Accuracy Assessment of Articulated Industrial Robots using the Extended- and the Loaded-Double-Ball-Bar
 
More details
Hide details
1
Cyber-Physical Production Systems, Fraunhofer Institute for Machine Tools and Forming Technology, Germany
2
Department of Production Engineering (IIP), KTH Royal Institute of Technology, Sweden
3
Chair of Machine Tools Development and Adaptive Controls, Institute of Mechatronic Engineering TU Dresden, Germany
CORRESPONDING AUTHOR
Johann August Marwitz   

Cyber-Physical Production Systems, Fraunhofer Institute for Machine Tools and Forming Technology, Nöthnitzer Str. 44, 01069, Dresden, Germany
Submission date: 2022-02-28
Final revision date: 2022-04-22
Acceptance date: 2022-04-24
Online publication date: 2022-05-04
 
 
KEYWORDS
TOPICS
ABSTRACT
This research paper outlines the methodology and application of geometric and static accuracy assessment of articulated industrial robots using the Extended-Double-Ball-Bar as well as the Loaded-Double-Ball-Bar. In a first experiment, the EDBB is used to assess the geometric accuracy of a Comau NJ-130 robot. Advanced measuring trajectories are investigated that regard poses, which maximize the error influences of individual robot components. The developed error-sensitive trajectories are validated in experimental studies and compared to the circular trajectories according to ISO-230-4. Next, the Loaded-Double-Ball-Bar is used to assess an ABB IRB6700 manipulator under quasi-static loads of up to 600 Newton using circular testing according to ISO-230-4 and stiffness is identified. Then, the stiffness is used to perform a reverse calculation to identify the kinematic errors on the path deviations. The concept is validated in a case study of quasi-static loaded circular testing using the Loaded-Double-Ball-Bar compared to a Leica-AT960 laser tracker.
 
REFERENCES (33)
1.
IFR, 2021, IFR presents World Robotics 2021 reports, https://ifr.org/ifr-press-rele... (accessed: Nov. 9, 2021).
 
2.
IBARAKI S., THEISSEN N.A., ARCHENTI A., ALAM M.M., 2021, Evaluation of Kinematic and Compliance Calibration of Serial Articulated Industrial Manipulators, Int. J. Automation Technol., 15/5, 567–580, DOI: 10.20965/ijat.2021.p0567.
 
3.
ISO-9283, 1998, Manipulating industrial robots – Performance criteria and related test methods, Genf: Internatio-nal Organisation for Standardisation.
 
4.
MOORING B., ROTH Z.S., DRIELS M.R., 1991, Fundamentals of Manipulator Calibration, New York, Wiley.
 
5.
VERL A., VALENTE A., MELKOTE S., BRECHER C., OZTURK E., TUNC L.T., 2019, Robots in Machining, CIRP Annals-Manufacturing Technology, 68/2, 799–822, DOI: 10.1016/j.cirp.2019.05.009.
 
6.
KAUSCHINGER B., FRIEDRICH C., ZHOU R., IHLENFELDT S., 2020, Fast Evaluation of the Volumetric Motion Accuracy of Multi-Axis Machine Tools Using a Double-Ballbar, Journal of Machine Engineering, 20/3, 44–62, DOI: 10.36897/jme/119678.
 
7.
CHEN G., LI T., CHU M., XUAN J.-Q., XU S.-H., 2014, Review on Kinematics Calibration Technology of Serial Robots, Int. J. Precis. Eng. Manuf., 15/8, 1759–1774, DOI: 10.1007/s12541-014-0528-1.
 
8.
MESSAY T., ORDONEZ R., MARCIL E., 2016, Computationally Efficient and Robust Kinematic Calibration Methodologies and Their Application to Industrial Robots, Robotics and Computer-Integrated Manufacturing, 37, 33–48, DOI: 10.1016/j.rcim.2015.06.003.
 
9.
HEXAGON ETALON, ETALON LASERTRACER-NG – Etalon part of Hexagon, https://www.etalonproducts. com/en/products/lasertracer/ (accessed: Jan. 22 2022).
 
10.
TOMITA M., IBARAKI S., 2020, Measurement of 2D Positioning Error Map of a SCARA-Type Robot Over the Entire Workspace by Using a Laser Interferometer and a PSD Sensor, International Symposium on Flexible Automation, Virtual, Online.
 
11.
FILION A., JOUBAIR A., TAHAN A.S., BONEV I.A., 2018, Robot Calibration Using a Portable Photogram-metry System, Robotics and Computer-Integrated Manufacturing, 49, 77–87, DOI: 10.1016/j.rcim.2017.05.004.
 
12.
NUBIOLA A., BONEV I.A., 2014, Absolute Robot Calibration with a Single Telescoping Ballbar, Precision Engineering, 38/3, 472–480, DOI: 10.1016/j.precisioneng.2014.01.001.
 
13.
API, Kabelloser Ballbar, https://apimetrology.com/de/ba... (accessed: Feb. 21 2022).
 
14.
ZIEGERT J. C., MIZE C. D., 1994, The laser ball bar: a new instrument for machine tool metrology, Precision Engineering, 16/4, 259–267, DOI: 10.1016/0141-6359(94)90002-7.
 
15.
BROSED F. J., AGUILAR J. J., ACERO R., SANTOLARIA J., AGUADO S., PUEO M., 2022, Calibration and uncertainty budget analysis of a high precision telescopic instrument for simultaneous laser multilateration, Measurement, 190, 110735, DOI: 10.1016/j.measurement.2022.110735.
 
16.
ZHOU R., KAUSCHINGER B., IHLENFELDT S., 2021, Data Synchronization by Continuous Spatial Measure-ment with Double Ballbar, Measurement, 174, 108909, DOI: 10.1016/j.measurement.2020.108909.
 
17.
ZHOU R., KAUSCHINGER B., IHLENFELDT S., 2020, Path Generation and Optimization for DBB Measure-ment with Continuous Data Capture, Measurement, 155, 107550, DOI: 10.1016/j.measurement.2020.107550.
 
18.
FRIEDRICH C., KAUSCHINGER B., IHLENFELDT S., 2020, Stiffness Evaluation of a Hexapod Machine Tool with Integrated Force Sensors, Journal of Machine Engineering, 20/1, 58–69.
 
19.
GARNIER S., SUBRIN K., 2022, A Metrological Device for Robot Identification, Robotics and Computer-Integrated Manufacturing, 73, 102249, DOI: 10.1016/j.rcim.2021.102249.
 
20.
ARCHENTI A., 2011, A Computational Framework for Control of Machining System Capability: from Formulation to Implementation, KTH Royal Institute of Technology.
 
21.
ARCHENTI A., NICOLESCU M., CASTERMAN G., HJELM S., 2012, A New Method for Circular Testing of Machine Tools Under Loaded Condition, Procedia CIRP, 1, 575–580, DOI: 10.1016/j.procir.2012.05.002.
 
22.
THEISSEN N.A., 2021, Precision Measurement Instruments for Machinery’s Mechanical Compliance: Design and Operation, Measurement Instruments for Physics-Based Calibration of Advanced Manufacturing Machinery, KTH, Production Engineering.
 
23.
LASPAS T., 2018, Closed Force Loop Evaluation of Machining Systems, TRITA-ITM-AVL, ISBN 978-91-7729-809-0.
 
24.
DENAVIT J., HARTENBERG R.S., 1955, A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, J. Appl. Mech., 22/2,: 215-221, DOI: 10.1115/1.4011045.
 
25.
SCHRÖER K., 1993, Theory of Kinematic Modelling and Numerical Procedures for Robot Calibration, Robot Calibration, 157196, 44.
 
26.
SICILIANO B., KHATIB O., 2016, Springer Handbook of Robotics, DOI: 10.1007/978-3-319-32552-1.
 
27.
DANEY D., PAPEGAY Y., MADELINE B., 2005, Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu Search, The International Journal of Robotics Research, 24/6, 501–518, DOI: 10.1177/0278364905053185.
 
28.
COOK W.J., APPLEGATE D.L., BIXBY R.E., CHVATAL V., 2011, The Traveling Salesman Problem, Princeton University Press.
 
29.
THEISSEN N.A., GONZALEZ M.K., BARRIOS A., ARCHENTI A., 2021, Quasi-Static Compliance Calibration of Serial Articulated Industrial Manipulators, Int. J. Automation Technol., 15/5, 590–598, DOI: 10.20965/ ijat.2021.p0590.
 
30.
SCHELLEKENS P., ROSIELLE N., VERMEULEN H., VERMEULEN M., WETZELS S., PRIL W., 1998, Design for Precision: Current Status and Trends, CIRP Annals-Manufacturing Technology, 47/2, 557–586, DOI: 10.1016/S0007-8506(07)63243-0.
 
31.
GONZALEZ M., HOSSEINI A., THEISSEN N.A., ARCHENTI A., 2020, Quasi-Static Loaded Circular Testing of Serial Articulated Industrial Manipulators, ISR, 52th International Symposium on Robotics, 1–6.
 
32.
ARCHENTI A., NICOLESCU M., 2013, Accuracy Analysis of Machine Tools Using Elastically Linked Systems, CIRP Annals-Manufacturing Technology, 62/1, 503–506, DOI: 10.1016/j.cirp.2013.03.100.
 
33.
SLOCUM A.H., 1992, Precision Machine Design, ISBN-10: 0872634922.
 
eISSN:2391-8071
ISSN:1895-7595