and measure the
machined workpiece surface. In doing so, we seek to identify each characteristic of the
machine tool in a short time while retaining high accuracy.

Several in-situ methods for observing machined surfaces using optical cameras have
already been proposed. For example, Quinsat et al. [11] measured the surface of a workpiece
mounted on a five-axis machining center using a sensor based on chromatic confocal sensing
technology, integrated on the same machine. The papers [12 — 14], likewise report in-situ
surface roughness measurement using chromatic confocal sensing technology. Although
these techniques enable highly accurate measurement of surface roughness, they do not
address the identification of other machine tool characteristics.

On the other hand, identifying each individual characteristic from the superimposed
surface features is generally difficult. The static and dynamic characteristics, thermal
properties, and geometric accuracy of the machine tool’s structure, as well as drive system
properties such as servo synchronization accuracy and the long-term effects of bearing wear,
do not act independently but instead affect one another. For instance, changes in the
temperature distribution can alter the pressure on contact interfaces, which in turn changes
stiffness owing to nonlinear contact behaviour. Bearing wear could further influence static
and dynamic characteristics as well as thermal behaviour. Under these complex interactions,
constructing a geometry-based or physics-based model and then solving the inverse problem
to isolate each factor proves difficult. Statistical methods particularly those incorporating
machine learning are thus promising alternatives.

Machining is a forceful process that requires significant power, necessitating the
encapsulation of the workpiece and tool within a machining chamber to protect the
surrounding environment. The environment within the machining chamber is aggressive,
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characterized by vibrations, temperature fluctuations, and material removed from the
workpiece. Additionally, fluids such as cutting fluids may be present, further contributing to
harsh conditions. These aggressive conditions complicate the placement of analytical
equipment within the machining chamber and impose additional requirements on processes
to perform analyses, such as ensuring the cleanliness of the workpiece. However, the
environment is not constant; it is most aggressive when the tool is engaged. The idea is to
quickly collect necessary data during pauses in modern machining, such as tool or workpiece
changes, to evaluate the process results with minimal impact on process time.

This study examines milling, which is characterized by a stationary workpiece and a
moving tool. Material removal occurs intermittently, with the tool periodically engaging,
leading to variations in forces. These variations must be mitigated to minimize their impact
on the generated surface. The hypothesis is that images captured by a CCD camera of the
machined surface contain sufficient data to detect specific frequencies, including vibrations.
This research proposes a method for rapidly and accurately estimating machine tool
characteristics. Specifically, by capturing images of the machined workpiece surface using an
optical camera mounted on the machine tool. From multiple surface images, features such as
the workpiece intensity profiles are extracted. Frequency analysis techniques are then
employed to identify machining system and process characteristics. With this proposed
method, the lengthy evaluations traditionally requiring specialized measurement devices can
be performed more rapidly, without sacrificing accuracy.

2. MATERIALS AND METHODS

2.1. MACHINING

This research utilized a 3-axis vertical milling centre (Baca R1000) to perform dry
machining on an aluminium Al6082. Several slots were milled using a 12 mm diameter, 2-
flute solid end mill, with cutting parameters detailed in Table 1. Post-machining, the
workpiece was inspected using a camera at 200x magnification. To ensure process stability,
the initial 210 mm of each slot was excluded from data collection, and uniform illumination
was maintained to guarantee data quality.

Table 1. Cutting parameters

Slots Feed rate v, Feed per Spindle speed Depth of Cut
[mm/min] tooth [mm] [rpm] [mm]
fr=v/(n"2)
0dd (1, 3,5, ...) 540 3000
Even (2,4,6, ...) 720 0.09 4000 2

The number of flutes on a milling cutter is a critical parameter influencing performance
primarily through its effect on chip load. Two-flute cutters, with their larger gullets, are
effective for roughing softer materials like aluminium by efficiently evacuating large chips.
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Conversely, multi-flute cutters are better for finishing harder materials, as their design
produces a smoother surface finish and enhances tool rigidity, which minimizes chatter. While
2-flute tools allow for a heavier chip load per tooth, multi-flute tools can achieve higher
material removal rates at increased rotational speeds and offer longer tool life by distributing
wear.

2.2. IMAGE ACQUISITION AND ANALYSIS

In this study, a DinoLite AM7915MZT CCD camera was used. A protective enclosure
has been designed for the camera to shield it from the machining environment. Special
attention has been given to finding an appropriate placement for the camera.

Table 2. Specification of the CCD camera used for image acquisition

Manufacturer Dino-lite

Model Number AM7915MZT

Magnification 10x — 220x
Resolution 2592 x 1944

Collected images of machined surfaces are analysed in several steps, acquiring image,
extraction of intensity profile, FFT analysis of spatial frequencies, converting spatial
frequency to inferred temporal frequency (ITF), comparison of dominant spatial wavelength
with theoretical feed per revolution, and finally calculating harmonics from ITF analysis.
Schematic diagram of the image analysis is presented in the Fig. 1.
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Fig. 1. Schematic diagram of methodology for machined surface image analysis

To ensure a robust image analysis method, all initial image acquisition was deliberately
conducted outside the machine tool chamber. This crucial decision, coupled with an external
light ring for consistent illumination, aimed to mitigate inherent challenges of in-situ imaging
and prevent potential negative effects from early image processing steps. Developing a robust
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image analysis methodology involves a systematic and iterative testing framework.
The acquired images were then processed in MATLAB, with a central focus on extracting
key features indicative of machining quality and dynamics. A primary analytical step involved
extracting intensity profiles from specific regions of interest within the images. This rich
spatial information was then subjected to Fast Fourier Transform (FFT) analysis, both
spatially and temporally.

The spatial FFT yielded dominant spatial wavelengths, which were critically compared
with the theoretical feed per revolution. This comparison served as a robust validation point,
as discrepancies could indicate issues like tool wear, material irregularities, or machine
vibration effects impacting the desired surface finish. Similarly, the temporal FFT of the
Image data, derived from sequences of frames or specific time-series data extracted from the
images, allowed to identify inferred temporal frequencies. Within these temporal frequency
spectra, the attention was specifically directed towards identifying harmonics. The presence
and amplitude of these harmonics provide robust indicators of periodic phenomena within the
machining process, potentially pointing to chatter, imbalances, or specific operational
frequencies, all of which are crucial for maintaining process stability and part quality.

By performing these analyses on clean, high-fidelity images, and focusing on
fundamental physical relationships (like feed per revolution) and characteristic frequency
signatures (harmonics), this approach significantly enhanced the robustness and reliability of
the insights derived, making the methodology less susceptible to the typical noise and
variability of an industrial environment.

3. RESULTS

3.1. MACHINING AND SURFACE ANALYSIS

Machining of slots based on the provided in Table 1 parameters. The main consideration
of this test was to acquire different surface texture, which contains error transmitted
machining system, such as vibrations. More information about machining test can be read in
the paper [15]. The surfaces were captured by using designed on-machine surface
measurement (OMSM) system. As a baseline, surfaces were measured using Zygo
Nview7300 White Light Interferometer (WLI), with 10 times magnification and 1MPx CCD
camera. The spacing of the 3D surface data was 1.09 pm x 1.09 um % 0.0087 nm. The surface
data are presented in Table 3.

Interestingly, standard parametric analyses of these WLI-measured surfaces did not
reveal substantial differences, suggesting a deceptive similarity at a macroscopic level.
However, a more granular examination of the extracted surface profiles clearly exposed
distinct variations in characteristic features. These differences manifested as subtle yet
undeniable profile irregularities, which can hypothesize are direct consequences of either the
inherent dynamics of the machining system or specific nuances within the machining process
itself. This observation underscores the value of detailed profile scrutiny, even when
conventional roughness parameters appear consistent.
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Table 3. Surface data measured using WLI, machined with 2 mm depth of cut

Image from slot 1 Image from slot 6 Image from slot 12

! 1 \
Surface texture analysis from WLI microscope

mm
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Information Information Information
Filter settings Double Gaussian filter, 0.008 mm. Filter settings Double Gaussian filter, 0.008 mm. Filter settings Double Gaussian filter, 0.008 mm.

Parameters Value Unit Parameters Value Unit Parameters Value Unit
Rk 0.0877 pm Rk 0.115  pm Rk 0.107 um
Rpk 00523 pm Rpk 0.0442  pm Rpk 0.0345 um

Rk 00638 ym A 0.0505  pm Rvk 0063 um
ML 15 % e 742 | % ML 620 %
M2 827 % M2 888 | % Mr2 855 %
Al 3.01 um3*mm 2l 164 pym=/mm Al 1.07  pm?#/mm
A2 551  pm2fmm Az 284 | um?Amm A2 4.58  pm?/mm

Rpk* 0.0976 pm = 00643
Rpk* 0.0896 pm Rvict 0110 pm X um
Rvk* 0.146 pm Rvk* 0.111  pm

3.2. MACHINED SURFACE INTENSITY PROFILE ANALYSIS

This section details the methodology and immediate findings from the quantitative
assessment of machined surface characteristics, leveraging detailed intensity profiles derived
from acquired images. This granular analysis provides critical insights into the underlying
machining process and system dynamics, aiming to reveal features not apparent through
conventional macroscopic examinations. To ensure the robustness and reliability of the
intensity data, free from typical industrial disturbances, all images were captured deliberately
outside the machine tool chamber. This acquisition strategy employed an external light ring
to provide uniform and consistent illumination across the workpiece surfaces. The resultant
high-fidelity images formed the foundation for all subsequent analyses.

The acquired images, specifically those depicting machined surfaces, were then
processed. Image files were loaded, converted to grayscale, and pre-processed with a median
filter to reduce noise. Intensity profiles were then systematically extracted along
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a representative horizontal line (Fig. 2a, Fig. 3a), transforming the two-dimensional image
data into one-dimensional intensity variations that reflect surface topography.

Following intensity profile extraction, a Fast Fourier Transform (FFT) was applied to
these spatial profiles to transition the data from the spatial domain to the frequency domain.
This transformation allowed for the identification of dominant spatial wavelengths present on
the machined surfaces. The single-sided amplitude spectrum was derived from the absolute
values of the FFT results, and leading spatial frequencies were identified. For both the “odd
slot” and “even slot” surfaces, the dominant spatial wavelength identified from the FFT
spectrum was then compared with the theoretical feed per revolution of the machining
process.

Peaks in the frequency spectrum correspond to the dominant spatial frequencies present
on the surface. The location of these peaks indicates the wavelength of periodic patterns (like
feed marks or vibration-induced waves), and their amplitude reflects the prominence of these
patterns. Machine tool vibrations, especially forced vibrations and chatter, leave characteristic
periodic patterns on the machined surface.
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Fig. 2. a) Grayscale image with horizontal line representing profile extraction position, b) extracted intensity profile, )
an example of the Inferred Temporal Frequency Spectrum (from Spatial FFT) of even slot (slot 17), with first five (5)
harmonics for Spindle Speed Frequency (SF) and Tooth Passing Frequency (TPF)

For the “odd slot” samples, with machining parameters of 3000 RPM and 540 mm/min
feed, the theoretical feed per revolution was 0.1800 mm/revolution. The image analysis
yielded a dominant spatial wavelength of 0.1833 mm, corresponding to a dominant spatial
frequency of 5.4545 cycles/mm. This showed agreement, with a difference of only 1.85%
from the theoretical value. Similarly, for the “even slot” surfaces, machined with 4000 RPM
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and 720 mm/min feed, the theoretical feed per revolution was also 0.1800 mm/revolution.
The dominant spatial wavelength from the “even slot” image analysis was also 0.1833 mm
(5.4545 cycles/mm), similarly demonstrating good agreement with the theoretical value
(1.85% difference). This consistent alignment for both slot types suggests that the primary
tool mark wavelength on the surface is robustly captured and aligns well with the expected
kinematic imprint of the tool's feed.

In parallel, temporal information was inferred by converting the spatial frequencies into
temporal frequencies using the theoretical feed rate. A FFT was subsequently applied to these
inferred temporal frequencies to identify periodic phenomena within the machining process
(Fig. 2c, Fig. 3c). A key objective of this temporal analysis was to specifically look for the
presence and characteristics of harmonics within the frequency spectra, particularly those
related to the Theoretical Spindle Speed Frequency (SF) and Theoretical Tooth Passing
Frequency (TPF).

For the “odd slot” samples, the theoretical SF was 50.00 Hz and the TPF was 100.00
Hz. The temporal FFT spectra revealed the fundamental TPF at 98.18 Hz with an amplitude
of 20.36, showing good agreement with the expected value. Furthermore, distinct higher-
order TPF harmonics were identified, including Harmonic 2 (at 202.50 Hz, expected
200.00 Hz), Harmonic 3 (at 300.68 Hz, expected 300.00 Hz), Harmonic 4 (at 398.86 Hz,
expected 400.00 Hz), and Harmonic 5 (at 497.05 Hz, expected 500.00 Hz). The fundamental
SF was also found at 49.09 Hz (expected 50.00 Hz) with a dominant amplitude of 22.75, and
its third harmonic (SF H3) was also present. This pattern indicates a stable machining process
for the “odd slot” configuration, with the expected kinematic frequencies prominently

represented.
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Fig. 3. a) Grayscale image with horizontal line representing profile extraction position, b) extracted intensity profile, c)
an example of the Inferred Temporal Frequency Spectrum (from Spatial FFT) of even slot (slot 34), with first five (5)
harmonics for Spindle Speed Frequency (SF) and Tooth Passing Frequency (TPF)
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In contrast, the “even slot” samples, with a theoretical SF of 66.67 Hz and TPF of 133.33
Hz, exhibited a different temporal frequency signature. The fundamental TPF was found at
130.91 Hz with an amplitude of 18.91. Notably, the third TPF harmonic (TPF H3) at 400.91
Hz (expected 400.00 Hz) showed a relatively high amplitude of 19.72, nearly matching that
of the fundamental TPF. The fundamental SF itself was highly prominent, found at 65.45 Hz
(expected 66.67 Hz) with a significantly larger amplitude of 43.50, almost double that of its
TPF counterpart. The third (SF H3) and fifth (SF H5) SF harmonics were also clearly
detected. The presence of these higher-amplitude SF components and specific TPF harmonics
for the “even slot” suggests a more pronounced influence of spindle-related dynamics or
specific resonant conditions (including vibrations) during this machining configuration,
which warrants further investigation into its impact on surface integrity and process stability.

These comprehensive spatial and temporal FFT analyses of machined surface intensity
profiles allowed for a detailed, quantitative characterization of surface features that might be
overlooked by macroscopic or conventional parametric assessments.

4. DESIGN OF ON MACHINE SURFACE MEASUREMENT SYSTEM

While many studies have been conducted to explore the on-machine implementation of
the non-contact 3D surface measurements of the workpiece via interferometry [1, 17],
deflectrometry [18], confocal microscopy [13, 19] and autostereoscopic [20] systems for
measuring workpiece profile error and tool wear, use of machine vision systems integrated to
machining centers for acquiring surface characteristics is not well explored. Especially, robust
machine vision systems which can withstand the environment inside the machining chamber
is not proposed. An embedded camera assembly with an actuated cover is developed for this
study to meet the following requirements ease of integration to existing machining tool, ease
of customization and duplication for allow different camera/lighting configurations, and
sufficient protection against cutting chips and fluids

The assembly consists of three stationary parts (marked blue in Fig. 4) and one actuated
part (marked red in Fig. 4), all of which fabricated with commercial FDM printer. The printed
parts are made of ABS plastic to account for higher operational temperatures and vibration.

Aluminum
frame

Microscope

Table =

Target

Fig. 4. OMSM assembly, a) Front view without the cover, b) Projection view with the actuated cover,
¢) OMSM assembly in machining chamber, example
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The use of multiple parts instead of monolithic design allows easier adjustment of the
camera alignment around X and Y-axes, as well as replacing machine vision system without
remaking the entire assembly. The actuated cover can be closed while machining to prevent
the damages to the camera due to cutting chips and coolant and be opened when the workpiece
imaging is to be conducted (Fig. 4b). The design also features five M6 holes (marked orange
circles in Fig. 4a), which allows the assembly to be installed either directly to the spindle
housing, or with an aluminum profile to any interior surface (Fig. 4c).

The illumination pattern was enhanced through the integration of a coaxially mounted
light ring in conjunction with the DinoLite camera.

5. CONCLUSION

This study demonstrates the feasibility of using a CCD camera mounted inside the
machining chamber to capture images containing sufficient data to correlate the generated
surface with the machining process. This approach can enhance machine productivity. The
method shows potential to complement existing analysis techniques by reducing the time
required for analysis and feedback regarding unwanted vibrations in the machining system.

The experiment underscores the critical importance of capturing images with
sufficiently high quality to enable the extraction of essential data. Illumination presents a
significant challenge due to the reflective properties of the workpiece. The DinoLite camera
has inbuilt lightning. However, the designed proved to not give sufficiently uniformed light
and had to be completed by an external device. The adopted strategy to mitigate this involved
uniformly flooding the object with light from directly above, centred around the camera.
Ensuring uniform lighting is crucial, as local variations in light intensity introduce noise and
degrade the fidelity of the data acquired by the CCD sensor.

Image-based spatial frequency analysis consistently validates theoretical feed per
revolution. For both “odd slot” and “even slot” machined surfaces, the dominant spatial
wavelength extracted from image intensity profiles through FFT analysis showed excellent
agreement (within 1.85% difference) with the theoretical feed per revolution. This indicates
that the image analysis method robustly captures the primary kinematic imprints on the
machined surface, confirming the expected tool mark wavelength regardless of specific
machining parameters used for each slot type.

Temporal harmonic analysis reveals distinct machining process dynamics for different
slot types. While spatial characteristics were consistent, the temporal FFT spectra showed
notable differences between the “odd slot” and “even slot” surfaces. The “odd slot” exhibited
a stable process with expected fundamental and higher-order Tooth Passing Frequency (TPF)
harmonics. In contrast, the “even slot” displayed a more pronounced influence of Spindle
Speed Frequency (SF) components and specific TPF harmonics, suggesting potentially
different spindle-related dynamics or resonant conditions impacting the surface during its
machining. The clear distinctions observed between the “odd slot” and “even slot”
characteristics, particularly in terms of dominant spatial wavelength alignment and the
specific patterns and amplitudes of temporal harmonics, provide robust, frequency-domain
signatures directly informing the understanding of the machining system's performance and
process integrity.
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FFT analysis of surface images can reveal the frequencies of patterns, which can be
directly correlated to the vibration frequencies of machine tool components (e.g., spindle
imbalance, structural resonances).

The image analysis approach, encompassing both spatial and temporal Fast Fourier
Transform (FFT) of intensity profiles, proves to be a highly effective and robust methodology
for characterizing machined surfaces. It not only consistently validates theoretical kinematic
parameters, such as the feed per revolution, by precisely identifying the dominant spatial
wavelength of tool marks, but also critically reveals subtle yet significant dynamic differences
within the machining process through its detailed harmonic analysis. This capability to
uncover frequency-domain signatures provides invaluable insights into machining system
performance and process stability that might otherwise be overlooked by conventional
macroscopic or parametric surface assessments.

6. FUTURE WORK

The next step in advancing this research is to comprehensively refine and further
evaluate the parameters for image acquisition. This includes exploring various camera
settings (e.g., exposure time, aperture, focal length), alternative illumination strategies (e.g.,
structured light, dark field illumination, coaxial lighting), and advanced optical setups to
optimize the capture of specific surface features. Concurrently, a rigorous assessment of
various image processing techniques is underway. The overarching goal is to ensure that the
raw image data, and subsequent processed data, sufficiently highlight and accurately represent
the desired characteristics of the surface, such as tool marks, chatter patterns, or material
defects, which are crucial for process diagnostics.

Furthermore, a significant avenue of ongoing research involves leveraging the power of
machine learning (ML), deep learning (DL), and transfer learning (TL) models. The aim is to
train these advanced computational models to autonomously process and establish robust
links between the detailed surface characteristics extracted from images and the underlying
machining process parameters and conditions. This includes developing models capable of
predicting surface roughness from image features, identifying the root cause of specific
surface irregularities based on spectral signatures, and ultimately enabling real-time process
monitoring and control through image-based feedback. Such data-driven approaches are
essential for moving towards intelligent manufacturing systems capable of optimizing
machining processes for desired surface quality and predicting potential anomalies [21, 22].
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