Machine tools are the main driver of economic, environmental and social sustainability in industrial production. The ongoing shift from mass production to highly individualized, small batch manufacturing requires machine tools to be more flexible to changing needs while maintaining at least the same level of productivity. However, flexibility and productivity are at odds with the necessity for resource and energy efficiency. At the same time, more sophisticated workpiece specifications are pushing the boundaries regarding precision and dynamics of machine tools. In such a high-performance context, machine safety plays a major role and is becoming increasingly challenging due to higher kinetic energies of moving components. This paper examines recent advances in machine tool precision, sustainability, and safety. Six comprehensive case studies are provided to illustrate how these improvements contribute to an increased productivity. Hardware and software solutions for pose-controlled robotic manufacturing and thermoelectrically tempered high performance spindles will be presented. Modular machine tool frames based on building blocks and an adaptive cooling system with thermoelectric generators for linear direct drives demonstrate their major impact on resource and energy efficiency. Machine safety is addressed through an analysis of potential hazards as well as improved protective measures.
UHLMANN E., MULLANY B., BIERMANN D., RAJURKAR K.P., HAUSOTTE T., BRINKSMEIER E., 2016, Process Chains for High-Precision Components with Micro-Scale Features, CIRP Annals – Manufacturing Technology 65, 549–572.
UHLMANN E., HEITMÜLLER F., MATHEI M., REINKOBER S., 2013, Applicability of Industrial Robots for Machining and Repair Processes, Procedia CIRP 11, 234–238.
DENKENA B., BERGMANN B., KLEMME H., 2020, Cooling of Motor Spindles–a Review, The International Journal of Advanced Manufacturing Technology, 110, 3273–3294.
JONATH L., LUDERICH J., BREZINA J., GONZALEZ DEGETAU A.M., KARAOGLU S., 2023, Improving the Thermal Behavior of High-Speed Spindles Through the Use of an Active Controlled Heat Pipe System, 3rd International Conference on Thermal Issues in Machine Tools.
LAI C.Y., VILLACIS CHAVEZ D.E., DING S., 2008, Transformable Parallel-Serial Manipulator for Robotic Machining, The International Journal of Advanced Manufacturing Technology 97/5–8, 2987–2996.
KLIMCHIK A., PASHKEVICH A., 2018, Robotic Manipulators with Double Encoders: Accuracy Improvement Based on Advanced Stiffness Modeling and Intelligent Control, IFAC PapersOnLine, 51/11, 740–745.
XIAOYING S., XIAOJUN Z., PENGYUAN W., CHEN H., 2018, A Review of Robot Control with Visual Servoing, Proceedings of IEEE 8th Annual Conference on Cyber Technology in Automation, Control and Intelligent Systems, 116–121.
KAMALI K., BONEV I.A., 2019, Optimal Experimental Design for Elasto-Geometrical Calibration of Industrial Robots, IEEE/ASME Transactions on Mechatronics, 24/6, 2733–2744.
JIANG Z., HUANG M., 2021, Stable Calibrations of Six-DOF Serial Robots by Using Identification Models with Equalized Singular Values, Robotica, 39/12, 1–22.
UHLMANN E., POLTE M., BLUMBERG J., ZHOULONG L., KRAFT A., 2021, Hyperparameter Optimization of Artificial Neural Networks to Improve the Positional Accuracy of Industrial Robots, Journal of Machine Engineering, 21/2, 47–59.
BLUMBERG J., ZHOULONG L., BESONG L.I., POLTE M., BUHL J., UHLMANN E., BAMBACH M., 2021, Deformation Error Compensation of Industrial Robots in Single Point Incremental Forming by Means of Data-Driven Stiffness Model, Proceedings of the 26th International Conference on Automation and Computing, 1–6.
CUI Z., GAO L., 2010, Studies on Hole-Flanging Process Using Multistage Incremental Forming, Journal of Manufacturing Science and Technology, 2/2, 124–128.
BESONG L.I., BUHL J., ÜNSAL M., BAMBACH M., POLTE M., BLUMBERG, J., UHLMANN E., 2020, Development of Tool Paths for Multi-Axis Single Stage Incremental Hole-Flanging, Procedia Manufacturing 47, 1392–1398.
CHEN X., WEN T., QIN J., HU J., ZHANG M., ZHANG Z., 2020, Deformation Feature of Sheet Metals During Inclined Hole Flanging by Two Point Incremental Forming, International Journal of Precision Engineering and Manufacturing 21, 169–176.
MORI M., FUJISHIMA M., 2009, Reconfigurable Machine Tools for a Flexible Manufacturing System, Changeable and Reconfigurable Manufacturing Systems, Springer, 101–109.
PEUKERT B., SAOJI M., UHLMANN E., 2015, An Evaluation of Building Sets Designed for Modular Machine Tool Structures to Support Sustainable Manufacturing, Procedia CIRP, 26, 612–617.
UHLMANN E., SALEIN S., 2016, Concepts of Self-Sufficient Cooling Systems for Linear Direct Drives, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111/7–8, 411–415.
UHLMANN E., SALEIN S., 2017, Experimental Investigation of Self-Sufficient Cooling Systems for linear Direct Drives of Machine Tools, wt Werkstattstechnik online, 107/5, 359–365.
UHLMANN E., PRASOL L., THOM S., SALEIN S., WIESE R., 2018, Development of a Dynamic Model for Simulation of A Thermoelectric Self-Cooling System for Linear Direct Drives In Machine Tools, Proceedings of 1th Conference on Thermal Issues in Machine Tools, Wissenschaftliche Scripten, Dresden, 75–91.
UHLMANN E., POLTE M., SALEIN S., TRIEBEL F., IDEN N., 2019, Adaptive Cooling System with Thermoelectric Generators, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 114/11, 757–762.
UHLMANN E., SALEIN S., POLTE M., TRIEBEL F., 2020, Modelling of a Thermoelectric Self-Cooling System Based on Thermal Resistance Networks for Linear Direct Drives In Machine Tools, Journal of Machine Engineering 20/1, 43–57.
UHLMANN E., SALEIN S., 2022, Performance Analysis of an Adaptive Cooling System with Primary and Secondary Heat Paths for Linear Direct Drives in Machine Tools, CIRP Journal of Manufacturing Science and Technology, 39, 91–103.
SCHNEIDER M., MICHELBERGER M., 2017, Schlanke Spannlösungen Erleichtern die Zugänglichkeit, VDI Z Special Werkzeuge + Fertigungstechnik 1, Springer-VDI, Düsseldorf.
THOM S., UHLMANN E., 2019, Safety of Slim Tool Extensions for Milling Operations at the Limit, Wissenschaftliche Gesellschaft für Produktionstechnik, 9/2, 347–356.
DIN EN ISO 14120, 2015, Safety of Machinery - Guards - General Requirements for Design and Construction of Fixed and Movable Guards, ISO copyright office, Vernier.
UHLMANN E., POLTE M., BERGSTRÖM N., MÖDDEN H., 2022, Analysis of the Effect of Cutting Fluids on the Impact Resistance of Polycarbonate Sheets by Means of a Hypothesis Test, Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2358–2365.
MÖDDEN H., BERGSTRÖM N., 2022, Design of Impact Tests for Polycarbonate Sheets and Their Deterioration by Cooling Lubricants – Part 1: Models and Limitations of Measurement, Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2350–2357.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.