Enabling of Automatically Generation of Cutting Paths for Three-Dimensional Pre-Contouring with Waterjet Trimming
 
 
More details
Hide details
1
Institute for Machine Tools and Factory Managment (IWF), Technische Universität Berlin, Germany
 
2
Institute for Production Systems and Design Technology (IPK), Fraunhofer, Germany
 
 
Submission date: 2023-04-14
 
 
Acceptance date: 2023-05-11
 
 
Online publication date: 2023-05-17
 
 
Publication date: 2023-06-12
 
 
Corresponding author
Waldemar Reder   

Institute for Machine Tools and Factory Managment (IWF), Technische Universität Berlin, Pascalstrasse 8-9, 10587, Berlin, Germany
 
 
Journal of Machine Engineering 2023;23(2):66-76
 
KEYWORDS
TOPICS
ABSTRACT
Abrasive Water Injector Jet Cutting (AWIJC) is a flexible machining process for manufacturing high-performance materials, such as titan- and nickel-base-alloys. Due to the low ductility and thermal conductivity of these materials, conventional machining is struggling with high tool costs and wear. The tool wear in AWIJC is independent of the machined material, and the process has the potential to provide a cost-efficient solution in machining high-performance materials. Trimming, a near-net-shape pre-contouring with multi-stage AWIJC, requires a detailed knowledge of cutting paths for all steps in advance. In order to enable a geometrical flexible manufacturing process, an automatically cutting path generation is necessary. This article presents an application developed with NX Open using Visual Basic. The application TrimCAD is able to provide all necessary geometries for trimming based on the geometries of initial and finished parts. TrimCAD is an innovative possibility to machine three-dimensional parts made of high-performance materials.
 
REFERENCES (13)
1.
KLOCKE F., KÖNIG W., 2007, Fertigungsverfahren 1: Drehen, Fräsen, Bohren, Springer, Berlin, Heidelberg, 2007.
 
2.
QI H., 2012, Review of INCONEL 718 Alloy, Journal of Materials Engineering, 2, 92–100.
 
3.
FRANKBERG E.J., 2022, A Ceramic that Bends Instead of Shattering, Science (New York, N.Y.), 378, 359–360.
 
4.
ZHANG J., LIU G., CUI W., GE Y., DU S., GAO Y., ZHANG Y., LI F., CHEN Z., DU S., CHEN K., 2022, Plastic Deformation in Silicon Nitride Ceramics Via Bond Switching at Coherent Interfaces, Science (New York, N.Y.), 378, 371–376.
 
5.
KOLB M., 2006, Wasserstrahlschneiden, Materialbearbeitung mit einem Hochdruckwasserstrahl, Die Bibliothek der Technik, Band 295.
 
6.
UHLMANN E., ANDERS S., JACZKOWSKI R., REDER W., 2020, Near-Net-Shape Trimming Process by Abrasive Water Jet Cutting of High-Performance Workpieces for the Aerospace Industry, SSRN Journal, 35, 93–98.
 
7.
LIU H.-T., Olsen. J.H., 2013, Application of Abrasive-Waterjet for 3D Machining, WJTA-IMCA Conference and Expo.
 
8.
HASHISH M., 2018, Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations, (Ed.: W. Zhang), CRC Press, 141–171.
 
9.
LIU H.-T., 2017, “7M” Advantage of Abrasive Waterjet for Machining Advanced Materials, Journal of Manufacturing and Materials Processing, 1, 1–19.
 
10.
HASHISH M., 2013, Current and Potential Robotic Abrasive Waterjet Systems, WJTA-IMCA Conference and Expo.
 
11.
FALTIN F., 2018, Endkonturnahe Schruppbearbeitung von Titanaluminid mittels Wasserabrasivstrahlen mit kontrollierter Schnitttiefe, Hrsg., Uhlmann E., Dissertation, Technische Universität Berlin.
 
12.
UHLMANN E., MÄNNEL C., 2018, 3D-Vorkonturierung mittels Wasserabrasivstrahl, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 113, 479–483.
 
13.
REDER W., UHLMANN E., ANDERS S., 2021, Mit dem Wasserabrasivstrahl in eine neue Dimension, VDI-Z, 163, 48–50.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top