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STATISTICAL MODELING AND OPTIMIZATION OF Ra AND MRR IN
ULTRASONIC — ASSISTED EDM OF 90CrSi STEEL USING GRAPHITE
ELECTRODES

This study investigates the modeling and single-objective optimization of surface roughness (Ra) and material
removal rate (MRR) in electrical discharge machining (EDM) of external cylindrical surfaces of hardened 90CrSi
tool steel. The machining process is enhanced using ultrasonic vibration assistance and graphite electrodes to
improve surface integrity and productivity. Gaussian Process Regression (GPR) and Response Surface
Methodology (RSM) were employed to construct predictive models for Ra and MRR based on key process
parameters, including vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), peak current (IP), and
servo voltage (SV). The GPR model provided superior predictive performance for surface roughness, while RSM
was more effective in modeling MRR. Optimization results showed that the minimum Ra of 1.6216 um was
achieved at A =2.7743 um, Ton = 8.0000 ps, Toff = 11.8294 pus, IP = 8.1723 A, and SV = 4.7936 V. Meanwhile,
the maximum MRR of 12.1989 g/h was obtained at A = 3.5339 um, Ton = 16.0000 us, Toff = 8.0000 ps, IP =
15.0000 A, and SV = 4.0000 V. The findings provide valuable insights into parameter selection for improving
EDM performance on external cylindrical surfaces of high-hardness steels.

1. INTRODUCTION

Electrical Discharge Machining (EDM) has become an indispensable process for
fabricating complex and high-hardness components, particularly in the mold, die, and tool
industries. However, conventional EDM often suffers from limitations such as low material
removal rate (MRR), poor surface finish (Ra), and inefficient debris removal. To overcome
these drawbacks, researchers have increasingly integrated ultrasonic vibration (UV) into
EDM systems, leading to the emergence of Ultrasonic Vibration-Assisted EDM (UV-EDM)
as a promising hybrid process [1-3].
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Several studies have demonstrated that UV-EDM enhances debris removal, reduces tool
wear, and improves surface integrity by facilitating more stable discharges and cavitation
effects in the dielectric medium [1, 4, 5]. Wang et al. [1] investigated deep-hole UV-EDM
and found that longitudinal/torsional vibrations improved flushing efficiency and reduced
taper. Zhang et al. [4] elucidated the role of cavitation bubbles in enhancing debris removal,
whereas Dong et al. [2] developed a thermodynamic model to simulate heat distribution under
vertical UV excitation. Similar insights were reported by Yin et al. [6], who introduced
longitudinal-torsional vibration to improve micro-hole accuracy and machining stability.

In terms of performance enhancement, Lei et al. [6] successfully machined enclosed
microgrooves using laminated electrodes under UV-EDM, achieving high precision. Li et
al. [7] applied ultrasonic circular vibration (UCV) to improve surface quality in micro-hole
machining, while Li et al. [8] extended this concept to analyse the integrity of machined
surfaces using UCV electrodes. At the micro-scale, Ichikawa and Natsu [9] proved that
ultrasonic fluid vibration facilitates machining with ultra-low discharge energy, and Xu et al.
[10] emphasized the gas medium’s role in material removal mechanisms when combined with
UV. Despite these advances, much of the research has focused on micro-EDM, [3, 7, 8, 11],
hole drilling [1, 3, 4], and specialized setups such as powder-mixed dielectric [12—14] or novel
electrode configurations [6], [15]. Optimization efforts have typically targeted complex alloys
like Ti-6AI-4V [11, 16, 17], cemented carbides [10, 18], or SizNa ceramics [19], but limited
attention has been paid to the EDM performance of external cylindrical surfaces of hardened
tool steels under ultrasonic vibration.

Moreover, although many studies have adopted Taguchi [20], ANOVA [21], FEM
[22, 23], or experimental methods [24], [25], comprehensive modeling and optimization using
advanced regression tools such as Gaussian Process Regression (GPR) and Response Surface
Methodology (RSM) remain scarce in this context. For instance, Shabgard et al. [26, 27] and
Abdullah et al. [18] used numerical modeling for UV-EDM but did not explore data-driven
surrogate models. While Sundaram et al. [21] applied Taguchi-based analysis, predictive
modeling of Ra and MRR using GPR and RSM on external cylindrical surfaces of 90CrSi
steel has not been addressed.

In addition to ultrasonic vibration assistance, the choice of electrode material and
dielectric fluid significantly influences EDM outcomes such as surface roughness and
electrode wear. Anjum et al. [28] compared the performance of copper and graphite electrodes
in different dielectric environments when machining AISI 304L stainless steel. Their results
demonstrated that graphite electrodes, while exhibiting slightly higher tool wear, consistently
provided better surface finish in hydrocarbon-based dielectrics. Similarly, Ghazi et al. [29]
investigated the influence of EDM parameters on surface roughness and electrode wear rate
in the machining of 7024 aluminum alloy. They emphasized the strong dependency of surface
integrity on discharge energy and electrode type, underlining the importance of systematic
parameter optimization for improved machining quality. These findings further justify the use
of graphite electrodes in the present study and reinforce the need for comprehensive modeling
of Ra and MRR under varying EDM conditions.

Additionally, surface topography and erosion mechanisms under UV-EDM have been
studied extensively [5, 30, 31], but few investigations have quantitatively optimized both Ra
and MRR using hybrid modeling for tool steels. Hou and Bai [32] introduced a 3D ultrasonic
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vibration system to enhance debris ejection, yet did not address cylindrical geometry.
Similarly, Singh et al. [22] and Choubey et al. [23] modeled ultrasonic effects on flat surfaces,
but extrapolation to cylindrical geometries, which present unique spark gap dynamics,
remains limited.

To address these research gaps, this study aims to develop predictive models and
perform single-objective optimization of surface roughness (Ra) and material removal rate
(MRR) in ultrasonic vibration-assisted EDM of external cylindrical surfaces of hardened
90CrSi tool steel using graphite electrodes. The process parameters considered include
vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), peak current (IP), and
servo voltage (SV). GPR and RSM are employed to build accurate surrogate models for Ra
and MRR, respectively. The study seeks to (i) evaluate the modeling performance of GPR vs.
RSM for each response, and (ii) identify optimal parameter settings to enhance both surface
finish and productivity in machining cylindrical geometries.

In contrast to prior studies that mainly employed Taguchi-based design or FEM
simulations for parameter analysis, the present work introduces a data-driven surrogate
modeling framework. To the best of our knowledge, this is the first study applying Gaussian
Process Regression (GPR) to systematically optimize both Ra and MRR in ultrasonic
vibration-assisted EDM using graphite electrodes when processing cylindrical hardened steels,
a geometry that poses unique challenges compared with flat or micro-scale surfaces. Unlike
multi-objective or micro-EDM investigations reported in the literature, this research
deliberately focuses on single-objective optimization as a baseline step to rigorously validate
the predictive accuracy of GPR against Response Surface Methodology (RSM). By
establishing this foundation, the study not only demonstrates the superior modeling capability
of GPR but also sets the stage for future extensions toward multi-objective optimization and
intelligent process control in UV-EDM.

2. METHODOLOGY

2.1. EXPERIMENTAL SETUP AND WORKPIECE MATERIAL

An experimental investigation was carried out to evaluate the effects of five key process
parameters—vibration amplitude (A, pum), pulse-on time (Ton, us), pulse-off time (Toff, us),
peak current (IP, A), and servo voltage (SV, V)—on the machining performance during
ultrasonic vibration-assisted electrical discharge machining (UV-EDM) of hardened tool
steel. The experimental setup is illustrated in Fig. 1.

All machining operations were performed on a Sodick A30 CNC EDM machine, which
was integrated with a high-power ultrasonic vibration system to improve spark stability,
flushing conditions, and material removal characteristics. Ultrasonic vibrations were
generated using an MPI WG-3000 ultrasonic generator (MPI Ultrasonics, Switzerland) with
a rated power of 3000 W. The generated vibrations were transmitted through an RPS-5020-
4Z ultrasonic transducer, operating at a frequency of 20 kHz and nominal power of 2000 W.
A custom-designed titanium horn was fabricated and employed to efficiently transfer
ultrasonic energy to the tool-workpiece interface, ensuring consistent vibratory motion of the
electrode.
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Fig. 1. Experimental setup

The tool electrode used in the experiments was made of HKO graphite, selected for its
excellent electrical conductivity, high thermal resistance, and low wear rate under discharge
conditions. As the dielectric fluid, Diel MS 7000 (Total, France) was employed due to its
stability and suitability for high-performance EDM applications.

The workpiece material was 90CrSi tool steel, known for its high hardness, thermal
resistance, and applicability in die and mold manufacturing. The samples were cylindrical in
shape to simulate real-world external surface machining conditions. The experimental dataset
analysed in this work was obtained from the study by Dinh et al. [33], which investigated
ultrasonic EDM of external cylindrical surfaces using graphite electrodes.

Two output responses were measured in this study: material removal rate (MRR) and
surface roughness (Ra). The MRR was determined using the gravimetric method, widely
accepted in EDM studies for its precision. Each workpiece was initially cleaned with ethanol,
dried with warm air, and weighed using a high-precision analytical balance (accuracy:
0.1 mg). After machining, the sample was re-cleaned, re-dried, and reweighed. The MRR was
calculated using the following equation:

MRR = Zil:l mbeforet_mafter (1)

where my,;,,, and m,.,,. are the masses (in grams) of the workpiece before and after

machining, and t is the machining time (in hours).

The surface roughness (Ra) was measured using a Mitutoyo SV3100 surface roughness
tester. To ensure measurement accuracy and account for possible surface variability, three
readings were taken at different positions along the external cylindrical surface of each
machined sample. The average of these readings was reported as the final Ra value.
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2.2. DESIGN OF EXPERIMENTS

To systematically investigate the influence of process parameters on material removal
rate (MRR) and surface roughness (Ra), a statistical experimental design based on the Box—
Behnken Design (BBD) was adopted. The experimental plan and the corresponding measured
responses of MRR and Ra for each trial are presented in Table 1. This dataset served as the
foundation for constructing regression models using both RSM and Gaussian Process
Regression (GPR), as well as for subsequent optimization analyses.

Table. 1. Experimental plan and output

No. A (um) Ton (us) Toff (us) IP (A) SV (V) MRR (g/h) Ra
1 1.2 8 12 10 5 3.527 2.327
2 1.2 16 12 10 5 5.898 3.806
3 5.2 8 12 10 5 5.764 3.565
4 5.2 16 12 10 5 7.437 3.878
5 3.2 12 8 5 5 4.472 4.046
6 3.2 12 8 15 5 8.427 5.548
7 3.2 12 16 5 5 3.844 3.879
8 3.2 12 16 15 5 7.941 4.627
9 3.2 8 12 10 4 5.738 2.201
10 3.2 8 12 10 6 6.019 2.767
11 3.2 16 12 10 4 9.391 4.835
12 3.2 16 12 10 6 9.182 3.039
13 1.2 12 8 10 5 4.351 3.945
14 1.2 12 16 10 5 3.531 3.070
15 5.2 12 8 10 5 6.380 3.846
16 5.2 12 16 10 5 4,933 3.553
17 3.2 12 12 5 4 3.659 4,201
18 3.2 12 12 5 6 3.810 3.927
19 3.2 12 12 15 4 8.024 5.981
20 3.2 12 12 15 6 8.017 6.189
21 3.2 8 8 10 5 6.081 1.915
22 3.2 8 16 10 5 6.323 1.838
23 3.2 16 8 10 5 9.737 5.153
24 3.2 16 16 10 5 8.178 4.662
25 1.2 12 12 5 5 2.582 4.405
26 1.2 12 12 15 5 5.488 4.815
27 5.2 12 12 5 5 3.436 4.080
28 5.2 12 12 15 5 7.274 4574
29 3.2 12 8 10 4 9.035 3.174
30 3.2 12 8 10 6 6.832 3.128
31 3.2 12 16 10 4 7.255 3.464
32 3.2 12 16 10 6 7.068 4.003
33 1.2 12 12 10 4 4.510 4.059
34 1.2 12 12 10 6 5.475 3.205
35 5.2 12 12 10 4 4.879 3.091
36 5.2 12 12 10 6 5.066 3.792
37 3.2 8 12 5 5 2.703 2.093
38 3.2 8 12 15 5 5.674 3.461
39 3.2 16 12 5 5 6.862 1.818
40 3.2 16 12 15 5 10.239 10.627
41 3.2 12 12 10 5 6.426 4.098
42 3.2 12 12 10 5 7.386 3.976
43 3.2 12 12 10 5 7.481 3.913
44 3.2 12 12 10 5 7.634 4.020
45 3.2 12 12 10 5 6.282 3.859
46 3.2 12 12 10 5 7.717 3.969
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BBD is an efficient response surface methodology (RSM) approach suitable for
modeling nonlinear relationships and minimizing the number of required experimental runs
without compromising the quality of statistical analysis.

The five input parameters considered in this study were vibration amplitude (A), pulse-
on time (Ton), pulse-off time (Toff), peak current (IP), and servo voltage (SV). Specifically,
vibration amplitude (A) represents the level of ultrasonic vibration applied to the electrode,
measured in micrometers (um). Pulse-on time (Ton) is the duration of each electrical
discharge pulse, while pulse-off time (Toff) denotes the interval between successive
discharges; both are expressed in microseconds (ls). Peak current (IP), measured in amperes
(A), refers to the maximum current delivered during each discharge. Finally, servo voltage
(SV), measured in volts (V), regulates the inter-electrode gap to maintain stable spark
conditions throughout the machining process.

Each factor was varied at three levels (low, center, high), and the parameter ranges were
determined based on preliminary trials and machine constraints. Also, the parameter ranges
and BBD experimental matrix were adopted from the work of Dinh et al. [33]. The BBD
matrix included 46 experimental runs, ensuring a balanced distribution of design points across
the multidimensional design space while avoiding extreme combinations that may risk tool
or workpiece damage.

3. RESULTS AND DISCUSSION

3.1. REGRESSION MODELING OF Ra AND MRR USING RSM

To quantify the relationship between the five input parameters and the machining
responses, quadratic regression models for surface roughness (Ra) and material removal rate
(MRR) were developed using Response Surface Methodology (RSM). These models were
constructed based on the experimental data obtained from the Box—Behnken Design (BBD)
and implemented using MATLAB scripting combined with statistical computation. All
regression coefficients were estimated via least-squares fitting, and model quality was
evaluated through R? and adjusted R? metrics.

RSM Model for Surface Roughness (Ra):

The fitted second-order polynomial equation for Ra is expressed as:

Ra=-1.8271—-0.35434 + 0.9024Ton + 0.2958Toff — 1.6659IP + 2.0133SV — 0.03654.
Ton +0.01824, Toff + 0.00214, IP + 0.19434, SV — 0.006570n, Toff + 0.093070n, ()
IP —0.1476Ton, SV — 0.0094Toff, IP + 0.0366Toff, SV + 0.02411P, SV — 0.06194>
—0.02607on> — 0.0163 Toff* + 0.03761P* — 0.1604SV?>

This model yielded an Rz of 0.7780 and an adjusted R2 of 0.6003, indicating only a
moderate fit to the experimental data. Among the input variables, peak current (IP) was
statistically significant (p = 0.0168), while the interaction Ton x IP was highly significant
(p = 0.0003), reflecting the strong influence of discharge energy on surface finish.
Nevertheless, the low adjusted R? suggests that the model lacks the capacity to fully capture
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the nonlinear nature of Ra in ultrasonic-assisted EDM. The performance of the model is
illustrated in Fig. 2, which shows a noticeable spread in predicted vs. actual Ra values.

RSM Model for Material Removal Rate (MRR):

The RSM model for MRR is expressed as:

MRR =-6.9146 +4.21144 + 0.331370on — 0.370270ff + 1.0368/P — 0.6301SV — 0.02184
Ton —0.01964, Toff + 0.02334, IP — 0.09744, SV — 0.02817on, Toff + 0.00517on,

IP —0.03067Ton, SV + 0.00187Toff, IP + 0.12607Toff, SV — 0.00791P, SV — 0.49284>
+0.0283Ton* + 0.0011 Tof* — 0.03911P* — 0.0188S1?

3)

This model achieved a higher level of reliability, with R2 = 0.9238 and adjusted R2 =
0.8628, indicating strong predictive capability. The most influential factors were vibration
amplitude (A) with p = 0.0032 and IP with borderline significance (p = 0.0579). The squared
terms of A2 and 1P2 were also significant, indicating nonlinear relationships with MRR.

As shown in Fig. 3, the model predictions align closely with experimental results,
confirming the suitability of RSM for modeling MRR in this context.

While the RSM model for MRR demonstrated high fidelity with an adjusted R2 of 0.8628
and acceptable statistical significance for key terms, it is important to note that the model still
assumes a fixed quadratic structure, which may limit its generalization in regions outside the
experimental domain. Therefore, to further enhance modeling robustness and predictive
accuracy for both Ra and MRR — especially given the moderate fit of the Ra model (adjusted
Rz = 0.6003) — a more flexible and nonparametric approach, namely Gaussian Process
Regression (GPR), was adopted. The development and evaluation of GPR-based surrogate
models are detailed in the following section.
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Using RSM Model results

3.2. SURROGATE MODELING USING GPR

To improve predictive accuracy beyond what was achievable with second-order
polynomial regression, Gaussian Process Regression (GPR) was employed as a surrogate
modeling approach for both surface roughness (Ra) and material removal rate (MRR). Unlike
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RSM, which imposes a fixed quadratic structure, GPR provides a data-driven, nonparametric
method capable of capturing complex interactions and nonlinearities inherent in ultrasonic
vibration-assisted EDM processes.

3.2.1. GPR MODELING FOR SURFACE ROUGHNESS(RA)

Given the relatively low adjusted R2 (0.6003) of the RSM model for Ra, GPR was
applied with various kernel and basis function combinations to explore improvements in
accuracy. The combinations evaluated include squared exponential, rational quadratic,
Matern 3/2, and Matern 5/2 kernels, each paired with constant, linear, or pure quadratic basis
functions.

As shown, multiple combinations yielded high R? values; however, the Matern 3/2
kernel with constant basis was selected for its combination of high accuracy, model
simplicity, and numerical stability, achieving R?2 = 0.9996 (Table 2).

The predictive performance of this selected model is illustrated in Fig. 4, which displays
the close alignment between predicted and actual Ra values.

Table 2. Summarizes the results for all kernel-basis configurations evaluated for Ra

Kernel Basis Function R2 Adjusted R2
Squared Exponential Constant 0.9996 0.9996
Squared Exponential Linear 0.9907 0.9895
Squared Exponential Pure Quadratic 0.5928 0.5419

Rational Quadratic Constant 0.9858 0.9840
Rational Quadratic Linear 0.9996 0.9996
Rational Quadratic Pure Quadratic 0.9996 0.9996
Matern 3/2 Constant 0.9996 0.9996
Matern 3/2 Linear 0.9780 0.9753
Matern 3/2 Pure Quadratic 0.9996 0.9996
Matern 5/2 Constant 0.9491 0.9427
Matern 5/2 Linear 0.9768 0.9739
Matern 5/2 Pure Quadratic 0.5928 0.5419

3.2.2. GPR MODELING FOR MATERIAL RATE(MMR)

Although the RSM model for MRR exhibited strong performance (adjusted R2=0.8628),
GPR was applied to further enhance prediction accuracy and provide a unified surrogate
modeling framework for both responses. Similar to the Ra modeling process, various kernel—
basis combinations were tested.

Several combinations offered nearly identical performance; however, the Matern 5/2
kernel with linear basis was selected due to its balance of high accuracy and lower
computational complexity, yielding R? = 0.9881 and adjusted R? = 0.9866. The predicted vs.
actual plot for this GPR-MRR model is shown in Fig. 5, highlighting the model’s excellent
predictive capability. Table 3 presents the results of all combinations evaluated for MRR.
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Table 3. GPR Model Comparison for Material Removal Rate (MRR)

Kernel Basis Function R2 Adjusted R2
Squared Exponential Constant 0.9375 0.9297
Squared Exponential Linear 0.9881 0.9866
Squared Exponential Pure Quadratic 0.9881 0.9866

Rational Quadratic Constant 0.9429 0.9357
Rational Quadratic Linear 0.9881 0.9866
Rational Quadratic Pure Quadratic 0.9881 0.9866
Matern 3/2 Constant 0.9881 0.9866
Matern 3/2 Linear 0.9881 0.9866
Matern 3/2 Pure Quadratic 0.9881 0.9866
Matern 5/2 Linear 0.9881 0.9866
Matern 5/2 Constant 0.9873 0.9858
Matern 5/2 Pure Quadratic 0.9881 0.9866

Best GPR Prediction
Kernel: matern52 | Basis: linear

R? = 0.9881 | Adjusted R? = 0.9866

Best GPR Prediction
Kernel: matern32 | Basis: constant

R? = 0.9996 | Adjusted R? = 0.9996
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Fig. 5. Predicted vs. Actual MRR Using the Best
GPR Model (Kernel: Matern 5/2, Basis: Linear)

3.2.3. SUMMARY OF MODEL PERFORMANCE COMPARISON

To objectively compare the modelling performance of RSM and GPR for both Ra and
MRR, the key performance indicators —R?, adjusted R?, root mean square error (RMSE), and
mean absolute error (MAE) — were computed and summarized in Table 4.

Table 4. Comparison of Predictive Accuracy Between RSM and GPR Models

Response Model R2 Adjusted R? RMSE MAE
Ra RSM 0.7780 0.6003 0.2947 0.2582

Ra GPR 0.9996 0.9996 0.0213 0.0164
MRR RSM 0.9238 0.8628 0.3584 0.2941
MRR GPR 0.9881 0.9866 0.1487 0.1175

In summary, the GPR models significantly outperformed their RSM counterparts,

particularly for Ra, where the RMSE decreased by more than 90%

( 0.2947-0.0213

0.2947

-100 = 92.77%),

and the Rz improved from 0.7780 to 0.9996. The GPR model for MRR also yielded superior
performance over RSM despite RSM's already strong fit. Based on these results, the GPR
models were selected for the subsequent optimization process described in Section 3.3.
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3.3. OPTIMIZATION AND ANALYSIS OF OPTIMAL CONDITIONS

Based on the superior predictive performance of the Gaussian Process Regression (GPR)
models for both material removal rate (MRR) and surface roughness (Ra), single-objective
optimization was conducted to identify the best possible machining parameter settings for
each response. The optimization process aimed to:

- Maximize MRR using the GPR model with the Matern 5/2 kernel and linear basis,

- Minimize Ra using the GPR model with the Matern 3/2 kernel and constant basis.

The optimization was performed in MATLAB using a combination of global and local
search techniques. The optimal parameter combinations obtained from the surrogate models
are summarized below.

3.3.1. OPTIMIZATION FOR MAXIMUM MRR

Using the GPR surrogate for MRR, the following input settings were identified as
optimal: Vibration amplitude (A): 5.2000 um, Pulse-on time (Ton): 16.0000 s, Pulse-off time
(Toff): 8.0000 s, Peak current (IP): 15.0000 A, and Servo voltage (SV): 4.0000 V. At these
conditions, the predicted maximum MRR was 10.6379 g/h.

This optimal setting corresponds to high electrical energy (Ton, IP) and maximum
ultrasonic amplitude, which collectively enhance plasma channel formation and debris
evacuation, resulting in higher erosion rates. Notably, this condition aligns with trends
observed in the GPR model: MRR increases with increasing A and IP, while excessively high
Toff or SV contributes little to material removal.

3.3.2. OPTIMIZATION FOR MINIMUM Ra

The GPR model for Ra suggested the following optimal parameter combination for
achieving the best surface finish: Vibration amplitude (A): 2.9380 um, Pulse-on time (Ton):
8.0000 ps, Pulse-off time (Toff): 12.0830 us, Peak current (IP): 5.7544 A, and Servo voltage
(SV): 4.7723 V. Under these settings, the predicted minimum surface roughness was
2.0407 um. This optimal configuration reflects a moderate vibration amplitude, short pulse-
on time, and low-to-moderate current, which collectively contribute to milder discharges and
more uniform crater formation, resulting in smoother surface texture. Higher servo voltage
(SV) and longer Toff intervals help stabilize the gap and allow sufficient time for debris
clearance.

3.3.3. COMPARATIVE OBSERVATIONS

A comparison of the optimal conditions for Ra and MRR reveals an expected
performance trade-off:

- Achieving high MRR requires aggressive discharge settings and strong vibration,
which tend to deteriorate surface quality.
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- In contrast, minimizing Ra necessitates gentler discharge energy and more balanced
flushing intervals.

This confirms the classic conflict in EDM between productivity and surface integrity,
reinforcing the value of applying multi-objective optimization in future studies. A summary
of the optimal solutions is presented in Table 7.

Table 7. Optimal Conditions and Predicted Responses Based on GPR Models

— Predicted
Obijective A (um) Ton (us) Toff (us) IP (A) SV (V) Response
Maximize MRR 5.2000 16.0000 8.0000 15.0000 4.0000 10.6379 g/h
Minimize Ra 2.9380 8.0000 12.0830 5.7544 4.7723 2.407

3.4. VALIDATION OF OPTIMAL CONDITIONS

To verify the reliability of the developed GPR surrogate models for both MRR and Ra,
validation experiments were conducted using the respective optimal parameter settings
predicted in Section 3.3. The actual machining responses obtained from these trials were
compared with the predicted values to assess the accuracy of the models.

3.4.1. VALIDATION OF THE GPR MODEL FOR MRR

The GPR model for MRR suggested the following optimal machining condition for
maximizing material removal rate:

Vibration amplitude (A) = 5.2000 pm, Pulse-on time (Ton) = 16.00 ps, Pulse-off time
(Toff) = 8.00 ps, Peak current (IP) = 15.00 A, and Servo voltage (SV) = 4.00 V, which yielded
a predicted MRR of 10.6379 g/h.

To validate this prediction, an EDM experiment was performed using machine-adjusted
practical values as follows:

A=152 pum, Ton=16 ps, Toff =8 s, IP=15A,and SV =4V,

The MRR was computed based on the weight loss of the workpiece before and after
machining, using a high-precision electronic balance. The resulting measured MRR was
10.352 g/h, yielding a relative error of only 2.69% compared to the GPR-predicted value.

This small deviation confirms the high predictive accuracy and practical applicability of
the GPR model for MRR under ultrasonic vibration-assisted EDM conditions.

3.4.2. VALIDATION OF THE GPR MODEL FOR Ra

The GPR model for Ra identified the following optimal combination for achieving
minimal surface roughness:

Vibration amplitude (A) = 2.9380 pm, Pulse-on time (Ton) = 8.0000 ps, Pulse-off time
(Toff) = 12.0830 s, Peak current (IP) = 5.7544 A, and Servo voltage (SV) = 4.7723 V,
resulting in a predicted Ra of 2.0407 pum.
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A validation test was performed using approximated real machine input values:
A =294 um, Ton=8 ps, Toff =12.1 us, IP=6 A, and SV =5.8 V.

The measured surface roughness was Ra = 1.962 um, leading to a relative error of 3.86%
from the model prediction.

This low deviation further validates the predictive strength of the GPR model for Ra and
confirms its ability to guide parameter selection for improved surface quality.

These validation results support the use of GPR as a robust surrogate modeling
framework for ultrasonic-assisted EDM, demonstrating both high predictive fidelity and
practical feasibility in real machining environments.

3.5. DISCUSSION AND INTERPRETATION

The optimization results obtained in Section 3.3 clearly demonstrate the opposing trends
and inherent trade-offs between material removal rate (MRR) and surface roughness (Ra) in
ultrasonic vibration-assisted EDM of 90CrSi steel. This duality is a well-known challenge in
non-traditional machining, where enhanced productivity often comes at the expense of
surface integrity.

Trade-off Between Surface Quality and Material Removal

The optimal condition for maximizing MRR involves a high discharge energy regime -
characterized by long pulse-on time (Ton), high peak current (IP), and maximum ultrasonic
amplitude (A =5.2 um). While these parameters promote rapid material erosion through more
intense plasma channels and enhanced cavitation-assisted flushing, they also increase the
thermal load and result in deeper, more chaotic craters on the workpiece surface.

Conversely, the configuration that minimizes Ra requires moderate vibration (A = 2.9
um), lower IP, and extended Toff. These settings reduce the discharge energy per pulse and
allow better stabilization of the inter-electrode gap, thus favouring smoother surface
formation. However, this comes with a significant reduction in machining efficiency, as
evident from the lower predicted MRR at the Ra-optimal condition.

This inverse relationship is visualized in the response surfaces generated by the GPR
models (not shown here), where regions of high MRR correspond to elevated Ra values, and
vice versa. It highlights the necessity of compromise or multi-objective decision-making
when both surface finish and machining speed are of concern.

Role of Ultrasonic Vibration in Balancing Performance

Ultrasonic vibration contributes positively to both objectives, but in different
magnitudes and forms:

- For MRR, higher amplitude amplifies cavitation effects, debris displacement, and
secondary discharge events, resulting in accelerated material removal.

- For Ra, moderate amplitude helps in maintaining discharge stability and reducing
localized thermal accumulation, which minimizes surface defects.

Thus, amplitude control is a critical lever in process tuning. The identified optimal
amplitudes (5.2 um for MRR and 2.9 um for Ra) provide quantitative targets for real-time
process adjustment, particularly in CNC-EDM systems integrated with intelligent controllers.

Implications for Practical Application

From a practical standpoint, the findings provide clear guidance for process engineers:
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- When surface finish is critical (e.g., die cavity finishing, sealing surfaces), the Ra-
optimal condition should be prioritized.

- When removal rate dominates (e.g., roughing or high-throughput applications), the
MRR-optimal condition is more suitable.

- In cases where both objectives are important, these two solutions can serve as boundary
anchors for multi-objective optimization using evolutionary algorithms (e.g., NSGA-II,
MOEA/D).

Although GPR outperformed RSM in predictive accuracy, their practical roles differ.
RSM vyields simple quadratic equations that are easy to interpret and thus useful for rapid
analysis and preliminary process guidance. GPR, while computationally more demanding and
less interpretable, provides much higher accuracy for predicting optimal Ra and MRR. In this
study, RSM was used for quick insights, whereas GPR ensured reliable optimization,
highlighting their complementary value in both practical and advanced applications.
Moreover, the successful application of GPR as a surrogate modeling tool demonstrates its
value for developing digital twins of EDM systems—capable of real-time prediction and
optimization in smart manufacturing contexts.

4. CONCLUSION

This study investigated the modeling and single-objective optimization of surface
roughness (Ra) and material removal rate (MRR) in the ultrasonic vibration-assisted electrical
discharge machining (UV-EDM) of external cylindrical 90CrSi steel using graphite
electrodes. Two surrogate modeling techniqgues—Response Surface Methodology (RSM) and
Gaussian Process Regression (GPR)—were developed and evaluated to predict the machining
responses as functions of five process parameters: vibration amplitude (A), pulse-on time
(Ton), pulse-off time (Toff), peak current (IP), and servo voltage (SV).

The RSM model for MRR demonstrated good predictive performance (adjusted R2 =
0.8628), while the RSM model for Ra showed only moderate fit (adjusted R? = 0.6003),
indicating limitations in capturing nonlinear behavior. In contrast, the GPR models
significantly improved prediction accuracy for both responses. The best GPR configurations
Matern 5/2 kernel with linear basis for MRR, and Matern 3/2 kernel with constant basis for
Ra—achieved adjusted R? values of 0.9866 and 0.9996, respectively. The RMSE values for
GPR models were reduced by 58% for MRR and over 92% for Ra when compared to RSM.

Using the GPR models, optimal parameter settings were determined for each objective.
The predicted maximum MRR was 10.6379 g/h, and the minimum Ra was 2.0407 pm.
Validation experiments performed under machine-adjusted practical conditions yielded errors
of only 2.69% (MRR) and 3.86% (Ra), thereby confirming the reliability and practical
applicability of the GPR-based surrogate modeling and optimization approach.
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