Detection and Identification of Nonlinear Contact Dynamics at Workpiece Clamping Positions
 
More details
Hide details
1
Institute for Machine Tools (IfW), University of Stuttgart, Germany
 
2
Graduate School of Excellence advanced Manufacturing Engineering (GSaME), University of Stuttgart, Germany
 
 
Submission date: 2023-02-04
 
 
Final revision date: 2023-02-26
 
 
Acceptance date: 2023-02-27
 
 
Online publication date: 2023-03-03
 
 
Publication date: 2023-04-12
 
 
Corresponding author
Qi Feng   

Institute for Machine Tools (IfW), University of Stuttgart, Holzgartenstr. 17, 70174, Stuttgart, Germany
 
 
Journal of Machine Engineering 2023;23(1):114-122
 
KEYWORDS
TOPICS
ABSTRACT
All mechanical systems behave nonlinearly to a certain extent since there are always reasons for nonlinearities, such as friction and slip effects, in the actual structures. It is important to detect and identify the nonlinearity due to friction and contact in order to investigate their effect on the global behavior of the workpiece-fixture system. That is a prerequisite for modeling the dynamic contact behavior at the interface between the workpiece and clamping elements. In this research, the workpiece-fixture system was excited with a shaker using the swept sine signal. The nonlinearities was detected by comparing and analyzing the frequency responses of the structures in Bode plots. However, the nonlinearities behaved differently at various frequencies within the observation range. Different mechanisms such as nonlinear stiffness and damping, micro-slip friction, are responsible for that. Then the nonlinear contact behavior at the clamping positions was successfully identified by means of the Hilbert transform.
 
REFERENCES (14)
1.
HESSE S., KRAHN H., EH D., 2012, Betriebsmittel Vorrichtung - Grundlagen und kommentierte Beispiele, Carl Hanser Verlag, München.
 
2.
WORDEN K., TOMLINSON G. R., 2001, Nonlinearity in Structural Dynamics - Detection, Identification and Modelling, Institute of Physics Publishing, Bristol.
 
3.
GAUL L., LENZ J., 1997, Nonlinear Dynamics of Structures Assembled by Bolted Joints, Acta Mechanica, 125, 169–181.
 
4.
BOGRAD S., REUSS P., SCHMIDT A. et al., 2011, Modeling the Dynamics of Mechanical Joints, Mechanical systems and signal processing, 25/8, 2801–2826.
 
5.
KNOTHE K., WESSELS H., 2017, Finite Elemente - Eine Einführung für Ingenieure, 5th Edition, Springer, Berlin Heidelberg.
 
6.
WRIGGERS P., 2001, Nichtlineare Finite-Element-Methoden, Springer, Berlin Heidelberg.
 
7.
WAGNER M., 2017, Lineare und Nichtlineare FEM, Eine Einführung mit Anwendungen in der Umformsimulation mit LS-DYNA®, Springer Fachmedien, Wiesbaden.
 
8.
REUSS P., 2020, Dynamische Substrukturtechnik unter Berücksichtigung Nichtlinearer Interfacekomponenten, Dissertation, Universität Stuttgart.
 
9.
EWINS D.J., 2000, Modal Testing: Theory, Practice and Application, 2nd Edition, Research Studies Press, Baldock.
 
10.
KERSCHEN, G., WORDEN, K., VAKAKIS, A. et al., 2006, Past, present and future of nonlinear system identification in structural dynamics, Journal of Sound and Vibration, 20/3, 505–592.
 
11.
Bruns, J.-U., 2004, Detektion und Identifikation von Nichtlinearitäten in mechanischen Schwingungssystemen, Dissertation, Universität Hannover.
 
12.
KAYA N., ÖZTÜRK F., 2003, The Application of Chip Removal and Frictional Contact Analysis for Workpiece-Fixture Layout Verification, Int. J. Adv. Manuf. Technol., 21, 411–419.
 
13.
LEOPOLD J., 2008, Clamping Modeling - State-of-the-Art and Future Trends, In: Intelligent Robotics and Applications, ICIRA 2008, Lecture Notes in Computer Science, Springer, Berlin Heidelberg.
 
14.
BLOHM P., 1992, Untersuchung des nichtlinearen Übertragungsverhaltens von Strukturen mit lokalen Fügestellen, Dissertation, Universität Hannover.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top