Seamless and Modular Architecture for Autonomous Machine Tools
 
More details
Hide details
1
wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Germany
CORRESPONDING AUTHOR
Jürgen Fleischer   

wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
Submission date: 2021-06-25
Final revision date: 2021-08-23
Acceptance date: 2021-08-24
Online publication date: 2021-08-28
 
 
KEYWORDS
TOPICS
ABSTRACT
In machine tools, existing solutions for process monitoring and condition monitoring rely on additional sensors or the machine control system as data sources. For a higher level of autonomy, it becomes necessary to combine several data sources, which may be within or outside of the machine. Another requirement for autonomy is additional computing power, which may be hosted on edge devices or in the cloud. A seamless and modular architecture, where sensors are integrated in smart machine components or smart sensors, which are in turn connected to edge devices and cloud platforms, provides a good basis for the incremental realisation of autonomy in all phases of the machine life cycle.
 
REFERENCES (11)
1.
BARTON D., STAMM R., MERGLER S., BARDENHAGEN C., FLEISCHER J,. 2020, Industrie-4.0-Nachrüstkit für Werkzeugmaschinen: Modulare Lösung für zustandsorientierte Instandhaltung und Prozessüberwachung, wt Werkstattstechnik online, 110/7–8, 491.
 
2.
NETZER M., MICHELBERGER J., FLEISCHER J., 2019, Intelligente Störungserkennung einer Werkzeug-maschine, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 114/10, 635–638.
 
3.
SCHLAGENHAUF T., FEURING C.P., HILLENBRAND J., FLEISCHER J., 2019, Camera Based Ball Screw Spindle Defect Classification System, Production at the leading edge of technology, Springer Vieweg, Berlin, Heidelberg, 503–512.
 
4.
ZHANG L., GAO H., et al., 2017, A Deep Learning-Based Recognition Method for Degradation Monitoring of Ball Screw with Multi-Sensor Data Fusion, Microelectronics Reliability, 75, 215–222.
 
5.
ELFORJANI M., SHANBR S., 2017. Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning, IEEE Transactions on industrial electronics, 65/7, 5864–5871.
 
6.
HILLENBRAND J., SPOHRER A., FLEISCHER J., 2018., Zustandsüberwachung bei Kugelgewindetrieben, wt Werkstatttechnik, online, 8, 493–498.
 
7.
MÖHRING H.C., BERTRAM O., 2012, Integrated Autonomous Monitoring of Ball Screw Drives, CIRP Annals, 61/1, 355–358.
 
8.
SPOHRER A., 2019, Steigerung der Ressourceneffizienz und Verfügbarkeit von Kugelgewindetrieben Durch Adaptive Schmierung, Shaker Verlag.
 
9.
GÖNNHEIMER P., PUCHTA A., FLEISCHER J., 2020, Automated Identification of Parameters in Control Systems of Machine Tools, Congress of the German Academic Association for Production Technology, Springer, Berlin, Heidelberg, 568–577.
 
10.
BARTON D., GÖNNHEIMER P., SCHADE F., EHRMANN C., BECKER J., FLEISCHER J., 2019, Modular Smart Controller for Industry 4.0 Functions in Machine Tools, Procedia CIRP, 81, 1331–1336.
 
11.
BARTON D., FEDERHEN J., FLEISCHER J., 2021, Retrofittable Vibration-Based Monitoring of Milling Processes Using Wavelet Packet Transform, Procedia CIRP, 96, 353–358.
 
eISSN:2391-8071
ISSN:1895-7595