Investigation of the Fatigue Behavior of the Discharge Frame in Electrostatic Precipitators Under Symmetric Cyclic Loading
 
More details
Hide details
1
Faculty of Mechanical engineering, University of Transport and Communications, Viet Nam
 
2
Center for Training and Application of technologies in engineering automation, National Research Institute of Mechanical Engineering, Hanoi City 511309, Vietnam, Viet Nam
 
These authors had equal contribution to this work
 
 
Submission date: 2025-07-24
 
 
Final revision date: 2025-11-05
 
 
Acceptance date: 2025-11-08
 
 
Online publication date: 2025-11-27
 
 
Corresponding author
Cuong Van Nguyen   

Faculty of Mechanical engineering, University of Transport and Communications, Viet Nam
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The discharge frame is a vital structural component of electrostatic precipitators (ESPs) and is frequently subjected to fully reversed cyclic loading from the rapping system. Because direct fatigue testing of the actual frame is impractical, this study proposes an indirect method to estimate its fatigue limit using experimental data from standard SS400 steel specimens combined with correction factors reflecting geometry, size, surface condition, and stress concentration. The fatigue tests established the S–N curve with parameters m = 8.43 and C = 26.05. The calculated fatigue limit of the discharge frame is significantly lower than that of the standard specimen, highlighting the effects of real structural conditions. The proposed approach provides a simple and effective tool for estimating the fatigue strength of large industrial components where direct testing or complex numerical analysis is not feasible.
REFERENCES (35)
1.
MIZUNO A., 2000, Electrostatic Precipitation, IEEE Trans. Dielectr. Electr. Insul., 7/5, 615-624, https://doi.org/10.1109/94.879....
 
2.
MCLEAN K.J., 1988, Electrostatic Precipitators, IEE Proc. A, 135/6, 347–361, https://doi.org/10.1049/ip-a-1....
 
3.
CHIANG P.C., GAO X., 2022, Electrostatic Precipitator, Air Pollution Control and Design. Springer, Singapore, https://doi.org/10.1007/978-98....
 
4.
NEYESTANAK A.A.L., NAZARI S., IMAM A., AGHANAJAFI C., 2014, Fatigue Durability Analysis of Collecting Rapping System in Electrostatic Precipitators Under Impact Loading, Adv. Mater. Sci. Eng., 136059, https://doi.org/10.1155/2014/1....
 
5.
GUDANOV I.S., LEBEDEV A.E., VATAGIN A.A., 2022, Modernization of a High-Performance Electrostatic Precipitator, Chem. Petrol. Eng., 57, 963–965, https://doi.org/10.1007/s10556....
 
6.
PARKER K., 2007, Electrical Operation of Electrostatic Precipitators, Institution of Engineering and Technology, London.
 
7.
BAUMGARTNER J., BREITENBERGER M., SONSINO C.M., 2024, Required Fatigue Strength (RFS) - a Simple Concept for Determining an Equivalent Stress Range Indicating the Necessary Minimum Joint Quality, Weld World, 68, 3177–3194, https://doi.org/10.1007/s40194....
 
8.
SONSINO C.M., BAUMGARTNER J., BREITENBERGER M., 2022, Equivalent Stress Concepts for Transforming Variable Amplitude Into Constant Amplitude Loading and Consequences for Design and Durability Approval, Int. J. Fatigue, 162, 106949, https://doi.org/10.1016/j.ijfa....
 
9.
SONSINO C.M., RENNERT R., 2023, Comparison of Two Equivalent Stress Methods Based nn Cumulative Damage Adjustment and on a Consistent Fatigue Strength Reduction for Transforming Variable Into Constant Amplitude Loading, Mater. Test., 65/5, 662-683, https://doi.org/10.1515/mt-202....
 
10.
PELIZZONI S., RICOTTA M., CAMPAGNOLO A., MENEGHETTI G., 2024, Analysis of the Uniaxial Fatigue Behaviour of 42crmo4 Q&T Steel Specimens Extracted from a Marine Engine Connecting Rod Using the Heat Dissipation Approach, Procedia Struct. Integr., 57, 404-410, https://doi.org/10.1016/j.pros....
 
11.
BRNIC J., BRCIC M., BALOS S., VUKELIC G., KRSCANSKI S., MILUTINOVIC M., DRAMICANIN M., 2021, S235JRC+C Steel Response Analysis Subjected to Uniaxial Stress Tests in the Area of High Temperatures and Material Fatigue, Sustainability, 13/10, 5675, https://doi.org/10.3390/su1310....
 
12.
SANTECCHIA E., HAMOUDA A.M.S., MUSHARAVATI F., et al., 2016, A Review on Fatigue Life Prediction Methods for Metals, Adv. Mater. Sci. Eng., 2016, 9573524, https://doi.org/10.1155/2016/9....
 
13.
ZALNEZHAD E., SARHAN A.A.D.M., HAMDI M., 2012, Prediction of TiN Coating Adhesion Strength on Aerospace AL7075-T6 Alloy Using Fuzzy Rule Based System, Int. J. Precis. Eng. Manuf., 13, 1453–1459. https://doi.org/10.1007/s12541....
 
14.
KREISER D., JIA S.X., HAN J.J., DHANASEKAR M., 2007, A Nonlinear Damage Accumulation Model for Shakedown Failure, Int. J. Fatigue, 29/8, 1523–1530, https://doi.org/10.1016/j.ijfa....
 
15.
MAKKONEN M., 2009, Predicting the Total Fatigue Life in Metals, Int. J. Fatigue, 31/7, 1163-1175, https://doi.org/10.1016/j.ijfa....
 
16.
ZHU S.-P., HUANG H.-Z., 2010, A Generalized Frequency Separation-Strain Energy Damage Function Model for Low Cycle Fatigue-Creep Life Prediction, Fatigue Fract. Eng. Mater. Struct., 33/4, 227–237, https://doi.org/10.1111/j.1460... .
 
17.
KUANG Y., WANG G., TIAN R., HE C., FAN F., LI W., PANG W., 2025, A Fatigue Life Prediction Model of Stud Based on Damage Mechanics, Fatigue Fract. Eng. Mater. Struct., 48, 2618–2632, https://doi.org/10.1111/ffe.14....
 
18.
GAO H.Y., ZUO F.J., L. Z.Q., 2015, Residual Life Prediction Based on Nonlinear Fatigue Damage Accumulation Model, J. Shanghai Jiaotong Univ. (Sci.), 20, 449–453, https://doi.org/10.1007/s12204....
 
19.
AYOUB G., NAIT-ABDELAZIZ M., ZAIRI F., GLOAGUEN J.M., 2010, Multiaxial Fatigue Life Prediction of Rubber-Like Materials Using the Continuum Damage Mechanics Approach, Procedia Eng., 2/1, 985-993, https://doi.org/10.1016/j.proe....
 
20.
ZHANG Y., WANG N., ZHOU J., WANG H., TANG L., ZHANG Y., ZHANG Z., 2024, Remaining Fatigue Life Prediction of Additively Manufactured Inconel 718 Alloy Based on In-Situ SEM and Deep Learning, Eng. Fail. Anal., 163A, 108440, https://doi.org/10.1016/j.engf....
 
21.
SURESH S., 1998, Fatigue of Materials, 2nd Ed., Cambridge University Press, Cambridge.
 
22.
PALMGREN A.G., 1924, Life Length of Roller Bearings, Z. Ver. Dtsch. Ing., 14, 339–341.
 
23.
MINER M.A., 1945, Cumulative Damage in Fatigue, J. Appl. Mech., 3, 159–164.
 
24.
JSCHIJVE J., 2001, Fatigue of Structures and Materials, Springer, Dordrecht.
 
25.
VARVANI-FARAHANI A., SHARMA M., KIANOUSH M.R., 2005, Fatigue Damage Analysis and Life Assessment Under Variable Amplitude Loading Conditions, Mater. Sci. Eng. A, 403, 42–47, https://doi.org/10.1016/j.msea....
 
26.
XI X.L., SONGLIN Z., 2009, Strengthening and Damaging Under Low-Amplitude Loads Below the Fatigue Limit, Int. J. Fatigue, 31/2, 341–345, https://doi.org/10.1016/j.ijfa....
 
27.
KOGAEV V.P., MAKHUTOV N.A., GUSENKOV A.P., 1985, Calculations of Machine Elements and Structures for Strength and Durability: Handbook, Mashinostroyeniye Publ., Moscow (in Russian).
 
28.
GOST 25.504-82, Calculations and Strength Tests. Methods for Calculating Fatigue Resistance Characteristics, Moscow (in Russian).
 
29.
ZHANG W., WANG Q., LI X., HE J., 2016, A Simple Fatigue Life Prediction Algorithm Using the Modified NASGRO Equation, Math. Probl. Eng., 04298507, https://doi.org/10.1155/2016/4....
 
30.
DUA T.V., DUC D.V., BAO N.C., TRUNG D.D., 2024, Integration of Objective Weighting Methods for Criteria and MCDM Methods: Application in Material Selection, EUREKA: Physics and Engineering, 2, 131–148. https://doi.org/10.21303/2461-....
 
31.
DO D.T., NAZLI E., VO T.N.U., 2024, Cylinder and Piston: Material Selection in the Design Phase, Journal of Applied Engineering Science, 22/4, 789–803. https://doi.org/10.5937/jaes0-....
 
32.
TRUNG D.D., THINH H.X., HA L.D., 2022, Comparison of the RAFSI and PIV Method in Multi-Criteria Decision Making: Application to Turning Processes, Int. J. Metrol. Qual. Eng. 13, 14, https://doi.org/10.1051/ijmqe/....
 
33.
CUONG N.V., KHANH N.L., 2021, Parameter Selection to Ensure Multi-Criteria Optimization of the Taguchi Method Combined with the Data Envelopment Analysis-Based Ranking Method when Milling SCM440 Steel, Engineering, Technology & Applied Science Research., 11, 5,7551–7557. https://doi.org/10.48084/etasr....
 
34.
PILKEY W.D., 1997, Peterson's Stress Concentration Factors, 2nd ed., Wiley, New York.
 
35.
JIMENEZ-ALFARO S., MARTINEZ-PANEDA E., 2025, A Computational Framework for Predicting the Effect of Surface Roughness in Fatigue, Int. J. Fatigue, 199, 109044. https://doi.org/10.1016/j.ijfa....
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top