A Hybridization of Machine Learning and NSGA-II for Multi-Objective Optimization of Surface Roughness and Cutting Force in ANSI 4340 Alloy Steel Turning
,
 
,
 
,
 
 
 
More details
Hide details
1
Faculty of Mechanical Engineering, Hanoi University of Industry, Bac Tu Liem District, Ha Noi, Viet Nam
 
2
Faculty of Mechanical Engineering and Mechatronics, Phenikaa University, Yen Nghia, Ha Dong, Ha Noi, Viet Nam
 
3
PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Trung Hoa, Cau Giay, Ha Noi, Viet Nam
 
4
HaUI Institute of Technology, Hanoi University of Industry, Bac Tu Liem District, Ha Noi, Viet Nam
 
 
Submission date: 2022-12-14
 
 
Final revision date: 2023-01-30
 
 
Acceptance date: 2023-02-01
 
 
Online publication date: 2023-02-03
 
 
Publication date: 2023-04-12
 
 
Corresponding author
Van-Hai Nguyen   

Faculty of Mechanical Engineering and Mechatronics, Phenikaa University, Yen Nghia, Ha Dong, 12116, Hanoi, Viet Nam
 
 
Journal of Machine Engineering 2023;23(1):133-153
 
KEYWORDS
TOPICS
ABSTRACT
This work focuses on optimizing process parameters in turning AISI 4340 alloy steel. A hybridization of Machine Learning (ML) algorithms and a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is applied to find the Pareto solution. The objective functions are a simultaneous minimum of average surface roughness (Ra) and cutting force under the cutting parameter constraints of cutting speed, feed rate, depth of cut, and tool nose radius in a range of 50 – 375 m/min, 0.02 – 0.25 mm/rev, 0.1 – 1.5 mm, and 0.4 – 0.8 mm, respectively. The present study uses five ML models – namely SVR, CAT, RFR, GBR, and ANN – to predict Ra and cutting force. Results indicate that ANN offers the best predictive performance in respect of all accuracy metrics: root-mean-squared-error (RMSE), mean-absolute-error (MAE), and coefficient of determination (R2). In addition, a hybridization of NSGA-II and ANN is implemented to find the optimal solutions for machining parameters, which lie on the Pareto front. The results of this multi-objective optimization indicate that Ra lies in a range between 1.032 and 1.048 µm, and cutting force was found to range between 7.981 and 8.277 kgf for the five selected Pareto solutions. In the set of non-dominated keys, none of the individual solutions is superior to any of the others, so it is the manufacturer's decision which dataset to select. Results summarize the value range in the Pareto solutions generated by NSGA-II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius of 0.4 mm, are recommended. Following that, experimental validations were finally conducted to verify the optimization procedure.
REFERENCES (44)
1.
ROY S., KUMAR R., DAS R.K., SAHOO A.K., 2018, A Comprehensive Review on Machinability Aspects in Hard Turning of Aisi 4340 Steel, In Iop Conference Series: Materials Science and Engineering, 390/1, 012009.
 
2.
RASHID W.B., GOEL S., LUO X., RITCHIE J.M., 2013, An Experimental Investigation for the Improvement of Attainable Surface Roughness During Hard Turning Process, Proc. Inst. Mech. Eng. Part B, J. Eng. Manuf., 227/2, 338–342.
 
3.
Yi Q., TANG Y., LI C., Li P., 2013, Optimization Of Cnc Machine Processing Parameters for Low Carbon Manufacturing, In Ieee International Conference on Automation Science and Engineering (Case), 498–503.
 
4.
RAO S.N., SATYANARAYANA B., VENKATASUBBAIAH K., 2011, Experimental Estimation of Tool Wear and Cutting Temperatures in MQL Using Cutting Fluids with CNT Inclusion, Int. J. Eng. Sci. Technol., 3/4.
 
5.
ADHEIL H.S., ISMAIL N., 2010, Optimization of Cutting Parameters of Turning Operations by Using Geometric Programming, Am J Eng Appl Sci, 102–108.
 
6.
GUPTA M.K., et al., 2021, Tribological Performance Based Machinability Investigations in Cryogenic Cooling Assisted Turning of Α-Β Titanium Alloy, Tribol. Int., 160, 107032.
 
7.
BAGAWADE D., RAMDASI P.G., 2014, Effect of Cutting Parameters on Material Removal Rate and Cutting Power During Hard Turning of Aisi 52100 Steel, Int. J. Eng. Res. Technol., 3/1.
 
8.
KUNTOGLU M., et al., 2021, Parametric Optimization for Cutting Forces and Material Removal Rate in the Turning of AISI 5140, Machines, 9/5, 90, https://doi.org/10.3390/machin....
 
9.
PIMENOV D.Y., ABBAS A.T., GUPTA M.K., ERDAKOV I.N., SOLIMAN M.S., El Rayes M.M., 2020, Investigations of Surface Quality and Energy Consumption Associated with Costs and Material Removal Rate During Face Milling of Aisi 1045 Steel, Int. J. Adv. Manuf. Technol., 107/7, 3511–3525.
 
10.
YAN J., LI L., 2013, Multi-Objective Optimization of Milling Parameters–The Trade-Offs Between Energy, Production Rate and Cutting Quality, J. Clean. Prod., 52, 462–471.
 
11.
MARKO H., SIMON K., TOMAZ I., MATEJ P., JOZE B., MIRAN B., 2014, Turning Parameters Optimization Using Particle Swarm Optimization, Procedia Eng., 69, 670–677.
 
12.
D’ADDONA D.M., TETI R., 2013, Genetic Algorithm-Based Optimization of Cutting Parameters in Turning Processes, Procedia Cirp, 7, 323–328.
 
13.
AHSAN HABIB M., PATWARI M., ANAYET U., KHAN K.A., 2015, Amanullah Tomal A.N.M., Surface Roughness Optimization in Turning Operation Using Hybrid Algorithm of Artificial Bee Colony with Rsm, Advanced Materials Research, 1101, 393–396.
 
14.
BOUACHA K., TERRAB A., 2016, Hard Turning Behavior Improvement Using NSGA-II and PSO-NN Hybrid Model, Int. J. Adv. Manuf. Technol., 86/9, 3527–3546.
 
15.
NGUYEN A.-T., NGUYEN V.-H., LE T.-T., NGUYEN N.-T., 2022, Multiobjective Optimization of Surface Roughness and Tool Wear In High-Speed Milling of AA6061 by Machine Learning and NSGA-II, Adv. Mater. Sci. Eng., https://doi.org/10.1155/2022/5....
 
16.
KAO Y.-T. ZAHARA E., 2008, A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions, Appl. Soft Comput., 8/2, 849–857.
 
17.
SARDINAS R.Q., SANTANA M.R., BRINDIS E.A., 2006, Genetic Algorithm-Based Multi-Objective Optimization of Cutting Parameters in Turning Processes, Eng. Appl. Artif. Intell., 19/2, 127–133.
 
18.
CHUANGWEN X., JIANMING D., YUZHEN C., HUAIYUAN L., ZHICHENG S., JING X., 2018, The Relationships Between Cutting Parameters, Tool Wear, Cutting Force and Vibration, Adv. Mech. Eng., 10/1, https://doi.org/10.1177/168781....
 
19.
AKGUN M., KARA F., 2021, Analysis and Optimization of Cutting Tool Coating Effects on Surface Roughness and Cutting Forces on Turning of Aa 6061 Alloy, Adv. Mater. Sci. Eng., https://doi.org/10.1155/2021/6....
 
20.
ASLAN A., 2020, Optimization and Analysis of Process Parameters for Flank Wear, Cutting Forces and Vibration in Turning of AISI 5140: A Comprehensive Study, Measurement, 163, https://doi.org/10.1016/J.Meas....
 
21.
YANG S H. NATARAJAN U., 2010, Multi-Objective Optimization of Cutting Parameters in Turning Process Using Differential Evolution and Non-Dominated Sorting Genetic Algorithm-II Approaches, Int. J. Adv. Manuf. Technol., 49/5–8, 773–784.
 
22.
MALI H.S., UNUNE D.R., NIRALA C.K., 2018. ANN-NSGA-II Dual Approach for Modeling and Optimization in Abrasive Mixed Electro Discharge Diamond Grinding of Monel K-500. Engineering Science and Technology, an International Journal, 21/3, 322–329, https://doi.org/10.1016/j.jest....
 
23.
CYDAS U., 2010, Machinability Evaluation in Hard Turning of AISI 4340 Steel with Different Cutting Tools Using Statistical Techniques, Proc. Inst. Mech. Eng. Part B, J. Eng. Manuf., 224/7, 1043–1055.
 
24.
KALADHA M.R, 2020, Modeling and Optimization for Surface Roughness and Tool Flank Wear in Hard Turning of AISI 4340 Steel (35 HRC) Using TiSiN-TiAlN Nanolaminate Coated Insert, Multidiscip. Model. Mat. Struct., 17/2, 337–359, https://doi.org/10.1108/MMMS-1....
 
25.
PATOLE P.B., KULKARNI V.V., 2018, Optimization of Process Parameters Based on Surface Roughness and Cutting Force in MQL Turning of AISI 4340 Using Nano Fluid, Mater. Today Proc., 5/1 104–112.
 
26.
GUPTA M.K., SOOD P.K., 2015, Optimization of Machining Parameters for Turning AISI 4340 Steel Using Taguchi Based Grey Relational Analysis, Materials Science, Business, Corpus ID: 13750423.
 
27.
DAS S.R., PANDA A., DHUPAL D., 2017, Experimental Investigation of Surface Roughness, Flank Wear, Chip Morphology and Cost Estimation During Machining of Hardened AISI 4340 Steel with Coated Carbide Insert, Mech. Adv. Mater. Mod. Process., 3/1, 1–14.
 
28.
CORTES C., VAPNIK V., 1995, Support-Vector Networks, Mach. Learn., 20, 273–297, http://dx.doi.org/10.1007/BF00....
 
29.
KHAN P.W., BYUN Y.-C., LEE S.-J., KANG D.-H., KANG J.-Y., PARK H.-S., 2020, Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources, Energies, 13/18, 4870.
 
30.
[DOROGUSH A.V., ERSHOV V., GULIN A., 2018, Catboost: Gradient Boosting with Categorical Features Support, ArXiv Prepr. ArXiv181011363.
 
31.
HUANG G. et al., 2019, Evaluation of Catboost Method for Prediction of Reference Evapotranspiration in Humid Regions, J. Hydrol., 574, 1029–1041.
 
32.
ZHANG Y., MA J., LIANG S., LI X., LI M., 2020, An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation From Multiple Satellite Data Products, Remote Sens., 12/24, 4015.
 
33.
MAIMON O.Z., ROKACH L., 2014, Data Mining with Decision Trees: Theory and Applications, World Scientific, 81, https://doi.org/10.1142/9097.
 
34.
FLORES V., KEITH B., 2019, Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry, Complexity, https://doi.org/10.1155/2019/1....
 
35.
HUANG B.P., CHEN J.C., LI Y., 2008, Artificial-Neural-Networks-Based Surface Roughness Pokayoke System for End-Milling Operations, Neurocomputing, 71/4–6, 544–549.
 
36.
KARA F., ASLANTAS K., CICEK A., 2015, Ann and Multiple Regression Method-Based Modelling of Cutting Forces in Orthogonal Machining of Aisi 316l Stainless Steel, Neural Comput. Appl., 26/1, 237–250, https://doi.org/10.1007/S00521....
 
37.
KARA F., ASLANTAŞ K., CICEK A., 2016, Prediction of Cutting Temperature in Orthogonal Machining of AISI 316L Using Artificial Neural Network, Appl. Soft Comput., 38, 64–74, https://doi.org/10.1016/J.Asoc....
 
38.
NGUYEN V.-H., LE T.-T., TRUONG H.-S., DUONG H.T., LE M.V., 2023, Predicting Volumetric Error Compensation for Five-Axis Machine Tool Using Machine Learning, Int. J. Comput. Integr. Manuf., 1–28, https://doi.org/10.1080/095119....
 
39.
NGUYEN V.-H., LE T.-T., 2022, Developing Geometric Error Compensation Software for Five-Axis CNC Machine Tool on NC Program Based on Artificial Neural Network, Advances in Asian Mechanism and Machine Science, Cham, 541–548, https://doi.org/10.1007/978-3-....
 
40.
DEB K., PRATAP A., AGARWAL S., MEYARIVAN T., 2002, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6/2, 182–197.
 
41.
COELLO C.A.C., LAMONT G.B., Van VELDHUIZEN D.A., 2007, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer New York, NY.
 
42.
INJADAT M., MOUBAYED A., NASSIF A.B., SHAMI, A. 2020, Systematic Ensemble Model Selection Approach for Educational Data Mining, Knowl.-Based Syst., 200, 105992, https://doi.org/10.1016/j.knos....
 
43.
RASHID W.B., GOEL S., DAVIM J.P., JOSHI S.N., 2016, Parametric Design Optimization of Hard Turning of AISI 4340 Steel (69 HRC), Int. J. Adv. Manuf. Technol., 82/1–4, 451–462.
 
44.
DENNISON M.S., SIVARAM N.M., BARIK D., PONNUSAMY S., 2019, Turning Operation of AISI 4340 Steel in Flooded, Near-Dry and Dry Conditions: a Comparative Study on Tool-Work Interface Temperature, Mech. Mech. Eng., 23/1. 172–182.
 
 
CITATIONS (4):
1.
Assessment of performance parameters in intermittent turning and multi-response optimization of machining conditions using DF, MOORA, VIKOR, and coupled NSGAII-VIKOR methods
Fethi Khelfaoui, Mohammed Athmane Yallese, Septi Boucherit, Nouredine Ouelaa, Salim Belhadi, Sahbi Ben Salem
The International Journal of Advanced Manufacturing Technology
 
2.
Proceedings of the 3rd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2022)
Van-Hai Nguyen, Tien-Thinh Le, Anh-Tu Nguyen
 
3.
Predicting surface roughness in machining aluminum alloys taking into account material properties
Van-Hai Nguyen, Tien-Thinh Le
International Journal of Computer Integrated Manufacturing
 
4.
Assessment of Technological Performance Parameters in Intermittent Turning and Multi-Response Optimization of Cutting Conditions using DF, MOORA, VIKOR, and NSGAII coupled with VIKOR Methods
fethi khelfaoui, Mohammed Athmane YALLESE, Septi BOUCHERIT, Nourdine OUELAA, Salim BELHADI, Sahbi Ben Salem
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top