Application of Machine Learning in the Precise and Cost-Effective Self-Compensation of the Thermal Errors of CNC Machine Tools – A Review
 
More details
Hide details
1
Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, Poland
CORRESPONDING AUTHOR
Robert Czwartosz   

Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
Submission date: 2022-06-14
Final revision date: 2022-07-08
Acceptance date: 2022-07-20
Online publication date: 2022-08-08
 
Journal of Machine Engineering 2022;22(3)
 
KEYWORDS
TOPICS
ABSTRACT
The current development of production engineering takes place through the innovative improvement of machine tools and machining processes at the constantly growing application of intelligent self-improvement functions. Machine learning opens up possibilities for machine tool self-improvement in real time. This paper discusses the state of knowledge relating to the application of machine learning for precise and cost-effective thermal error self-compensation. Data acquisition and processing, models and model learning and self-learning methods are also considered. Three highly effective error compensation systems (supported with machine learning) are analysed and conclusions and recommendations for future research are formulated.
 
REFERENCES (71)
1.
MAYR J., JEDRZEJEWSKI J., UHLMANN E., ALKAN DONMEZ M., KNAPP W., HÄRTIG F., WENDT K., MORIWAKI T., SHORE P., SCHMITT R., BRECHER C., WÜRZ T., WEGENER K., 2012, Thermal Issues in Machine Tools, CIRP Annals, 61/2, 771–791.
 
2.
ABDULSHAHED A., M., LONGSTAFF A.P., FLETCHER S., 2015, The Application of ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools, Applied Soft Computing, 27, 158–168.
 
3.
ABDULSHAHED A., LONGSTAFF A., FLETCHER S., MYERS A., 2013, Application of GNNMCI(1, N) to Environmental Thermal Error Modelling of CNC Machine Tools, International Conference on Advanced Manufacturing Engineering and Technologies, https://doi.org/10.13140/RG.2.....
 
4.
ABDULSHAHED A., LONGSTAFF A., FLETCHER S., MYERS A., 2013, Comparative Study of ANN and ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools, Laser Metrology and Machine Performance X, LAMDAMAP Euspen, Buckinghamshire, UK, 79–89, ISBN 978-0-9566790-1-7.
 
5.
ABDULSHAHED A., LONGSTAFF A., FLETCHER S., 2015, A Particle Swarm Optimisation – Based Grey Prediction Model for Thermal Error Compensation on CNC Machine Tools, Laser Metrology and Machine Performance XI, LAMDAMAP Euspen, Huddersfield, UK, 369–378, ISBN 978-0-9566790-5-5.
 
6.
ABDULSHAHED A.M., LONGSTAFF A.P., FLETCHER S., MYERS A., 2015, Thermal Error Modelling of Machine Tools Based on ANFIS with Fuzzy c-Means Clustering Using a Thermal Imaging Camera, Applied Mathematical Modelling, 39/7, 1837–1852.
 
7.
ABDULSHAHED A.M., LONGSTAFF A.P., FLETCHER S., POTDAR A., 2016, Thermal Error Modelling of a Gantry-Type 5-Axis Machine Tool Using a Grey Neural Network Model, Journal of Manufacturing Systems, 41, 130–142.
 
8.
CHENG Q., YU Y., LI G., LI W., SUN B., CAI L., 2017, A Hybrid Prediction Method of Thermal Extension Error for Boring Machine Based on PCA and LS-SVM, MATEC Web of Conferences, 95, 07010.
 
9.
CHENG Q., QI Z., ZHANG G., ZHAO Y., SUN B., GU P., 2016, Robust Modelling and Prediction of Thermally Induced Positional Error Based on Grey Rough Set Theory and Neural Networks, The International Journal of Advanced Manufacturing Technology, 83/5–8, 753–764.
 
10.
CHENGYANG W., SITONG X., WANSHENG X., 2021, Spindle Thermal Error Prediction Approach Based on Thermal Infrared Images: A Deep Learning Method, Journal of Manufacturing Systems, 59, 67–80.
 
11.
CHEN T.-C., CHANG C.-J., HUNG J.P., LEE R.-M., WANG C.-C., 2016, Real-Time Compensation for Thermal Errors of the Milling Machine, Applied Sciences, 6, 101.
 
12.
FUJISHIMA M., NARIMATSU K., IRINO N., MORI M., IBARAKI S., 2019, Adaptive Thermal Displacement Compensation Method Based on Deep Learning, CIRP Journal of Manufac., Science and Technology, 25, 22–25.
 
13.
GOMEZ-ACEDO E., OLARRA A., ORIVE J., LOPEZ DE LA CALLE L.N., 2013, Methodology for the Design of a Thermal Distortion Compensation for Large Machine Tools Based in State-Space Representation with Kalman Filter, International Journal of Machine Tools and Manufacture, 75, 100–108.
 
14.
GUO Q., YANG J., WU H., 2010, Application of ACO-BPN to Thermal Error Modeling of NC Machine Tool, The International Journal of Advanced Manufacturing Technology, 50/5, 667–675.
 
15.
GUO Q., XU R., YANG T., HE L., CHENG X., LI Z., YANG J.G., 2016, Application of GRAM and AFSACA-BPN to Thermal Error Optimization Modeling of CNC Machine Tools, The International Journal of Advanced Manufacturing Technology, 83/5, 995–1002.
 
16.
HAN J., WANG L., CHENG N., WANG H., 2012, Thermal Error Modeling of Machine Tool Based on Fuzzy c-Means Cluster Analysis and Minimal-Resource Allocating Networks, The International Journal of Advanced Manufacturing Technology, 60/5–8, 463–472.
 
17.
HUANG Y., ZHANG J., LI X., TIAN L., 2014, Thermal Error Modeling by Integrating GA and BP Algorithms for the High-Speed Spindle, The International Journal of Advanced Manufacturing Technology, 71/9, 1669–1675.
 
18.
JIAN B.-L., WANG C.-C., HSIEH C.-T., KUO Y.-P., HOUNG M.-C., YAU H.-T., 2019, Predicting Spindle Displacement Caused by Heat Using the General Regression Neural Network, The International Journal of Advanced Manufacturing Technology, 104/9, 4665–4674.
 
19.
LEI M., YANG J., WANG S., ZHAO L., XIA P., JIANG G., MEI X., 2019, Semi-Supervised Modeling and Compensation for the Thermal Error of Precision Feed Axes, The International Journal of Advanced Manufacturing Technology, 104/9, 4629–4640.
 
20.
LI Q., LI H., 2019, A General Method for Thermal Error Measurement and Modeling in CNC Machine Tools Spindle, The International Journal of Advanced Manufacturing Technology, 103/5, 2739–2749.
 
21.
LI Y., WEI W., SU D., ZHAO W., ZHANG J., WU W., 2018, Thermal Error Modeling of Spindle Based on the Principal Component Analysis Considering Temperature-Changing Process, The International Journal of Advanced Manufacturing Technology, 99/5, 1341–1349.
 
22.
LIU H., MIAO E.M., WEI X.Y., ZHUANG X.D., 2017, Robust Modeling Method for Thermal Error of CNC Machine Tools Based on Ridge Regression Algorithm, International Journal of Machine Tools and Manufacture, 113, 35–48.
 
23.
LIU P.L., DU Z.C., LI H.M., DENG M., FENG X.B., YANG J.G., 2021, Thermal error modeling based on BiLSTM deep learning for CNC machine tool, Advances in Manufacturing, 9/2, 235–249.
 
24.
LOU P., LIU N., YUTING C., LIU Q., ZHOU Z., 2017, The Selection of Key Temperature Measuring Points for the Compensation of Thermal Errors of CNC Machining Tools, International Journal of Manufacturing Research, 12, 338.
 
25.
MARES M., HOREJS O., HAVLIK L., 2020, Thermal Error Compensation of a 5-Axis Machine Tool Using Indigenous Temperature Sensors and CNC Integrated Python Code Validated with a Machined Test Piece, Precision Engineering, 66, 21–30.
 
26.
MA C., ZHAO L., MEI X., SHI H., YANG J., 2017, Thermal Error Compensation of High-Speed Spindle System Based on a Modified BP Neural Network, The International Journal of Advanced Manufacturing Technology, 89/9, 3071–3085.
 
27.
MIAO E.-M., GONG Y.-Y., NIU P.-C., JI C.-Z., CHEN H.-D., 2013, Robustness of Thermal Error Compensation Modeling Models of CNC Machine Tools, The International Journal of Advanced Manufacturing Technology, 69/9–12, 2593–2603.
 
28.
RUIJUN L., WENHUA Y., ZHANG H.H., QIFAN Y., 2012, The Thermal Error Optimization Models for CNC Machine Tools, The International Journal of Advanced Manufacturing Technology, 63/9, 1167–1176.
 
29.
SANTOS M.O. DOS BATALHA G.F., BORDINASSI E.C., MIORI G.F., 2018, Numerical and Experimental Modeling of Thermal Errors in a Five-Axis CNC Machining Center, The International Journal of Advanced Manufacturing Technology, 96/5, 2619–2642.
 
30.
TIAN Y., PAN G., 2020, An Unsupervised Regularization and Dropout Based Deep Neural Network and Its Application for Thermal Error Prediction, Applied Sciences, 10/8, 2870.
 
31.
WANG W., ZHANG Y., FAN K., YANG J., 2013, A Fourier Series-Neural Network Based Real-Time Compensation Approach for Geometric and Thermal Errors of CNC Milling Machines, Advances in Mechanical Engineering, https://doi.org/10.1155/2013/3....
 
32.
XIANG S., YAO X., DU Z., YANG J., 2018, Dynamic Linearization Modeling Approach for Spindle Thermal Errors of Machine Tools, Mechatronics, 53, 215–228.
 
33.
YANG J., SHI H., FENG B., ZHAO L., MA C., MEI X., 2014, Applying Neural Network Based on Fuzzy Cluster Pre-Processing to Thermal Error Modeling for Coordinate Boring Machine, Procedia CIRP, 17, 698–703.
 
34.
YANG Z., SUN M., LI W., LIANG W., 2011, Modified Elman Network for Thermal Deformation Compensation Modeling in Machine Tools, The International Journal of Advanced Manufacturing Technology, 54/5–8, 669–676.
 
35.
YANG J., MEI X., ZHAO L., MA C., HU S., FENG B., 2015, Thermal Error Compensation on a Computer Numerical Control Machine Tool Considering Thermal Tilt Angles and Cutting Tool Length, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229, 78–97.
 
36.
YANG J., SHI H., FENG B., ZHAO L., MA C., MEI X., 2015, Thermal Error Modeling and Compensation for a High-Speed Motorized Spindle, The International Journal of Advanced Manufac. Techn., 77/5, 1005–1017.
 
37.
YANG J., ZHANG D., FENG B., MEI X., HU Z., 2014, Thermal-Induced Errors Prediction and Compensation for a Coordinate Boring Machine Based on Time Series Analysis, Mathematical Problems in Engineering, 2014, 1–13.
 
38.
YAO X., HU T., YIN G., CHENG C., 2020, Thermal Error Modeling and Prediction Analysis Based on OM Algorithm for Machine Tool’s Spindle, The International Journal of Advanced Manufacturing Technology, 106/7, 3345–3356.
 
39.
YINGHAO L., YAN L., FENG G., QIANG F., ZHUO W., ZHOU C., 2015, Study on Optimization of Temperature Measuring Points for Machine Tools Based on Grey Correlation and Kohonen Network, 12th IEEE International Conference on Electronic Measurement Instruments (ICEMI), 181–186.
 
40.
YIN Q., TAN F., CHEN H., YIN G., 2019, Spindle Thermal Error Modeling Based on Selective Ensemble BP Neural Networks, The International Journal of Advanced Manufacturing Technology, 101/5, 1699–1713.
 
41.
ZENG H., SUN Y., ZENG X., 2013, A New Approach of Error Compensation on NC Machining Based on Memetic Computation, TELKOMNIKA Indonesian Journal of Electrical Engineering, 11.
 
42.
ZHANG Y., YANG J., JIANG H., 2012, Machine Tool Thermal Error Modeling and Prediction by Grey Neural Network, The International Journal of Advanced Manufacturing Technology, 59/9–12, 1065–1072.
 
43.
ZHANG X., YANG L., LOU P., JIANG X., LI Z., 2019, Thermal Error Modeling for Heavy Duty CNC Machine Tool Based on Convolution Neural Network, IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 665–669.
 
44.
ZHOU Z., HU J., LIU Q., LOU P., YAN J., HU J., GUI L., 2019, The Selection of Key Temperature Measurement Points for Thermal Error Modeling of Heavy-Duty Computer Numerical Control Machine Tools with Density Peaks Clustering, Advances in Mechanical Engineering, 11, 168781401983951.
 
45.
ZIMMERMANN N., LANG S., BLASER P., MAYR J., 2020, Adaptive Input Selection for Thermal Error Compensation Models, CIRP Annals, 69/1, 485–488.
 
46.
GEBHARDT M., MAYR J., FURRER N., WIDMER T., WEIKERT S., KNAPP W., 2014, High Precision Grey-Box Model for Compensation of Thermal Errors on Five-Axis Machines, CIRP Annals, 63/1, 509–512.
 
47.
BLASER P., PAVLIČEK F., MORI K., MAYR J., WEIKERT S., WEGENER K., 2017, Adaptive Learning Control for Thermal Error Compensation of 5-Axis Machine Tools, Journal of Manuf., Systems, 44, 302–309.
 
48.
MAYR J., BLASER P., RYSER A., HERNANDEZ-BECERRO P., 2018, An Adaptive Self-Learning Compensation Approach for Thermal Errors on 5-Axis Machine Tools Handling an Arbitrary Set of Sample Rates, CIRP Annals, 67/1, 551–554.
 
49.
WEGENER K., WEIKERT S., MAYR J., MAIER M., ALI AKBARI V.O., POSTEL M., 2021, Operator Integrated – Concept for Manufacturing Intelligence, Journal of Machine Engineering, 21/4, 5–28.
 
50.
SHEN H., FU J., HE Y., YAO X., 2012, On-Line Asynchronous Compensation Methods for Static/Quasi-Static Error Implemented on CNC Machine Tools, International Journal of Machine Tools and Manufacture, 60, 14–26.
 
51.
SETTLES B., 1995, Active Learning Literature Survey, Science 10/3, 237–304.
 
52.
ISAH H., ABUGHOFA T., MAHFUZ S., AJERLA D., ZULKERNINE F., KHAN S., 2019, A Surveyof Distributed Data Stream Processing Frameworks, IEEE Access, 7, 154300–154316.
 
53.
HESSE G., LORENZ M., 2015, Conceptual Survey on Data Stream Processing Systems, IEEE 21st International Conference on Parallel and Distributed Systems (Icpads), IEEE, 797–802.
 
54.
PUTNIK G.D., MANUPATI V.K., PABBA S.K., VARELA L., FERREIRA F., 2021, Semi-Double-Loop Machine Learning Based CPS Approach for Predictive Maintenance In Manufacturing System Based on Machine Status Indications, CIRP Annals, 70/1, 365–368.
 
55.
PUTNIK G.D., SHAH V., PUTNIK Z., FERREIRA L., 2020, Machine Learning in Cyber-Physical Systems and Manufacturing Singularity–it Does not Mean Total Automation, Human Is Still in the Centre: Part I–Manufacturing Singularity and an Intelligent Machine Architecture, Journal of Machine Engineering, 20/4. 161–184.
 
56.
PUTNIK G. D., SHAH V., PUTNIK Z., FERREIRA L., 2021, Machine Learning in Cyber-Physical Systems and Manufacturing Singularity–it Does not Mean Total Automation, Human Is Still in the Centre: Part II–I n-CPS and a View from Community on Industry 4.0 Impact on Society, Journal of Machine Engineering, 21/1, 133–153.
 
57.
HUTTER F., KOTTHOFF L., VANSCHOREN J., 2019, Automated Machine Learning: Methods, Systems, Challenges, Springer Nature.
 
58.
MARBINI A.D., SACKS L.E., 2003, Adaptive Sampling Mechanisms in Sensor Networks, London Communi-cations Symposium, London, UK.
 
59.
TORGO L., BRANCO P., RIBEIRO R.P., PFAHRINGER B., 2015, Resampling Strategies for Regression, Expert Systems, 32/3, 465–476.
 
60.
ZIMMERMANN N., BUCHI T., MAYR J., WEGENER K., 2022, Self-Optimizing Thermal Error Compensation Models with Adaptive Inputs Using Group-LASSO for ARX-Models, Journal of Manufacturing Systems, S0278612522000668.
 
61.
ZEBARI R., ABDULAZEEZ A., ZEEBAREE D., ZEBARI D., SAEED J., 2020, A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction, Journal of Applied Science and Technology Trends, 1/2, 56–70.
 
62.
CRONE S.F., LESSMANN S., STAHLBOCK R., 2006, The Impact of Preprocessing on Data Mining: An Evaluation of Classifier Sensitivity in Direct Marketing, European Journal of Operational Research, 173/3, 781–800.
 
63.
GAO Y., MOSALAM K.M., 2018, Deep Transfer Learning for Image-Based Structural Damage Recognition, Computer-Aided Civil and Infrastructure Engineering, 33/9, 748–768.
 
64.
MOZAFARI M., FARAHBAKHSH R., CRESPI N., 2019, A Bert-Based Transfer Learning Approach for Hate Speech Detection in Online Social Media, International Conference on Complex Networks and Their Applications, Springer, 928–940.
 
65.
POSTEL M., BUGDAYCI B., WEGENER K., 2020, Ensemble Transfer Learning for Refining Stability Predictions in Milling Using Experimental Stability States, The International Journal of Advanced Manufacturing Technology, 107/9–10, 4123–4139.
 
66.
VAN ENGELEN J.E., HOOS H.H., 2020, A Survey on Semi-Supervised Learning, Machine Learning, 109/2, 373–440.
 
67.
LU J., LIU A., DONG F., GU F., GAMA J., ZHANG G., 2018, Learning Under Concept Drift: A Review, IEEE Transactions on Knowledge and Data Engineering, 31/12, 2346–2363.
 
68.
KRAWCZYK B., MINKU L.L., GAMA J., STEFANOWSKI J., WOZNIAK M., 2017, Ensemble Learning for Data Stream Analysis: A Survey, Information Fusion, 37, 132–156.
 
69.
NIU Z., ZHONG G., YU H., 2021, A Review on the Attention Mechanism of Deep Learning, Neurocomputing, 452, 48–62.
 
70.
ZIMMERMANN N., BREU M., MAYR J., WEGENER K., 2021, Autonomously Triggered Model Updates for Self-Learning Thermal Error Compensation, CIRP Annals, 70/1, 431–434.
 
71.
HOFFMANN F., BERTRAM T., MIKUT R., REISCHL M., NELLES O., 2019, Benchmarking in Classification and Regression, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9/5, e1318.
 
eISSN:2391-8071
ISSN:1895-7595