Effects of Cooling Systems on the Thermal Behaviour of Machine Tools and Thermal Error Models
 
More details
Hide details
1
Research Centre of Manufacturing Engineering, Czech Technical University in Prague, Czech Republic
 
2
Research Center of Manufacturing Technology, Czech Technical University in Prague, Czech Republic
 
3
Machine tool development, KOVOSVIT MAS Machine Tools, a.s., Czech Republic
 
4
Machine tool development, TOSHULIN, a.s., Czech Republic
 
 
Submission date: 2020-07-27
 
 
Final revision date: 2020-10-05
 
 
Acceptance date: 2020-10-05
 
 
Online publication date: 2020-11-29
 
 
Publication date: 2020-12-18
 
 
Corresponding author
Martin Mareš   

Research Centre of Manufacturing Engineering, Czech Technical University in Prague, Horská 3, 12800, Prague, Czech Republic
 
 
Journal of Machine Engineering 2020;20(4):5-27
 
KEYWORDS
TOPICS
ABSTRACT
Today, cooling systems are increasingly applied to the structure of machine tools (MT). Unfortunately, to date there have been few efforts to precisely control these cooling systems, which inhibits the full utilisation of their potential to improve MT thermal behaviour (to reduce thermal errors). Moreover, the effects of cooling systems, especially the effects of cutting fluids, on thermal error compensation models are often omitted. This paper deals with the effects of fluid cooling systems on the thermal behaviour of MT and thermal error compensation models. It provides a detailed review of the state of the art, followed by the authors’ recent research on these issues. Firstly, the sensitivity of thermal error compensation models based on transfer functions (TF) to modification of fluid cooling systems and cutting fluid presence is discussed. Secondly, gradient regulation of the cooling unit to improve MT accuracy is presented.
 
REFERENCES (30)
1.
MAREŠ M., HOREJŠ O., 2017, Modelling of Cutting Process Impact on Machine Tool Thermal Behaviour Based on Experimental Data, Procedia CIRP, 58, 152–157.
 
2.
BRYAN J., 1990, International Status of Thermal Error Research (1990), CIRP Annals – Manufacturing Technology, 39/2, 645–656.
 
3.
WEGENER K., MAYR J., MERKLEIN M., BERENS B.A., AOYAMA T., SULITKA M., FLEISCHER J., GROCHE P., KAFTANOGLU B., JOCHUM N., MOEHRING H-CH., 2017, Fluid Elements in Machine Tools, CIRP Annals – Manufacturing Technology, 60, 611–634.
 
4.
MAYR J., JEDRZEJEWSKI J., UHLMANN E., DONMEZ M.A., KNAPP W., HÄRTIG F., WENDT K., MORIWAKI T., SHORE P., SCHMITT R., BRECHER CH.,WÜRZ T., WEGENER K., 2012, Thermal Issues in Machine Tools, CIRP Annals – Manufacturing Technology, 61, 771–791.
 
5.
HORNYCH J., HOREJŠ O., 2012, The Adaptive Cooling Control of a Ball Screw Feed Drive, Proceedings of the 12th euspen International Conference, Stockholm, euspen.
 
6.
HOREJŠ O., BÁRTA P., HORNYCH J., 2008, Modeling of Thermal Processes in a Cooled Ball Screw Feed Drive, MATAR 2008 – Proceedings of Part 1: Drives & Control, Design, Models & Simulation, Prague, SpOS, 147–152, ISBN 978-80-903421-9-4.
 
7.
HELLMICH A., GLANZEL J., PIERER A., 2018, Analysing and Optimizing the Fluidic Tempering of Machine Tool Frames, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 195–210, ISBN 978-3-95735-085-5.
 
8.
POPKEN J., SHABI L., WEBER J., 2018, System Modelling and Control Concepts of Different Cooling System Structures for Machine Tools, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 93–106, ISBN 978-3-95735-085-5.
 
9.
TONNELLIER X., MORANTZ P., SHORE P., COMLEY P., 2010, Precision Grinding for Rapid Fabrication of Segments for Extremely Large Telescopes Using the Cranfield BoX, SPIE Astronomical Telescopes and Instrumentation: Observational Frontiers of Astronomy for the New Decade, 773905.
 
10.
BÁRTA P., HORNYCH J., HOREJŠ O., 2008, Active Control of a Machine Tool Cooling System, Proceedings of the 10th anniversary international conference of the EUSPEN, Zürich, 384–388.
 
11.
HORNYCH J., BÁRTA P., MAREŠ, M., 2009, Thermomechanical Transfer Functions and Control of a Machine Tool Cooling System, Modern Machinery (MM) Science Journal, 96–97.
 
12.
BÁRTA P., HOREJŠ O., HORNYCH J., VYROUBAL J., 2007, Thermal Transfer Function Based Control Method of a Machine Tool Cooling System, Proceedings of the Topical Meeting: Thermal Effects in Precision Systems. Maastricht, the Netherlands, euspen, 16–18.
 
13.
SHI X., ZHU K., WANG W., FAN L., GAO J., 2018, A Thermal Characteristic Analytic Model Considering Cutting Fluid Thermal Effect for Gear Grinding Machine Under Load, The International Journal of Advanced Manufacturing Technology, 99, 1755–1769.
 
14.
BRYAN J., CLOUSER R., MCCLURE E., 1968, Expansion of a Cutting Tool During Chip Removal, CIRP Annals, 16, 49–51.
 
15.
JEDRZEJEWSKI J., KWASNY W., 2011, Study on Reducing Energy Consumption in Manufacturing Systems, Journal of Machine Engineering, 11/3, 7–20.
 
16.
CHEN J. S., 1996, A Study of Thermally Induced Machine Tool Errors in Real Cutting Conditions, Int. J. Mach. Tools Manuf., 36/12, 1401–1411.
 
17.
MAYR J., GEBHARDT M., MASSOW B.B., WEIKERT S., WEGENER W., 2014, Cutting Fluid Influence on Thermal Behavior of 5-Axis Machine Tools, Procedia CIRP, 14, 395–400.
 
18.
FRASER S., ATTIA M.H., OSMAN M.O.M., 1998, Modeling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modeling, ASME J. Manuf. Sci. Eng., 120/3, 623–631.
 
19.
BRECHER C., HIRSCH P., WECK M., 2004, Compensation of Thermo-Elastic Machine Tool Deformation Based on Control Internal Data, CIRP Annals – Manufacturing Technology, 53/1, 299–304.
 
20.
YANG H., NI J., 2003, Dynamic Modeling for Machine Tool Thermal Error Compensation, Journal of Manufacturing Science and Engineering, 125, 245–254.
 
21.
HOREJŠ O., MAREŠ M., KOHÚT P., BÁRTA P., HORNYCH J., 2010, Compensation of Machine Tool Thermal Errors Based on Transfer Functions, MM Science Journal, 2010/1, 162–165.
 
22.
MAYR J., BLASER P., RYSER A., HERNÁNDEZ BECERRO P., 2018, An Adaptive Self-Learning Compensation Approach for Thermal Errors on 5-Axis Machine Tools Handling an Arbitrary Set of Sample Rates, CIRP Annals – Manufacturing Technology, 67/1, 551–554.
 
23.
FRASER S., ATTIA M.H., OSMAN M.O.M., 1998, Modeling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions, ASME J. Manuf. Sci. Eng., 120/3, 632–639.
 
24.
LJUNG L., 2015, System Identification Toolbox™ User's Guide, The MathWorks, https://www.mathworks. com/help/pdf_doc/ident/index.html.
 
25.
International standard ISO 230-3, Test Code for Machine Tools – Part 3: Determination of Thermal Effects, 2007, Genf, Switzerland.
 
26.
HOREJŠ O., MAREŠ M., HORNYCH J., 2014, A General Approach to Thermal Error Modelling of Machine Tools, Machines et usinage à grande vitesse (MUGV), Clermont Ferrand, France.
 
27.
MAREŠ M., HOREJŠ O., HAVLÍK L., 2020, Thermal Error Compensation of a 5-Axis Machine Tool Using Indigenous Temperature Sensors and CNC Integrated Python Code Validated with a Machined Test Piece, Precision Engineering [article in press], https://doi.org/10.1016/j.prec....
 
28.
HOREJŠ O., MAREŠ M., NOVOTNÝ L., 2012, Advanced Modelling of Thermally Induced Displacements and Its Implementation into Standard CNC Controller of Horizontal Milling Center, Procedia CIRP, 4/1, 67–72, ISSN 2212-8271.
 
30.
MAREŠ M., HOREJŠ O., HORNYCH J., KOHÚT P., 2011, Compensation of Machine Tool Angular Thermal Errors using Controlled Internal Heat Sources, Journal of Machine Engineering, 11/4, 78–90, ISSN 1895-7595.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top