Machine Learning-Driven RUL Prediction and Uncertainty Quantification for Ball Screw Drives in a Cloud-Ready Maintenance Framework
 
More details
Hide details
1
Institute of Production Science, Karlsruhe Institute of Technology, Germany
 
2
Institute for Operations Research (IOR), Karlsruhe Institute of Technology, Germany
 
 
Submission date: 2024-06-27
 
 
Final revision date: 2024-08-06
 
 
Acceptance date: 2024-08-27
 
 
Online publication date: 2024-09-25
 
 
Corresponding author
Alexander Bott   

Institute of Production Science, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
 
 
 
KEYWORDS
TOPICS
ABSTRACT
In today's rapidly evolving industrial landscape, efficient predictive maintenance solutions are essential for minimizing downtime and enhancing productivity. This research introduces an adaptive cloud-based model pipeline for predicting the Remaining Useful Life (RUL) of machine components, specifically ball screws. The pipeline integrates local preprocessing, edge computing, and cloud-based adaptive model training, ensuring data privacy and reducing data transmission volumes. The system classifies wear states using various machine learning mod-els and predicts RUL through regression analysis, incorporating uncertainty quantification for robust maintenance scheduling. The experimental setup includes accelerated degradation of ball screws, with data collected via a three-dimensional accelerometer. Feature extraction and data augmentation techniques are employed to enhance prediction accuracy. Random Forest and Gradient Boosting models demonstrate superior performance, with Random Forest selected for its robustness and uncertainty quantification capabilities. Empirical results indicate high prediction accuracy, with Random Forest achieving up to 91% accuracy in Phase 2. This cloud-ready predictive maintenance framework leverages scalable cloud infrastructure for efficient data processing and real-time updates, offering a practical solution for industrial applications. The proposed approach significantly advances the adoption of digital business models within the manufacturing industry, providing a reliable and efficient tool for predictive maintenance.
 
REFERENCES (42)
1.
ZHENG T., ARDOLINO M., BACCHETTI A., Perona M., 2021, The Applications of Industry 4.0 Technologies in Manufacturing Context: A Systematic Literature Review, International Journal of Production Research, 59/6, 1922–1954.
 
2.
LU Y., 2017, Industry 4.0: A Survey on Technologies, Applications and Open Research Issues, Journal of industrial information integration, 6, 1–10.
 
3.
PIVOTO D.G., DE ALMEIDA L.F., DA ROSA RIGHI R., RODRIGUES J.J., LUGLI A.B., ALBERTI A.M., 2021, Cyber-Physical Systems Architectures for Industrial Internet of Things Applications in Industry 4.0: A Literature Review, Journal of manufacturing systems, 58, 176–192.
 
4.
MALIK P.K., SHARMA R., SINGH R., GEHLOT A., SATAPATHY S.C., ALNUMAY W.S., Nayak J. 2021, Industrial Internet of Things and Its Applications in Industry 4.0: State of The Art, Computer Communications, 166, 125–139.
 
5.
VEILE J.W., KIEL D., MÜLLER J.M., VOIGT K.I., 2020, Lessons Learned from Industry 4.0 Implementation in the German Manufacturing Industry, Journal of Manufacturing Technology Management, 31/5, 977–997.
 
6.
WANG L., WANG G., 2016, Big Data in Cyber-Physical Systems, Digital Manufacturing and Industry 4.0, International Journal of Engineering and Manufacturing (IJEM), 6/4, 1–8.
 
7.
BUENO A., GODINHO FILHO M., FRANK A.G., 2020, Smart Production Planning and Control in the Industry 4.0 Context: A Systematic Literature Review, Computers & Industrial Engineering, 149, 106774.
 
8.
WOLLSCHLAEGER M., SAUTER T., JASPERNEITE J., 2017, The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0, IEEE industrial electronics magazine, 11/1, 17–27.
 
9.
JAVAID M., HALEEM A., SINGH R.P., SUMAN R., 2022, Enabling Flexible Manufacturing System (FMS) Through the Applications of Industry 4.0 Technologies, Internet of Things and Cyber-Physical Systems, 2, 49–62.
 
10.
TORN I.A.R., VANEKER T.H., 2019, Mass Personalization with Industry 4.0 by SMEs: A Concept for Collaborative Networks, Procedia manufacturing, 28, 135–141.
 
11.
XU L.D., XU E.L., LI L., 2018, Industry 4.0: State of the Art And Future Trends, International journal of production research, 56/8, 2941–2962.
 
12.
CHEN T., SAMPATH V., MAY M.C., SHAN S., JORG O.J., AGUILAR MARTÍN J.J., CALAON M., 2023, Machine Learning in Manufacturing Towards Industry 4.0: From ‘for now’ to ‘Four-Know’, Applied Sciences, 13/3, 1903.
 
13.
KHLIL A., SHI Z., UMAR A., MA B., 2023, A New Industry 4.0 Approach for Development of Manufacturing Firms Based On DFSS, Processes, 11/7, 2176.
 
14.
STENTOFT J., JENSEN K.W., PHILIPSEN K., HAUG A., 2019, Drivers and Barriers for Industry 4.0 Readiness and Practice: A SME Perspective with Empirical Evidence.
 
15.
MASOOD T., SONNTAG P., 2020, Industry 4.0: Adoption Challenges and Benefits for SMEs, Computers in Industry, 121, 103261.
 
16.
YU F., SCHWEISFURTH T., 2020, Industry 4.0 Technology Implementation in SMES–A Survey in the Danish-German Border Region, International Journal of Innovation Studies, 4/3, 76–84.
 
17.
SCHLAGENHAUF T., BURGHARDT N., 2021, Intelligent Vision-Based Wear Forecasting on Surfaces of Machine Tool Elements, SN Applied Sciences, 3, 1–13.
 
18.
MÜNZING T., 2017, Auslegung von Kugelgewindetrieben bei oszillierenden Bewegungen und dynamischer Belastung, Stuttgart: Institut für Konstruktionstechnik und Technisches Design.
 
19.
HILLENBRAND J., FLEISCHER J., 2021, Unsupervised Detection of State Changes During Operation of Machine Elements, Journal of Machine Engineering, 21/2, 36–46.
 
20.
FLEISCHER J., LEBERLE U., MAIER J., SPOHRER A., 2014, Resource-Efficient Ball Screw by Adaptive Lubrication, Procedia CIRP, 15, 50–55.
 
21.
BMWI B.M.B.F., 2019, Das Projekt GAIA-X: Eine vernetzte Dateninfrastruktur als Wiege eines vitalen, Europäischen Ökosystems.
 
22.
NIEBEL C., REIBERG A., KRAEMER P., 2022, Gaia-X for SMEs, 6. November 2022.
 
23.
KRAEMER P., NIEBEL C., REIBERG A., 2023, Gaia-X and Business Models, 25. February 2023.
 
24.
HOFFMANN F., WEBER M., WEIGOLD M., METTERNICH J., 2022, Developing Gaia-X Business Models for Production, Conference on Production Systems and Logistics: CPSL 2022, 583–594, Hannover, publish-Ing.
 
25.
NIEBEL C., SMOLEŃ, A., 2023, AI And Gaia-X, 30. November 2023.
 
26.
GAO R., WANG L., TETI R., DORNFELD D., KUMARA S., MORI M., HELU M., 2015, Cloud-Enabled Prognosis for Manufacturing, CIRP annals, 64/2, 749–772.
 
27.
VILLALONGA A., BERUVIDES G., CASTAÑO F., HABER R., 2018, Industrial Cyber-Physical System for Condition-Based Monitoring in Manufacturing Processes, 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 637–642.
 
28.
ARÉVALO F., DIPRASETYA M.R., SCHWUNG A., 2018, A Cloud-Based Architecture for Condition Monitoring Based on Machine Learning, 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), 163–168).
 
29.
ZHAO K., LI L., CHEN Z., SUN R., YUAN G., LI J., 2022, A Survey: Optimization and Applications of Evidence Fusion Algorithm Based on Dempster–Shafer Theory, Applied Soft Computing, 124, 109075.
 
30.
CAGGIANO A., 2018, Cloud-Based Manufacturing Process Monitoring for Smart Diagnosis Services, International Journal of Computer Integrated Manufacturing, 31/7, 612–623.
 
31.
STRÖBEL R., BOTT A., WORTMANN A., FLEISCHER J., 2023, Monitoring of Tool and Component Wear for Self-Adaptive Digital Twins: A Multi-Stage Approach Through Anomaly Detection and Wear Cycle Analysis, Machines, 11/11, 1032.
 
32.
BHATT U., ANTORÁN J., ZHANG Y., LIAO Q.V., SATTIGERI P., FOGLIATO R., XIANG A., 2021, Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty, Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 401–413.
 
33.
HÜLLERMEIER E., WAEGEMAN W., 2021, Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods, Machine Learning, 110, 457–506.
 
34.
MENTCH L., HOOKER G., 2016, Quantifying Uncertainty in Random Forests Via Confidence Intervals and Hypothesis Tests, The Journal of Machine Learning Research, 17/1, 841–881.
 
35.
MIRA J., MORENO I., BARDISBANIAN H., GORROÑOGOITIA J., 2023, Machine Learning (ML) as a Service (Mlaas): Enhancing IoT with Intelligence, Adaptive Online Deep and Reinforcement Learning, Model Sharing, and Zero-Knowledge Model Verification, Shaping the Future of IoT with Edge Intelligence, 63.
 
36.
MO Y., LI L., HUANG B., LI X., 2023, Few-Shot RUL Estimation Based on Model-Agnostic Meta-Learning. Journal of Intelligent Manufacturing, 34/5, 2359–2372.
 
37.
ILYUSHIN B.B., 2024, On Applicability of IQR Method for Filtering of Experimental Data, Journal of Engineering Thermophysics, 33/1, 1–8.
 
38.
MÜLLER A.C., GUIDO S., 2017, Introduction to Machine Learning with Python: a Guide for Data Scientists (First edition), O'Reilly Media Inc.
 
39.
UM T.T., PFISTER F.M.J., PICHLER D., ENDO S., LANG M., HIRCHE S., FIETZEK U., KULIĆ D., 2017, Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring Using Convolutional Neural Networks, 216–220, arXiv:1706.00527.
 
40.
IWANA B.K., UCHIDA S., 2021, An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, PloS One, 16/7, e0254841.
 
41.
OH C., HAN S., JEONG J., 2020, Time-Series Data Augmentation Based on Interpolation, Procedia Computer Science, 175, 64–71.
 
42.
MENTCH L., HOOKER G., 2016, Quantifying Uncertainty in Random Forests Via Confidence Intervals and Hypothesis Tests, Journal of Machine Learning Research, 17/26, 1–41.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top