Predictive technology assessment by means of a structure-based method of machine learning
 
More details
Hide details
1
Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany
Acceptance date: 2020-10-02
Online publication date: 2020-11-29
Publication date: 2020-12-18
 
Journal of Machine Engineering 2020;20(4):59–73
 
KEYWORDS
TOPICS
ABSTRACT
From a user perspective, the current development of the generic term Industry 4.0 increasingly moves its orientation towards flexible production. Due to increasingly variable products with small quantities and the resulting high degree of adaptability of a plant over its entire operating phase, the need for rapid production commissioning gives rise to the demand for live commissioning support and technology evaluation of induced production start-ups. Classification axioms can be formed by 1-class learning procedures for the predictive state evaluation of subsequent production start-ups based on collected machine and process data from past production start-ups. The starting point is an adaptive algorithm that performs a dynamic tolerance band formation based on different criteria, emphasizing on adaptive characteristic segmentation. This first step represents comprehensive condition monitoring. Based on this algorithm, correlation considerations can be performed on the data structure, the measured variables, and the diagnostic parameters. Moreover, the structure of production systems can and should be included in the analyzation, so that probabilistic causalities can be postulated and then be added to the underlying data sets for quantification. Using these adaptive structure-based segmentations is the first step to interpret data sets of new production systems without the need for complex pre-configuration.
 
REFERENCES (29)
1.
LIDONG W., GUANGHUI W., 2016, Big Data in Cyber-Physical Systems, Digital Manufacturing and Industry 4.0. IJEM 6/4, 1–8, https://doi.org/10.5815/ijem.2....
 
2.
HIRSCH-KREINSEN H., ITTERMANN P., NIEHAUS J., 2018, Digitalisierung Industrieller Arbeit, Die Vision Industrie 4.0 und Ihre Sozialen Herausforderungen (2nd ed.), Nomos Verlagsgesellschaft, Baden-Baden, https:// doi.org/10.5771/9783845283340.
 
3.
FASSNACHT P., GRIGIN C., NICKEL R., 2009, Prognostische Fähigkeiten, QZ – Qualität und Zuverlässigkeit, 54, 58–59.
 
4.
BEHRENS B.A., OVERMEYER L., NYHUIS P., NICKEL R., 2009, XXL-Produkte – ein Trend in der Produktionstechnik, VDI-Z Integrierte Produktion, Springer VDI Verlag, 151, 56–58.
 
5.
EILERT B., KERSTIN D., OVERMEYER L., 2010, Hier Gesucht Heißt Schon Gefunden, Erfahrungswissen Verbessert Servicequalität, QZ – Qualität und Zuverlässigkeit, 55, 56–57.
 
6.
REICHEL I., 2008, Maschine Detektiert Kritische Zustände vor Einem Ausfall, VDI-Nachrichten, 62/35, 13.
 
7.
REICHEL J., MUELLER G., HAEFFS J., 2018, Betriebliche Instandhaltung (2. Auflage), Springer Verlag GmbH.
 
8.
Digitalisierung kommt in den deutschen Unternehmen an (2019), Bitkom – Bundesverband Informations wirts chaft, Telekommunikation und neue Medien e.V., https://www.bitkom.org/Presse/... tion/Digitalisie-rung-kommt-den-deutschen-Unternehmen, (Retrieved December 11, 2019).
 
9.
MANFRED W., BRECHER C., 2018, Werkzeugmaschinen Fertigungssysteme 1, Springer-Verlag GmbH.
 
10.
SCHMIRGEL H., KRAH J,. 2008, Automatische Parametrierung der Regelkreise von Servoreglern Über systematische Auswertung einer Frequenzanalyse, Conference, PCIM 2007, Nuremberg, Germany.
 
11.
RUDOLF T.M., 2014, Adaptierbare Parametrierung von Diagnosesystemen Durch Verwendung Digitaler Antriebssignale in der Prozessüberwachung, Aachen, Techn. Hochsch., Diss., Ergebnisse aus der Produktionstechnik, Aachen.
 
12.
JAEKEl J., SCHULZE R., RAUCHFUSS T., HUBER R, SCHOENEBERG F., 2014. Virtuelle Inbetrieb- nahme von Verdichter- und Turbinensteuerung, Conference, AUTOMATION 2014, Baden-Baden, Germany.
 
13.
Lubos SMOLÍK., 20018, Post-processing techniques for response of non-linear systems, 20th International Conference Applied Mechanics, Applied Mechanics, 143–148.
 
14.
LI C., BI L., 2015, Intelligent Recognition Method of Infant Sleeping Position Based on Thermal Infrared Imaging, Inter. J. of Control and Automation, 8/7, 133–140, https://doi.org/10.14257/ijca.....
 
15.
PRANTL D., 2012, Gipfelbuch, Süddeutsche Zeitung, Goldmann Verlag im Netz.
 
16.
JURGALSKI E., 2016, Das Erweiterte Prominenzkonzept. Ein mathematisches Einteilungssystem für alle Berge und Gebirge, Weltweit Anwendbar vom Hochgebirge bis zu Heimathügeln, Mitteilungen der Fränkischen Geographischen Gesellschaft, 61/62, 105–110.
 
17.
LEONHARD W., 2019, Eigenständigkeit von Gipfeln,.
 
18.
KODINARIYQM T., MAKWANA P., 2013, Review on Determining Number of Cluster in k-means Clus- tering, Inter. J. of Advance Research in Computer Science and Management Studies, 1/6, 90–95.
 
19.
BHOLOWALIA P., KUMAR A., 2014, EBK-means, A Clustering Technique Based on Elbow Method and k-means in WSN, International Journal of Computer Applications, 105, 9.
 
20.
TIBSHIRANI R., WALTHER G., HASTIE T., 2001, Estimating the Number of Clusters in a Data Set via the Gap Statistic, Journal of the Royal Statistical Society, Series B (Statistical Methodology), 63/2, 411–423, https://doi.org/10.1111/1467-9....
 
21.
CHAKI N., CORTESI A., DEVARAKONDA N., (Eds.), 2018, Proceedings of International Conference on Computational Intelligence and Data Engineering, Springer Singapore, https://www.springer.com/gp/ book/9789811364587.
 
22.
KINGRANI S.K., LEVENE M., ZHANG D., 2017, Estimating the Number of Clusters Using Diversity. AIR 7, 1, 15, https://doi.org/10.5430/air.v7....
 
23.
LLETI R., ORTIZ M.C., SARABIA L.A., SANCHEZ M.S., 2004, Selecting Variables for k-means Cluster Analysis by Using a Genetic Algorithm that Optimizes the silhouettes, Analytica Chimica Acta, 515/1, 87–100, https://doi.org/10.1016/j.aca.....
 
24.
KAPPES A., 2015, Engineering Graph Clustering Algorithms, Karlsruher Institut für Technologie (KIT).
 
25.
MAIMON O., ROKACH L., 2005, Data Mining and Knowledge Discovery Handbook, Springer-Verlag GmbH.
 
26.
CHEN K., LIU L., 2006, iVIBRATE, Interactive Visualization-Based Framework for Clustering Large Datasets, ACM Transactions on Information Systems, 24/2, 245–294, https://doi.org/10.1145/114802... 48024.
 
27.
BU Y., HOWE B., BALAZINSKA M., ERNST M.D., 2010, HaLoop: Efficient Iterative Data Processing on Large Clusters, Proceedings of the VLDB Endowment, 3/1-2, 285–296, https://doi.org/ 10.14778/19208 41.1920881.
 
28.
GANTI V., RAMAKRISHNAN R., GEHRKE J., POWELL A., FRENCH J., 1999, Clustering Large Datasets in Arbitrary Metric Spaces, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337), IEEE, https://doi.org/10.1109/icde.1....
 
29.
FRIEß U., KOLOUCH M., FRIEDRICH A., ZANDER A., 2018, Fuzzy-Clustering of Machine States for Condition Monitoring, CIRP Journal of Manufacturing Science and Technology, 23, 64–77. https://doi.org /10.1016/j.cirpj.2018.09.001.
 
eISSN:2391-8071
ISSN:1895-7595