The hollow embossing rolling of thin-walled high precision components like metallic bipolar half plates is characterized by narrow process windows. Here, the knowledge of interaction between forming machine, roll and process is crucial for the process stability and quality of formed bipolar half plates. In this paper, the elastic machine and forming roll behavior as a major influence parameter is described and analyzed on qualitative level and verified by simulation. This investigation involves a review regarding the process sequence, forces for the hollow embossing rolling of metallic bipolar half plates. By varying the load distributions, the elastic deformations of the forming machine and their forming roll are investigated and analyzed regarding process influence and potential for process monitoring.
REFERENCES(12)
1.
Federal Ministry of Education and Research, 2022, National Hydrogen Strategy: Green Hydrogen as Energy source of the future, https://www.bmbf.de/bmbf/en/ne..., Accessed on: 29 Dec. 2022.
PORSTMANN S., WANNEMACHER T., DROSSEL W.-G., 2020, A Comprehensive Comparison of State-of-the-Art Manufacturing Methods for Fuel Cell Bipolar Plates Including Anticipated Future Industry Trends, Journal of Manufacturing Processes, 60, 366–383.
LIU Y., HUA L., 2010, Fabrication of Metallic Bipolar Plate for Proton Exchange Membrane Fuel Cells by Rubber Pad Forming, J. Power Sources, 195, 3529–3535.
MOHAMMADTABAR N., BAKHSHI-JOOYBARI M., HOSSEINIPOUR S.J., GORJI A.H., 2016, Feasibility Study of a Double-Step Hydroforming Process for Fabrication of Fuel Cell Bipolar Plates with Slotted Interdigitated Serpentine Flow Field, Int. J. Adv. Manuf. Technol., 85, 765–777.
POLSTER S., PORSTMANN S., 2023, FOSTA Projekt Bipolarplatten: Verfahrensvergleich zur Formgebung metallischer Bipolarplatten – Hohlprägen vs. Hohlprägewalzen, https://hzwo.eu/project/fosta-..., Accessed on: 05 June 2023.
PORSTMANN S., WANNEMACHER T., RICHTER T., 2019, Overcoming the Challenges for a Mass Manufacturing Machine for the Assembly of PEMFC Stacks, Machines, 7, 66.
PORSTMANN S., POLSTER S., REUTHER F., MELZER S., NAGEL M., PSYK V., DIX M., 2022, Objectives and Fields of Tension in the Comparison of Manufacturing Processes for Metallic Bipolar Plates, (FC³) Fuel Cell Conference Chemnitz, 195–208.
BUDDHIKA A., ZHANG P., PEREIRA M., WILKOSZ D., WEISS M., 2019, Micro-Roll Forming of Stainless Steel Bipolar Plates for Fuel Cells, International Journal of Hydrogen Energy, 44, 2861–3875.
TEHEL R., PÄßLER T., MIHM M., 2019, Modeling Elastic Behavior of Forming Machine Components to Reduce Tool Manufacturing Time, Procedia Manufacturing, 27, 177–184.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.