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STATISTICAL MODELING AND OPTIMIZATION OF Ra AND MRR IN 

ULTRASONIC – ASSISTED EDM OF 90CrSi STEEL USING GRAPHITE 

ELECTRODES 

This study investigates the modeling and single-objective optimization of surface roughness (Ra) and material 

removal rate (MRR) in electrical discharge machining (EDM) of external cylindrical surfaces of hardened 90CrSi 

tool steel. The machining process is enhanced using ultrasonic vibration assistance and graphite electrodes to 

improve surface integrity and productivity. Gaussian Process Regression (GPR) and Response Surface 

Methodology (RSM) were employed to construct predictive models for Ra and MRR based on key process 

parameters, including vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), peak current (IP), and 

servo voltage (SV). The GPR model provided superior predictive performance for surface roughness, while RSM 

was more effective in modeling MRR. Optimization results showed that the minimum Ra of 1.6216 µm was 

achieved at A = 2.7743 µm, Ton = 8.0000 µs, Toff = 11.8294 µs, IP = 8.1723 A, and SV = 4.7936 V. Meanwhile, 

the maximum MRR of 12.1989 g/h was obtained at A = 3.5339 µm, Ton = 16.0000 µs, Toff = 8.0000 µs, IP = 

15.0000 A, and SV = 4.0000 V. The findings provide valuable insights into parameter selection for improving 

EDM performance on external cylindrical surfaces of high-hardness steels. 

1. INTRODUCTION 

Electrical Discharge Machining (EDM) has become an indispensable process for 

fabricating complex and high-hardness components, particularly in the mold, die, and tool 

industries. However, conventional EDM often suffers from limitations such as low material 

removal rate (MRR), poor surface finish (Ra), and inefficient debris removal. To overcome 

these drawbacks, researchers have increasingly integrated ultrasonic vibration (UV) into 

EDM systems, leading to the emergence of Ultrasonic Vibration-Assisted EDM (UV-EDM) 

as a promising hybrid process [1–3]. 
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Several studies have demonstrated that UV-EDM enhances debris removal, reduces tool 

wear, and improves surface integrity by facilitating more stable discharges and cavitation 

effects in the dielectric medium [1, 4, 5]. Wang et al. [1] investigated deep-hole UV-EDM 

and found that longitudinal/torsional vibrations improved flushing efficiency and reduced 

taper. Zhang et al. [4] elucidated the role of cavitation bubbles in enhancing debris removal, 

whereas Dong et al. [2] developed a thermodynamic model to simulate heat distribution under 

vertical UV excitation. Similar insights were reported by Yin et al. [6], who introduced 

longitudinal-torsional vibration to improve micro-hole accuracy and machining stability. 

In terms of performance enhancement, Lei et al. [6] successfully machined enclosed 

microgrooves using laminated electrodes under UV-EDM, achieving high precision. Li et 

al. [7] applied ultrasonic circular vibration (UCV) to improve surface quality in micro-hole 

machining, while Li et al. [8] extended this concept to analyse the integrity of machined 

surfaces using UCV electrodes. At the micro-scale, Ichikawa and Natsu [9] proved that 

ultrasonic fluid vibration facilitates machining with ultra-low discharge energy, and Xu et al. 

[10] emphasized the gas medium’s role in material removal mechanisms when combined with 

UV. Despite these advances, much of the research has focused on micro-EDM, [3, 7, 8, 11], 

hole drilling [1, 3, 4], and specialized setups such as powder-mixed dielectric [12–14] or novel 

electrode configurations [6], [15]. Optimization efforts have typically targeted complex alloys 

like Ti-6Al-4V [11, 16, 17], cemented carbides [10, 18], or Si₃N₄ ceramics [19], but limited 

attention has been paid to the EDM performance of external cylindrical surfaces of hardened 

tool steels under ultrasonic vibration. 

Moreover, although many studies have adopted Taguchi [20], ANOVA [21], FEM  

[22, 23], or experimental methods [24], [25], comprehensive modeling and optimization using 

advanced regression tools such as Gaussian Process Regression (GPR) and Response Surface 

Methodology (RSM) remain scarce in this context. For instance, Shabgard et al. [26, 27] and 

Abdullah et al. [18] used numerical modeling for UV-EDM but did not explore data-driven 

surrogate models. While Sundaram et al. [21] applied Taguchi-based analysis, predictive 

modeling of Ra and MRR using GPR and RSM on external cylindrical surfaces of 90CrSi 

steel has not been addressed. 

In addition to ultrasonic vibration assistance, the choice of electrode material and 

dielectric fluid significantly influences EDM outcomes such as surface roughness and 

electrode wear. Anjum et al. [28] compared the performance of copper and graphite electrodes 

in different dielectric environments when machining AISI 304L stainless steel. Their results 

demonstrated that graphite electrodes, while exhibiting slightly higher tool wear, consistently 

provided better surface finish in hydrocarbon-based dielectrics. Similarly, Ghazi et al. [29] 

investigated the influence of EDM parameters on surface roughness and electrode wear rate 

in the machining of 7024 aluminum alloy. They emphasized the strong dependency of surface 

integrity on discharge energy and electrode type, underlining the importance of systematic 

parameter optimization for improved machining quality. These findings further justify the use 

of graphite electrodes in the present study and reinforce the need for comprehensive modeling 

of Ra and MRR under varying EDM conditions. 

Additionally, surface topography and erosion mechanisms under UV-EDM have been 

studied extensively [5, 30, 31], but few investigations have quantitatively optimized both Ra 

and MRR using hybrid modeling for tool steels. Hou and Bai [32] introduced a 3D ultrasonic 
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vibration system to enhance debris ejection, yet did not address cylindrical geometry. 

Similarly, Singh et al. [22] and Choubey et al. [23] modeled ultrasonic effects on flat surfaces, 

but extrapolation to cylindrical geometries, which present unique spark gap dynamics, 

remains limited. 

To address these research gaps, this study aims to develop predictive models and 

perform single-objective optimization of surface roughness (Ra) and material removal rate 

(MRR) in ultrasonic vibration-assisted EDM of external cylindrical surfaces of hardened 

90CrSi tool steel using graphite electrodes. The process parameters considered include 

vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), peak current (IP), and 

servo voltage (SV). GPR and RSM are employed to build accurate surrogate models for Ra 

and MRR, respectively. The study seeks to (i) evaluate the modeling performance of GPR vs. 

RSM for each response, and (ii) identify optimal parameter settings to enhance both surface 

finish and productivity in machining cylindrical geometries. 

In contrast to prior studies that mainly employed Taguchi-based design or FEM 

simulations for parameter analysis, the present work introduces a data-driven surrogate 

modeling framework. To the best of our knowledge, this is the first study applying Gaussian 

Process Regression (GPR) to systematically optimize both Ra and MRR in ultrasonic 

vibration-assisted EDM using graphite electrodes when processing cylindrical hardened steels, 

a geometry that poses unique challenges compared with flat or micro-scale surfaces. Unlike 

multi-objective or micro-EDM investigations reported in the literature, this research 

deliberately focuses on single-objective optimization as a baseline step to rigorously validate 

the predictive accuracy of GPR against Response Surface Methodology (RSM). By 

establishing this foundation, the study not only demonstrates the superior modeling capability 

of GPR but also sets the stage for future extensions toward multi-objective optimization and 

intelligent process control in UV-EDM.  

2. METHODOLOGY 

2.1. EXPERIMENTAL SETUP AND WORKPIECE MATERIAL 

An experimental investigation was carried out to evaluate the effects of five key process 

parameters—vibration amplitude (A, µm), pulse-on time (Ton, µs), pulse-off time (Toff, µs), 

peak current (IP, A), and servo voltage (SV, V)—on the machining performance during 

ultrasonic vibration-assisted electrical discharge machining (UV-EDM) of hardened tool 

steel. The experimental setup is illustrated in Fig. 1. 

All machining operations were performed on a Sodick A30 CNC EDM machine, which 

was integrated with a high-power ultrasonic vibration system to improve spark stability, 

flushing conditions, and material removal characteristics. Ultrasonic vibrations were 

generated using an MPI WG-3000 ultrasonic generator (MPI Ultrasonics, Switzerland) with 

a rated power of 3000 W. The generated vibrations were transmitted through an RPS-5020-

4Z ultrasonic transducer, operating at a frequency of 20 kHz and nominal power of 2000 W. 

A custom-designed titanium horn was fabricated and employed to efficiently transfer 

ultrasonic energy to the tool–workpiece interface, ensuring consistent vibratory motion of the 

electrode. 
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Fig. 1. Experimental setup 

The tool electrode used in the experiments was made of HK0 graphite, selected for its 

excellent electrical conductivity, high thermal resistance, and low wear rate under discharge 

conditions. As the dielectric fluid, Diel MS 7000 (Total, France) was employed due to its 

stability and suitability for high-performance EDM applications. 

The workpiece material was 90CrSi tool steel, known for its high hardness, thermal 

resistance, and applicability in die and mold manufacturing. The samples were cylindrical in 

shape to simulate real-world external surface machining conditions. The experimental dataset 

analysed in this work was obtained from the study by Dinh et al. [33], which investigated 

ultrasonic EDM of external cylindrical surfaces using graphite electrodes. 

Two output responses were measured in this study: material removal rate (MRR) and 

surface roughness (Ra). The MRR was determined using the gravimetric method, widely 

accepted in EDM studies for its precision. Each workpiece was initially cleaned with ethanol, 

dried with warm air, and weighed using a high-precision analytical balance (accuracy: 

0.1 mg). After machining, the sample was re-cleaned, re-dried, and reweighed. The MRR was 

calculated using the following equation:  

𝑀𝑅𝑅 = ∑
mbefore−mafter

t

n
i=1   (1) 

where  and  are the masses (in grams) of the workpiece before and after 

machining, and t is the machining time (in hours). 

The surface roughness (Ra) was measured using a Mitutoyo SV3100 surface roughness 

tester. To ensure measurement accuracy and account for possible surface variability, three 

readings were taken at different positions along the external cylindrical surface of each 

machined sample. The average of these readings was reported as the final Ra value. 
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2.2. DESIGN OF EXPERIMENTS 

To systematically investigate the influence of process parameters on material removal 

rate (MRR) and surface roughness (Ra), a statistical experimental design based on the Box–

Behnken Design (BBD) was adopted. The experimental plan and the corresponding measured 

responses of MRR and Ra for each trial are presented in Table 1. This dataset served as the 

foundation for constructing regression models using both RSM and Gaussian Process 

Regression (GPR), as well as for subsequent optimization analyses. 

Table. 1. Experimental plan and output 

 

No. A (µm) Ton (µs) Toff  (µs) IP (A) SV (V) MRR (g/h) Ra 

1 1.2 8 12 10 5 3.527 2.327 

2 1.2 16 12 10 5 5.898 3.806 

3 5.2 8 12 10 5 5.764 3.565 

4 5.2 16 12 10 5 7.437 3.878 

5 3.2 12 8 5 5 4.472 4.046 

6 3.2 12 8 15 5 8.427 5.548 

7 3.2 12 16 5 5 3.844 3.879 

8 3.2 12 16 15 5 7.941 4.627 

9 3.2 8 12 10 4 5.738 2.201 

10 3.2 8 12 10 6 6.019 2.767 

11 3.2 16 12 10 4 9.391 4.835 

12 3.2 16 12 10 6 9.182 3.039 

13 1.2 12 8 10 5 4.351 3.945 

14 1.2 12 16 10 5 3.531 3.070 

15 5.2 12 8 10 5 6.380 3.846 

16 5.2 12 16 10 5 4.933 3.553 

17 3.2 12 12 5 4 3.659 4.201 

18 3.2 12 12 5 6 3.810 3.927 

19 3.2 12 12 15 4 8.024 5.981 

20 3.2 12 12 15 6 8.017 6.189 

21 3.2 8 8 10 5 6.081 1.915 

22 3.2 8 16 10 5 6.323 1.838 

23 3.2 16 8 10 5 9.737 5.153 

24 3.2 16 16 10 5 8.178 4.662 

25 1.2 12 12 5 5 2.582 4.405 

26 1.2 12 12 15 5 5.488 4.815 

27 5.2 12 12 5 5 3.436 4.080 

28 5.2 12 12 15 5 7.274 4.574 

29 3.2 12 8 10 4 9.035 3.174 

30 3.2 12 8 10 6 6.832 3.128 

31 3.2 12 16 10 4 7.255 3.464 

32 3.2 12 16 10 6 7.068 4.003 

33 1.2 12 12 10 4 4.510 4.059 

34 1.2 12 12 10 6 5.475 3.205 

35 5.2 12 12 10 4 4.879 3.091 

36 5.2 12 12 10 6 5.066 3.792 

37 3.2 8 12 5 5 2.703 2.093 

38 3.2 8 12 15 5 5.674 3.461 

39 3.2 16 12 5 5 6.862 1.818 

40 3.2 16 12 15 5 10.239 10.627 

41 3.2 12 12 10 5 6.426 4.098 

42 3.2 12 12 10 5 7.386 3.976 

43 3.2 12 12 10 5 7.481 3.913 

44 3.2 12 12 10 5 7.634 4.020 

45 3.2 12 12 10 5 6.282 3.859 

46 3.2 12 12 10 5 7.717 3.969 
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BBD is an efficient response surface methodology (RSM) approach suitable for 

modeling nonlinear relationships and minimizing the number of required experimental runs 

without compromising the quality of statistical analysis. 

The five input parameters considered in this study were vibration amplitude (A), pulse-

on time (Ton), pulse-off time (Toff), peak current (IP), and servo voltage (SV). Specifically, 

vibration amplitude (A) represents the level of ultrasonic vibration applied to the electrode, 

measured in micrometers (µm). Pulse-on time (Ton) is the duration of each electrical 

discharge pulse, while pulse-off time (Toff) denotes the interval between successive 

discharges; both are expressed in microseconds (µs). Peak current (IP), measured in amperes 

(A), refers to the maximum current delivered during each discharge. Finally, servo voltage 

(SV), measured in volts (V), regulates the inter-electrode gap to maintain stable spark 

conditions throughout the machining process. 

Each factor was varied at three levels (low, center, high), and the parameter ranges were 

determined based on preliminary trials and machine constraints. Also, the parameter ranges 

and BBD experimental matrix were adopted from the work of Dinh et al. [33]. The BBD 

matrix included 46 experimental runs, ensuring a balanced distribution of design points across 

the multidimensional design space while avoiding extreme combinations that may risk tool 

or workpiece damage. 

3. RESULTS AND DISCUSSION 

3.1. REGRESSION MODELING OF Ra AND MRR USING RSM 

To quantify the relationship between the five input parameters and the machining 

responses, quadratic regression models for surface roughness (Ra) and material removal rate 

(MRR) were developed using Response Surface Methodology (RSM). These models were 

constructed based on the experimental data obtained from the Box–Behnken Design (BBD) 

and implemented using MATLAB scripting combined with statistical computation. All 

regression coefficients were estimated via least-squares fitting, and model quality was 

evaluated through R² and adjusted R² metrics. 

RSM Model for Surface Roughness (Ra): 

The fitted second-order polynomial equation for Ra is expressed as: 

Ra = –1.8271 – 0.3543A + 0.9024Ton + 0.2958Toff – 1.6659IP + 2.0133SV – 0.0365A.  

Ton + 0.0182A, Toff + 0.0021A, IP + 0.1943A, SV –  0.0065Ton, Toff + 0.0930Ton,  

IP – 0.1476Ton, SV – 0.0094Toff, IP + 0.0366Toff, SV + 0.0241IP, SV – 0.0619A2  

– 0.0260Ton2 – 0.0163Toff2 + 0.0376IP2 – 0.1604SV2  

This model yielded an R² of 0.7780 and an adjusted R² of 0.6003, indicating only a 

moderate fit to the experimental data. Among the input variables, peak current (IP) was 

statistically significant (p = 0.0168), while the interaction Ton × IP was highly significant  

(p = 0.0003), reflecting the strong influence of discharge energy on surface finish. 

Nevertheless, the low adjusted R² suggests that the model lacks the capacity to fully capture 

(2) 



T.V. DINH et al./ Journal of Machine Engineering, 2026, Vol. 26   11 

 

the nonlinear nature of Ra in ultrasonic-assisted EDM. The performance of the model is 

illustrated in Fig. 2, which shows a noticeable spread in predicted vs. actual Ra values. 

RSM Model for Material Removal Rate (MRR): 

The RSM model for MRR is expressed as: 

MRR = –6.9146 + 4.2114A + 0.3313Ton – 0.3702Toff + 1.0368IP – 0.6301SV – 0.0218A  

Ton – 0.0196A, Toff + 0.0233A, IP – 0.0974A, SV – 0.0281Ton, Toff + 0.0051Ton, 

IP – 0.0306Ton, SV + 0.0018Toff, IP + 0.1260Toff, SV – 0.0079IP, SV – 0.4928A2  

+ 0.0283Ton2 + 0.0011Toff2 – 0.0391IP2 – 0.0188SV2  

This model achieved a higher level of reliability, with R² = 0.9238 and adjusted R² = 

0.8628, indicating strong predictive capability. The most influential factors were vibration 

amplitude (A) with p = 0.0032 and IP with borderline significance (p = 0.0579). The squared 

terms of A² and IP² were also significant, indicating nonlinear relationships with MRR. 

As shown in Fig. 3, the model predictions align closely with experimental results, 

confirming the suitability of RSM for modeling MRR in this context. 

While the RSM model for MRR demonstrated high fidelity with an adjusted R² of 0.8628 

and acceptable statistical significance for key terms, it is important to note that the model still 

assumes a fixed quadratic structure, which may limit its generalization in regions outside the 

experimental domain. Therefore, to further enhance modeling robustness and predictive 

accuracy for both Ra and MRR – especially given the moderate fit of the Ra model (adjusted 

R² = 0.6003) – a more flexible and nonparametric approach, namely Gaussian Process 

Regression (GPR), was adopted. The development and evaluation of GPR-based surrogate 

models are detailed in the following section. 

 

3.2.  SURROGATE MODELING USING GPR 

To improve predictive accuracy beyond what was achievable with second-order 

polynomial regression, Gaussian Process Regression (GPR) was employed as a surrogate 

modeling approach for both surface roughness (Ra) and material removal rate (MRR). Unlike 

(3) 

Fig. 2. Predicted vs. Actual Surface Roughness (Ra)  

Using RSM Model results 

Fig. 3. Predicted vs. Actual MRR using RSM Model 
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RSM, which imposes a fixed quadratic structure, GPR provides a data-driven, nonparametric 

method capable of capturing complex interactions and nonlinearities inherent in ultrasonic 

vibration-assisted EDM processes. 

3.2.1. GPR MODELING FOR SURFACE ROUGHNESS(RA) 

Given the relatively low adjusted R² (0.6003) of the RSM model for Ra, GPR was 

applied with various kernel and basis function combinations to explore improvements in 

accuracy. The combinations evaluated include squared exponential, rational quadratic, 

Matern 3/2, and Matern 5/2 kernels, each paired with constant, linear, or pure quadratic basis 

functions. 

As shown, multiple combinations yielded high R² values; however, the Matern 3/2 

kernel with constant basis was selected for its combination of high accuracy, model 

simplicity, and numerical stability, achieving R² = 0.9996 (Table 2).  

The predictive performance of this selected model is illustrated in Fig. 4, which displays 

the close alignment between predicted and actual Ra values. 

Table 2. Summarizes the results for all kernel–basis configurations evaluated for Ra 

 

3.2.2. GPR MODELING FOR MATERIAL RATE(MMR) 

Although the RSM model for MRR exhibited strong performance (adjusted R² = 0.8628), 

GPR was applied to further enhance prediction accuracy and provide a unified surrogate 

modeling framework for both responses. Similar to the Ra modeling process, various kernel–

basis combinations were tested.  

Several combinations offered nearly identical performance; however, the Matern 5/2 

kernel with linear basis was selected due to its balance of high accuracy and lower 

computational complexity, yielding R² = 0.9881 and adjusted R² = 0.9866. The predicted vs. 

actual plot for this GPR-MRR model is shown in Fig. 5, highlighting the model’s excellent 

predictive capability. Table 3 presents the results of all combinations evaluated for MRR. 

Kernel Basis Function R² Adjusted R² 

Squared Exponential Constant 0.9996 0.9996 

Squared Exponential Linear 0.9907 0.9895 

Squared Exponential Pure Quadratic 0.5928 0.5419 

Rational Quadratic Constant 0.9858 0.9840 

Rational Quadratic Linear 0.9996 0.9996 

Rational Quadratic Pure Quadratic 0.9996 0.9996 

Matern 3/2 Constant 0.9996 0.9996 

Matern 3/2 Linear 0.9780 0.9753 

Matern 3/2 Pure Quadratic 0.9996 0.9996 

Matern 5/2 Constant 0.9491 0.9427 

Matern 5/2 Linear 0.9768 0.9739 

Matern 5/2 Pure Quadratic 0.5928 0.5419 
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Table 3. GPR Model Comparison for Material Removal Rate (MRR) 

Kernel Basis Function R² Adjusted R² 

Squared Exponential Constant 0.9375 0.9297 

Squared Exponential Linear 0.9881 0.9866 

Squared Exponential Pure Quadratic 0.9881 0.9866 

Rational Quadratic Constant 0.9429 0.9357 

Rational Quadratic Linear 0.9881 0.9866 

Rational Quadratic Pure Quadratic 0.9881 0.9866 

Matern 3/2 Constant 0.9881 0.9866 

Matern 3/2 Linear 0.9881 0.9866 

Matern 3/2 Pure Quadratic 0.9881 0.9866 

Matern 5/2 Linear 0.9881 0.9866 

Matern 5/2 Constant 0.9873 0.9858 

Matern 5/2 Pure Quadratic 0.9881 0.9866 

 

 

3.2.3. SUMMARY OF MODEL PERFORMANCE COMPARISON 

To objectively compare the modelling performance of RSM and GPR for both Ra and 

MRR, the key performance indicators –R², adjusted R², root mean square error (RMSE), and 

mean absolute error (MAE) – were computed and summarized in Table 4. 

Table 4. Comparison of Predictive Accuracy Between RSM and GPR Models 

Response Model R² Adjusted R² RMSE MAE 

Ra RSM 0.7780 0.6003 0.2947 0.2582 

Ra GPR 0.9996 0.9996 0.0213 0.0164 

MRR RSM 0.9238 0.8628 0.3584 0.2941 

MRR GPR 0.9881 0.9866 0.1487 0.1175 

In summary, the GPR models significantly outperformed their RSM counterparts, 

particularly for Ra, where the RMSE decreased by more than 90% ( 0.2947−0.0213
0.2947

∙ 100 = 92.77%), 

and the R² improved from 0.7780 to 0.9996. The GPR model for MRR also yielded superior 

performance over RSM despite RSM's already strong fit. Based on these results, the GPR 

models were selected for the subsequent optimization process described in Section 3.3. 

Fig. 4. Predicted vs. Actual Ra Values Using the 

Best GPR Model (Kernel: Matern 3/2, Basis: 

Constant) 
 

Fig. 5. Predicted vs. Actual MRR Using the Best 

GPR Model (Kernel: Matern 5/2, Basis: Linear) 
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3.3. OPTIMIZATION AND ANALYSIS OF OPTIMAL CONDITIONS 

Based on the superior predictive performance of the Gaussian Process Regression (GPR) 

models for both material removal rate (MRR) and surface roughness (Ra), single-objective 

optimization was conducted to identify the best possible machining parameter settings for 

each response. The optimization process aimed to: 

- Maximize MRR using the GPR model with the Matern 5/2 kernel and linear basis, 

- Minimize Ra using the GPR model with the Matern 3/2 kernel and constant basis. 

The optimization was performed in MATLAB using a combination of global and local 

search techniques. The optimal parameter combinations obtained from the surrogate models 

are summarized below. 

3.3.1.  OPTIMIZATION FOR MAXIMUM MRR 

Using the GPR surrogate for MRR, the following input settings were identified as 

optimal: Vibration amplitude (A): 5.2000 µm, Pulse-on time (Ton): 16.0000 µs, Pulse-off time 

(Toff): 8.0000 µs, Peak current (IP): 15.0000 A, and Servo voltage (SV): 4.0000 V. At these 

conditions, the predicted maximum MRR was 10.6379 g/h.  

This optimal setting corresponds to high electrical energy (Ton, IP) and maximum 

ultrasonic amplitude, which collectively enhance plasma channel formation and debris 

evacuation, resulting in higher erosion rates. Notably, this condition aligns with trends 

observed in the GPR model: MRR increases with increasing A and IP, while excessively high 

Toff or SV contributes little to material removal. 

3.3.2. OPTIMIZATION FOR MINIMUM Ra 

The GPR model for Ra suggested the following optimal parameter combination for 

achieving the best surface finish: Vibration amplitude (A): 2.9380 µm, Pulse-on time (Ton): 

8.0000 µs, Pulse-off time (Toff): 12.0830 µs, Peak current (IP): 5.7544 A, and Servo voltage 

(SV): 4.7723 V. Under these settings, the predicted minimum surface roughness was 

2.0407 µm. This optimal configuration reflects a moderate vibration amplitude, short pulse-

on time, and low-to-moderate current, which collectively contribute to milder discharges and 

more uniform crater formation, resulting in smoother surface texture. Higher servo voltage 

(SV) and longer Toff intervals help stabilize the gap and allow sufficient time for debris 

clearance. 

3.3.3.  COMPARATIVE OBSERVATIONS 

A comparison of the optimal conditions for Ra and MRR reveals an expected 

performance trade-off: 

- Achieving high MRR requires aggressive discharge settings and strong vibration, 

which tend to deteriorate surface quality. 
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- In contrast, minimizing Ra necessitates gentler discharge energy and more balanced 

flushing intervals. 

This confirms the classic conflict in EDM between productivity and surface integrity, 

reinforcing the value of applying multi-objective optimization in future studies. A summary 

of the optimal solutions is presented in Table 7. 

Table 7. Optimal Conditions and Predicted Responses Based on GPR Models 

 

 

 

3.4. VALIDATION OF OPTIMAL CONDITIONS 

To verify the reliability of the developed GPR surrogate models for both MRR and Ra, 

validation experiments were conducted using the respective optimal parameter settings 

predicted in Section 3.3. The actual machining responses obtained from these trials were 

compared with the predicted values to assess the accuracy of the models. 

3.4.1. VALIDATION OF THE GPR MODEL FOR MRR 

The GPR model for MRR suggested the following optimal machining condition for 

maximizing material removal rate: 

Vibration amplitude (A) = 5.2000 µm, Pulse-on time (Ton) = 16.00 µs, Pulse-off time 

(Toff) = 8.00 µs, Peak current (IP) = 15.00 A, and Servo voltage (SV) = 4.00 V, which yielded 

a predicted MRR of 10.6379 g/h. 

To validate this prediction, an EDM experiment was performed using machine-adjusted 

practical values as follows: 

A = 1.52 µm, Ton = 16 µs, Toff = 8 µs, IP = 15 A, and SV = 4 V. 

The MRR was computed based on the weight loss of the workpiece before and after 

machining, using a high-precision electronic balance. The resulting measured MRR was 

10.352 g/h, yielding a relative error of only 2.69% compared to the GPR-predicted value. 

This small deviation confirms the high predictive accuracy and practical applicability of 

the GPR model for MRR under ultrasonic vibration-assisted EDM conditions. 

3.4.2. VALIDATION OF THE GPR MODEL FOR Ra 

The GPR model for Ra identified the following optimal combination for achieving 

minimal surface roughness: 

Vibration amplitude (A) = 2.9380 µm, Pulse-on time (Ton) = 8.0000 µs, Pulse-off time 

(Toff) = 12.0830 µs, Peak current (IP) = 5.7544 A, and Servo voltage (SV) = 4.7723 V, 

resulting in a predicted Ra of 2.0407 µm.  

Objective A (µm) Ton (µs) Toff (µs) IP (A) SV (V) 
Predicted 

Response 

Maximize MRR 5.2000 16.0000 8.0000 15.0000 4.0000 10.6379 g/h 

Minimize Ra 2.9380 8.0000 12.0830 5.7544 4.7723 2.407  
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A validation test was performed using approximated real machine input values: 

A = 2.94 µm, Ton = 8 µs, Toff = 12.1 µs, IP = 6 A, and SV = 5.8 V. 

The measured surface roughness was Ra = 1.962 µm, leading to a relative error of 3.86% 

from the model prediction. 

This low deviation further validates the predictive strength of the GPR model for Ra and 

confirms its ability to guide parameter selection for improved surface quality. 

These validation results support the use of GPR as a robust surrogate modeling 

framework for ultrasonic-assisted EDM, demonstrating both high predictive fidelity and 

practical feasibility in real machining environments. 

3.5. DISCUSSION AND INTERPRETATION 

The optimization results obtained in Section 3.3 clearly demonstrate the opposing trends 

and inherent trade-offs between material removal rate (MRR) and surface roughness (Ra) in 

ultrasonic vibration-assisted EDM of 90CrSi steel. This duality is a well-known challenge in 

non-traditional machining, where enhanced productivity often comes at the expense of 

surface integrity. 

Trade-off Between Surface Quality and Material Removal 

The optimal condition for maximizing MRR involves a high discharge energy regime -

characterized by long pulse-on time (Ton), high peak current (IP), and maximum ultrasonic 

amplitude (A = 5.2 µm). While these parameters promote rapid material erosion through more 

intense plasma channels and enhanced cavitation-assisted flushing, they also increase the 

thermal load and result in deeper, more chaotic craters on the workpiece surface. 

Conversely, the configuration that minimizes Ra requires moderate vibration (A ≈ 2.9 

µm), lower IP, and extended Toff. These settings reduce the discharge energy per pulse and 

allow better stabilization of the inter-electrode gap, thus favouring smoother surface 

formation. However, this comes with a significant reduction in machining efficiency, as 

evident from the lower predicted MRR at the Ra-optimal condition. 

This inverse relationship is visualized in the response surfaces generated by the GPR 

models (not shown here), where regions of high MRR correspond to elevated Ra values, and 

vice versa. It highlights the necessity of compromise or multi-objective decision-making 

when both surface finish and machining speed are of concern. 

Role of Ultrasonic Vibration in Balancing Performance  

Ultrasonic vibration contributes positively to both objectives, but in different 

magnitudes and forms: 

- For MRR, higher amplitude amplifies cavitation effects, debris displacement, and 

secondary discharge events, resulting in accelerated material removal. 

- For Ra, moderate amplitude helps in maintaining discharge stability and reducing 

localized thermal accumulation, which minimizes surface defects. 

Thus, amplitude control is a critical lever in process tuning. The identified optimal 

amplitudes (5.2 µm for MRR and 2.9 µm for Ra) provide quantitative targets for real-time 

process adjustment, particularly in CNC-EDM systems integrated with intelligent controllers. 

Implications for Practical Application 

From a practical standpoint, the findings provide clear guidance for process engineers: 
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- When surface finish is critical (e.g., die cavity finishing, sealing surfaces), the Ra-

optimal condition should be prioritized. 

- When removal rate dominates (e.g., roughing or high-throughput applications), the 

MRR-optimal condition is more suitable. 

- In cases where both objectives are important, these two solutions can serve as boundary 

anchors for multi-objective optimization using evolutionary algorithms (e.g., NSGA-II, 

MOEA/D). 

Although GPR outperformed RSM in predictive accuracy, their practical roles differ. 

RSM yields simple quadratic equations that are easy to interpret and thus useful for rapid 

analysis and preliminary process guidance. GPR, while computationally more demanding and 

less interpretable, provides much higher accuracy for predicting optimal Ra and MRR. In this 

study, RSM was used for quick insights, whereas GPR ensured reliable optimization, 

highlighting their complementary value in both practical and advanced applications. 

Moreover, the successful application of GPR as a surrogate modeling tool demonstrates its 

value for developing digital twins of EDM systems—capable of real-time prediction and 

optimization in smart manufacturing contexts. 

4. CONCLUSION 

This study investigated the modeling and single-objective optimization of surface 

roughness (Ra) and material removal rate (MRR) in the ultrasonic vibration-assisted electrical 

discharge machining (UV-EDM) of external cylindrical 90CrSi steel using graphite 

electrodes. Two surrogate modeling techniques—Response Surface Methodology (RSM) and 

Gaussian Process Regression (GPR)—were developed and evaluated to predict the machining 

responses as functions of five process parameters: vibration amplitude (A), pulse-on time 

(Ton), pulse-off time (Toff), peak current (IP), and servo voltage (SV). 

The RSM model for MRR demonstrated good predictive performance (adjusted R² = 

0.8628), while the RSM model for Ra showed only moderate fit (adjusted R² = 0.6003), 

indicating limitations in capturing nonlinear behavior. In contrast, the GPR models 

significantly improved prediction accuracy for both responses. The best GPR configurations 

Matern 5/2 kernel with linear basis for MRR, and Matern 3/2 kernel with constant basis for 

Ra—achieved adjusted R² values of 0.9866 and 0.9996, respectively. The RMSE values for 

GPR models were reduced by 58% for MRR and over 92% for Ra when compared to RSM. 

Using the GPR models, optimal parameter settings were determined for each objective. 

The predicted maximum MRR was 10.6379 g/h, and the minimum Ra was 2.0407 µm. 

Validation experiments performed under machine-adjusted practical conditions yielded errors 

of only 2.69% (MRR) and 3.86% (Ra), thereby confirming the reliability and practical 

applicability of the GPR-based surrogate modeling and optimization approach. 
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