A general manufacturing methodology for long fibers filled and large polymer (LFFLP) parts will be proposed, which constitutes the major scientific contribution of the document. The input, output, control and analysis data at each step of the methodology will be specified. Experiments realized in the laboratory of Ecole Centrale de Nantes will demonstrate the relevance and effectiveness of this method applied to a 6-axis robot and the FFF process by showcasing two light and resistant lattice structures. The latter also highlight the capacity of 6-axis robots for orienting the deposition head in order to generate complex trajectories. Finally, perspectives and future research about this subject will be discussed such as the need to develop in-depth analyses of the manufacturing methodology. The possibility of using continuous fibres composites as material feedstock for robotized large dimensions FFF will also be covered.
REFERENCES(20)
1.
MULLER P., HASCOET J.Y., 2014, Toolpaths for additive manufacturing of functionally graded materials (FGM) parts, Rapid Prototyp. J., 20/6, 511–522.
JIN Y., HE Y., FU J., GAN W., LIN Z., 2014, Optimization of tool-pa th generation for material extrusion-based additive manufacturing technology, Addit. Manuf., 1–4, 32–47.
TAYLOR P., PONCHE R.J., HASCOET Y., KERBRAT O., MOGNOl P., 2012, Virtual and Physical Prototyping A new global approach to design for additive manufacturing, Virtual Phys. Prototyp, 7/2, 93–105.
KERBRAT O., MOGNOL P., HASCOE J., 2011, Computers in Industry a new DFM approach to combine machining and additive manufacturing, Comput. Ind., 62, 684–692.
TURNER B.N., STRONG R., GOLD S.A., 2014, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyp. J., 20/3, 192–204.
AHN D., KWEON J., KWON S., SONG J., LEE S., 2009, Representation of surface roughness in fused deposition modeling, J. Mater. Process. Technol., 209, 5593–5600.
QUERARD V., HASCOËT J.Y, RAUCH M., 2019, Réalisation de pièces aéronautiques de grandes dimensions par fabrication additive WAAM, Centrale Nantes, France.
KABIR S.M.F., MATHUR K., SEYAM M., 2020, A critical review on 3D printed continuous fiber-reinforced composites : History , mechanism , materials and properties, Compos. Struct., 232, 111476.
TIAN X., HOU Z., LI D., LU B., 2016, 3D printing of continuous fiber reinforced composites with a robotic system for potential space applications, i-SAIRAS.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.