Fast Evaluation of the Volumetric Motion Accuracy of Multi-Axis Machine Tools Using a Double-Ballbar
 
More details
Hide details
1
Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, TU Dresden, Germany
 
 
Submission date: 2020-01-14
 
 
Acceptance date: 2020-03-07
 
 
Online publication date: 2020-09-25
 
 
Publication date: 2020-09-25
 
 
Journal of Machine Engineering 2020;20(3):44-62
 
KEYWORDS
ABSTRACT
The proof of manufacturing accuracy requires continuous verification and crosscheck of the motion accuracy of machine tools. Machining in 5 to 6 axes intensifies the problem of measurement and evaluation of volumetric motion accuracy in up to 6 degrees of freedom (dof) in the whole workspace. Although, there are many known, even standardized, measuring methods, they are either expensive, time-consuming, not applicable in an operational state of the machine under shop floor conditions, or their significance is limited to only 1 or 2 feed-axes. Appropriate methods to be run regularly, fast and cost-efficient by the machine operator as a performance test are still desired. The article presents a new approach that meets these requirements. It is based on a Double-Ballbar (DBB) with enlarged measuring range and volumetric measuring paths of up to 6 dof with all feed-axes moving simultaneously during continuous measurement, instead of plane circular paths according to ISO 230-4. After an explanation of the proposed method, the developed DBB device is introduced, including its mechanical and sensor design, the data interface, and results of experimental investigations on the measuring accuracy. Furthermore, relevant problems regarding the design, optimization, and programming of appropriate 6 dof measuring paths are discussed and experimental results are presented that show the advantage compared to other measuring paths.
ACKNOWLEDGEMENTS
The authors want to thank the German Research Foundation (DFG) for their kind support in the project IH 124/3-1 with the title „Measurement and evaluation of the volumetric accuracy of multi-axis machine tools under operational conditions”.
REFERENCES (24)
1.
ISO 230-4, 2005, Test code for machine tools Part 4: Circular tests for numerically controlled machine tools.
 
2.
NAFI A., LOS A., MAYER J.R.R., 2010, Axis Location and Scale Factors Estimation for Three-Axis Machines from Periodic Performance Checks with Laser Distance Measurements – Risks and Opportunities, Journal of Machine Engineering, 10/4, 89–99.
 
3.
NI Y., LIU X., ZHANG B., ZHANG Zh., LI J., 2018, Geometric Error Measurement and Identification for Rotational Axes of a Five-Axis CNC Machine Tool, Journal of Mechanical Engineering, 64/5, 290–302.
 
4.
MILLER J.E., LONGSTAFF A.P., PARKINSON S., FLETCHER S., 2017, Improved machine tool linear axis calibration through continuous motion data capture, Precision Engineering, 47, 249–260.
 
5.
DASSANAYAKE K.M.M., YAMAMOTO K., TSUTSUMI M., SAITO A., MIKAMI S.H., 2008, Simultaneous Five-Axis Motion for Identifying Geometric Deviations Through Simulation in Machining Centers with a Double Pivot Head, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2/1, 47–58.
 
6.
IHLENFELDT S., 2012, Redundante Werkzeugmaschinenstruktur für die Komplettbearbeitung im Großwerkzeugbau: modellbasierter Systementwurf und Prototyp, Ph.D. Thesis, TU Chemnitz.
 
7.
IHLENFELDT S., WABNER M., FRIESS U., TEHEL R., 2015, Berücksichtigung des positionsabhängigen Maschinenverhaltens innerhalb der Simulation: Dynamische Simulation holistischer FEM-Modelle, wt Werkstattstechnik Online, 105/5, 275–284.
 
8.
DAHLEM P.H., MONTAVON B., PETEREK M., SCHMITT R.H., 2018, Enhancing Laser Step Diagonal Measurement by Multiple Sensors for fast Machine Tool Calibration. Journal of Machine Engineering, 18/2, 64–73.
 
9.
KAUSCHINGER B., 2006, Verbesserung der Bewegungsgenauigkeit an einem Hexapod einfacher Bauart, Ph.D. Thesis, TU Dresden.
 
10.
ARCHENTI A., OSTERLIND T., NICOLESCU C.M., 2011, Evaluation and Representation of Machine Tool Deformations, Journal of Machine Engineering, 11/4, 1051–17.
 
11.
ARCHENTI A., NICOLESCU M., CASTERMAN G., HJELM S., 2012, A new method for circular testing of machine tools under loaded condition, 5th CIRP Conference on High Performance Cutting 2012, Procedia CIRP, 1, 575–580.
 
12.
SZATMÁRI S.Z., 2007, Kinematic Calibration of Parallel Kinematic Machines on the Example of the Hexapod of Simple Design, Ph.D. Thesis, TU Dresden.
 
13.
BRYAN J.B., 1982, A simple method for testing measuring machines and machine tools, Precision Engineering 4/2, 61–69, 125–138.
 
14.
BRYAN J.B., 1982, Telescoping Magnetic Ball Bar Test Gage, US Patent 4,435,905, filed March 15, 1982.
 
15.
KAKINO Y., 1986, Method and device to measure motion errors of NC machine tools, European Patent Application EP 0 258 471 A1, date of filing 01.09.1986.
 
16.
WECK M., BRECHER C., 2005, Werkzeugmaschinen 5 Messtechnische Untersuchung und Beurteilung, dynamische Stabilität, CRC Press; 2nd Edition, ISBN-13: 978-08-2475-888-2.
 
17.
YANG S.-H., LEE H.-H., LEE K.-I., 2018, Face- and Body-Diagonal Length Tests using a Double Ball-Bar for Squareness Errors of Machine Tools, Int. J. of Precision Engineering and Manufacturing, 19/7, 1039–1045.
 
18.
DAPERO A., ARCHENTI A., 2015, Identification and Analysis of Linked System’s Dynamic Accuracy – Proposal of a Measurement Approach and Instrumentation, Journal of Machine Engineering, 15/3, 91–104.
 
19.
GROSSMANN K., WUNDERLICH B., 2001, Preiswerte Genauigkeit am Hexapod – Strukturmodellbasierte Fehlerkorrektur, Zeitschrift für wirtschaftlichen Fabrikbetrieb, ZwF 96/5, 257–261.
 
20.
GROSSMANN K., KAUSCHINGER B., 2008, Räumliche Referenzierung an Werkzeugmaschinen mit dem Double-Ball-Bar, Zeitschrift für wirtschaftlichen Fabrikbetrieb, ZwF, 103/3, 104–110.
 
21.
ZHOU R., KAUSCHINGER B., IHLENFELDT S., 2020, Path Generation and Optimization for DBB Measurement with Continuous Data Capture, Measurement, 155, 107550, 10.1016/j.measurement.2020.107550.
 
23.
SHOEMAKE K., 1985, Animating Rotation with Quaternion Curves, SIGGRAPH 1985, July 22.
 
24.
 
 
CITATIONS (9):
1.
Lernende Roboter für die spanende Bearbeitung leicht zerspanbarer Materialien
Christian Gollee, Maximilian Selch, Christer-Clifford Schenke, Arvid Hellmich, Steffen Ihlenfeldt
at - Automatisierungstechnik
 
2.
Volumetric error measurement of the five-axis machine tool using optimal measurement points based on a modified genetic algorithm
Songtao He, Seth Osei, Wei Wang, Jiahao Yu, Qicheng Ding, Lai Junjie
Measurement
 
3.
Digital service application for the recalibration of a machine tool through Augmented Reality-supported data acquisition
F Arnold, G Lemme, M Hess, S Witt, S Ihlenfeldt
IOP Conference Series: Materials Science and Engineering
 
4.
Machine tool calibration: Measurement, modeling, and compensation of machine tool errors
Wei Gao, Soichi Ibaraki, M. Alkan Donmez, Daisuke Kono, J.R.R. Mayer, Yuan-Liu Chen, Károly Szipka, Andreas Archenti, Jean-Marc Linares, Norikazu Suzuki
International Journal of Machine Tools and Manufacture
 
5.
Calibration and uncertainty budget analysis of a high precision telescopic instrument for simultaneous laser multilateration
Francisco Javier Brosed, Juan José Aguilar, Raquel Acero, Jorge Santolaria, Sergio Aguado, Marcos Pueo
Measurement
 
6.
Design Tools and Methods in Industrial Engineering III
Malte Heinrich, Philip Scharf, Johann Marwitz, Christer-Clifford Schenke, Arvid Hellmich, Steffen Ihlenfeldt
 
7.
Additive In-Time Manufacturing of Customised Orthoses
Christian Friedrich, Stephan Rothstock, Laura Slabon, Steffen Ihlenfeldt
Journal of Manufacturing and Materials Processing
 
8.
Data synchronization by continuous spatial measurement with Double Ballbar
Ruiqing Zhou, Bernd Kauschinger, Steffen Ihlenfeldt
Measurement
 
9.
Positioning performance of a hexapod machining cell under machining and nonmachining operations
Kanglin Xing, Ilian A. Bonev, Zhaoheng Liu, Henri Champliaud
Journal of Mechanical Science and Technology
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top