Autonomous Assembly and Disassembly - Key Technologies and Links for the Adaptive Self-Optimization of Future Circular Production
More details
Hide details
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU, Germany
Karosseriebau, Montage und Demontage, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU, Germany
Submission date: 2023-02-07
Final revision date: 2023-04-21
Acceptance date: 2023-04-21
Online publication date: 2023-04-28
Publication date: 2023-06-12
Corresponding author
Marcel Lorenz   

Karosseriebau, Montage und Demontage, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU, Reichenhainer Str. 88, 09126, Chemnitz, Germany
Journal of Machine Engineering 2023;23(2):5–15
European industry and beyond faces the challenge of becoming carbon neutral within an unprecedented short timeframe. An important approach to achieving this goal is to transform the current economy into a circular economy. In this context, the reuse of technical products and their recycling are at the forefront. Flexibility and adaptability are crucial for the competitiveness of companies. Adaptive and autonomous assembly and disassembly systems are therefore key. Classically automated assembly systems are inflexible due to a mostly rigid and predefined sequence control and are usually strongly oriented towards economic criteria. Existing autonomous manufacturing cells with their focus on autonomy and failure-free operation also reach their limits in terms of adaptivity. For this reason, intelligent systems are needed that are able to operate autonomously and without intervention, as well as to cope with complex and cognitively demanding situations and tasks.
Internationale Fachmesse für Abwassertechnik, 2023, Circular Economy is Climate Protection, (Accessed on: 04/04/2023).
Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung, 2021, Klimaschutz durch Kreislaufwirtschaft – Kreislaufwirtschaft als wichtiger Hebel zur Erreichung der Pariser Klimaziele.
BAUER D., SCHUMACHER S., GUST A., et al., 2019, Characterization of Autonomous Production by a Stage Model, 52nd CIRP Conference on Manufacturing Systems,
BELHADI, A.; KAMBLE, S.; CHIAPPETTA JABBOUR, J. et al., 2021, Manufacturing and service supply chain resilience to the COVID-19, Technological Forecasting & Social Change.
Bundesministerium für Wirtschaft und Klimaschutz, Fachkräftesicherung, 2023,, (Accessed on: 04/04/2023).
ROSEN R., von WICHERT G., LO G., BETTENHAUSEN K.D., 2015, About the Importance of Autonomy and Digital Twins for the Future of Manufacturing, IFAC (International Federation of Automatic Control),
GAMER T., HOERNICK M., KLOEPPER B., et al., 2019, The Autonomous Industrial Plant - Future of Process Engineering, Operations and Maintenance, IFAC (International Federation of Automatic Control)
PFEIFER T., SCHMITT R., 2006, Autonome Produktionszellen – Komplexe Produktionsprozesse flexibel automatisieren, Springer-Verlag, Berlin Heidelberg.
Plattform Industrie 4.0, KI in der Industrie 4.0, 2020, Orientierung, Anwendungsbeispiele, Handlungs-empfehlungen.
DUMITRESCU R., GAUSEMEIER J., SLUSALLEK P., .et at., 2018, Autonome Systeme – Studien zum deutschen Innovationssystem, Nr. 13. Expertenkommission Forschung und Innovation.
ENGEL C., EBEL P., LEIMEISTER J.M., 2022, Cognitive Automation,
Begleitforschung zum Technologieprogramm AUTONOMI, Institut für Innovation und Technik: Autonomik – Autonome und simulationsbasierte Systeme für den Mittelstand – Band 1 – Die Projekte.
DAMM W., KALMAR R., 2017, Autonome Systeme – Fähigkeiten und Anforderungen, Informatik Spektrum, 40, 400–408,
WIESE T., ABICHT J., FRIEDRICH C., et al., 2022, Flexible Skill-Based Control for Robot Cells in Manufacturing,
ABDOLMOHAMMADI T., RICHTER-TRUMMER V., AHRENS A. et al., 2023, Virtual Sensor-Based Geometry Prediction of Complex Sheet Metal Parts Formed by Robotic Rollforming,
RICHTER K., et al., 2021, Flexible Fertigung von Profilbauteilen ab Losgröße 1, Roboterbasiertes Rollformen,