Multiaxial Force Platform with Disturbance Compensation for Machine Tools
 
More details
Hide details
1
University of Stuttgart, Institute for Machine Tools (IfW), Stuttgart, Germany
 
2
EMO Systems GmbH/Nuton GmbH, Berlin, Germany
 
 
Submission date: 2019-11-20
 
 
Acceptance date: 2020-05-20
 
 
Online publication date: 2020-09-25
 
 
Publication date: 2020-09-25
 
 
Journal of Machine Engineering 2020;20(3):5-16
 
KEYWORDS
ABSTRACT
As part of a cooperation project between the Institute for Machine Tools, Stuttgart, Germany, and EMO Systems/Nuton GmbH, Berlin, Germany, a prototype of a multiaxial force platform with disturbance compensation for the measurement of the cutting forces in machine tools was developed. Commercially available products based on piezoelectric technology are subject to a degree of measurement uncertainty and therefore characterized by various disturbances. Interpreting measurement data of the commercially available products is complex, time-consuming and prone to errors. This paper describes the mechanical design and the simulation of the multiaxial force measuring system with the finite element method (FEM) as well as the conceptual development of a reduced model for a multibody simulation with the purpose of implementing a compensation algorithm. The measurement uncertainty was reduced by using appropriate hardware and software for the compensation of the various disturbances so that the application of the force platform would also be possible in the industrial application for the process diagnosis, the control and the regulation in machine tools. Systems based on strain gauge technology have some advantages in the field of zero-point stability and also provide a less expensive solution. For the disturbance compensation, an additional force and torque sensor system with eight channels was used for the detection of the platform displacement and inclination. With the help of appropriate algorithms for the disturbance compensation and their integration in the evaluation software, the disturbances could be reduced to a minimum.
 
REFERENCES (20)
1.
KLOCKE F., JOSEPH Y., TRÄCHTLER A., et al., 2014, Sensoren für die digitale Produktion/Sensors for a digital production, Integrative Produktion – Industrie 4.0: Aachener Perspektiven, Shaker, 271–296.
 
2.
DENKENA B., DAHLMANN D., DAMM J., 2015, Self-Adjusting Process Monitoring System in Series Production, Innovative and Cognitive Production Technology and Systems, CIRP Conference on Intelligent Computation in Manufacturing Engineering, 9, Procedia CIRP, 33, 233–238.
 
3.
MÖHRING H.C., NGUYEN Q.P., KUHLMANN A., LEREN C., 2016: Intelligent Tools for Predictive Process Control, Factories of the Future in the Digital Environment, CIRP-CMS, CIRP Conference on Manufacturing Systems, 57, 539–544.
 
4.
MAIER W., MÖHRING H.C., WERKLE K., 2018, Tools 4.0 – Intelligence Starts on the Cutting Edge, 4th International Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing, 24, 299–304.
 
5.
MÖHRING H.C., MAIER W., WERKLE K., 2018, Increasing the Accuracy of an Intelligent Milling Tool with Integrated Sensors, 18th International Conference & Exhibition, 4th to 8th June 2018, ISBN: 978-0-9957751-2-1.
 
7.
GAUTSCHI G., KOHLER D., WOLFER P., 1993, Measuring Platform, EP000000360923B1, Europäisches Patent, Kistler Instrumente AG, 13.01.1993.
 
8.
SONDEREGGER H., WOLFER P., 1993, Mounting of a Force Transducer in a Measuring Platform, EP000000342253B1, Europäisches Patent, Kistler Instrumente AG, 13.01.1993.
 
9.
WULFSBERG J., BRUDEK G., 2004, Problemstellungen und ein Lösungsansatz zur Kraftmessung in der Mikrozerspanung, wt Werkstattstechnik online, 11/12, 625–630.
 
10.
TOTIS G., ADAMS O., SORTINO M., 2014, Development of an Innovative Plate Dynamometer for Advanced Milling and Drilling Applications, Measurement, 49, 164–181.
 
11.
GONZÁLES DE MENDOZA A.C., 2019, DE 10 2016 116 180 B4, Verfahren und Kraftmessplatte zur mehrachsigen Erfassung einwirkender Kräfte und Momente, Deutsches Patent- und Markenamt/German Patent and Trade Mark Office, Berlin, Germany.
 
12.
GONZÁLES DE MENDOZA A.C., 2016, DE 10 2016 116 182.9, Deutsches Patent- und Markenamt/German Patent and Trade Mark Office, Berlin, Germany.
 
13.
GONZÁLES DE MENDOZA A.C., 2018, DE 10 2016 116 182. A1, Temperaturmanagement für eine Kraftmesseinrichtung, Deutsches Patent- und Markenamt/German Patent and Trade Mark Office, Berlin, Germany.
 
14.
GONZÁLES DE MENDOZA A.C., 2018, DE 10 2016 116 181 A1, Ein- oder mehrachsige Kraftmesseinrichtung mit kurzer Verformungszone, Deutsches Patent- und Markenamt/German Patent and Trade Mark Office, Berlin, Germany.
 
15.
GONZÁLES DE MENDOZA A.C., 2019, DE 10 2016 114 193.B4, Kraftmesseinrichtung zur mehrachsigen Erfassung einwirkender Kräfte und Momente, Deutsches Patent- und Markenamt/German Patent and Trade Mark Office, Berlin, Germany.
 
16.
GONZÁLES DE MENDOZA A.C., 2019, DE 10 2017 116 448.A1, Kraftmesseinrichtung mit Störgrößen-kompensation, Deutsches Patent- und Markenamt/German Patent and Trade Mark Office, Berlin, Germany.
 
17.
Simscape Multibody Documentation, MathWorks, https://www.mathworks.com/help....
 
18.
MILLER S., SOARES T., WEDDINGEN Y.V., WENDLANDT J., 2017, Modeling Flexible Bodies with Simscape Multibody Software. An Overview of Two Methods for Capturing the Effects of Small Elastic Deformations, Technical Paper, MathWorks.
 
19.
CRAIG R., BAMPTON M., 1968, Coupling of Substructures for Dynamic Analyses, AIAA Journal, American Institute of Aeronautics and Astronautics, 6/7, 1313–1319.
 
20.
Mechanical APDL 2019 R3, Theory Reference, ANSYS, https://www.ansys.com.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top